

1

Puzzle: chocolate squares

Suppose you have a piece of chocolate like this. How many squares are in it?

- One square 4×4
- Four squares 3×3
- Can start (e.g, top-left corner) at (1,1), (1,2), (2,1), (2,2)
- 2 choices for a row, 2 choices for a column.
- Nine squares 2×2
- Can start at any (x, y) with $x \in\{1,2,3\}, y \in\{1,2,3\}$
- So $3^{*} 3=9$ choices.
-16 squares 1×1.

- Total: $1+4+9+16=30$ squares

3

Combinatorics

- Counting various ways to arrange things. - Leading to probability theory.
- How long would a program that does brute-force search over possibilities will run?
- Depends on the number of potential answers.
- How many ways a sorting algorithm can rearrange its n-element input?
- How many possibilities need to be checked to break 4-digit PIN? A 8-letter password (with digits and special symbols)? A 80-letter passphrase (with just letters)? Which one is more secure?
- 10 digits +23 special symbols +26 lowercase +26 uppercase letters.

5

Puzzle: chocolate squares

Suppose you have a piece of chocolate like this. How many squares are in it? - One square 13×13

- ...
- 13*13=169 squares 1×1
- $122^{* 12} 2 \times 2$
- $11^{*} 113 \times 3$

- General formula: starting with an $\mathrm{n} \times \mathrm{n}$ piece of chocolate, get
- $\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$ squares.

4

Combinatorics

- What if some of the possibilities are identical? How can we count then?
- How many different trees are there, if two trees are considered the same if one can be transformed into another by moving/renaming vertices, keeping edges attached.
- Flip and move bottom vertex.

6

Rules of sum and product

Cartesian products

- When a sequence is Cartesian product of n copies of the same set: - How many possible PINs consisting of 4 digits are there?
- If there are n choices for A, and m choices for B, then there are $n+m$ choices for "A or B"
- Provided A and B do not overlap.
- If there are 16 squares of size 1 , and 9 squares of size 2 , then there are 25 squares of
size either 1 or 2 . size either 1 or 2 .
- Rule of product:
- If there are n choices for A, and m choices for B, then there are $n * m$ choices for "A and B".
- 3 choices for a row times 3 choices for a column: 9 of 2×2 squares. - Can also count rectangles rather than squares...

7
8

9

Assigning offices example

- Our department has 20 faculty offices in the Engineering building, and 4 more in the Earth Sciences building, and needs to assign them to 24 faculty members.
- How many ways are there to select 4 out of 24 faculty to go to Earth Sciences?
- How many ways are there to assign offices ER-6030 to ER-6033 to specific 4 people?

> - To Oscar, Antonina, Yuanzhu and Dave?

- How many ways, overall, to choose 4 people to go to Earth Sciences and assign them to four offices in Earth Sciences?

10

Assigning offices example

- Our department has 20 faculty offices in the Engineering building, and 4 more in the Earth Sciences building, and needs to assign them to 24 faculty members.
- How many ways are there to select 4 out of 24 faculty to go to Earth Sciences?
- How many ways are there to assign offices

ER-6030 to ER-6033 to specific 4 people?

- To Oscar, Antonina, Yuanzhu and Dave?

- How many ways, overall, to choose 4 people to go to Earth Sciences and assign them to four offices in Earth Sciences?

프믈
8 B

Permutations

- Permutations: number of sequences of objects
- Without repetition: each object appears once.
- How many ways to assign offices ER-6030 to ER-6033 to Antonina, Dave, Oscar and Yuanzhu?
-4 choices to pick who gets ER-6030. This leaves 3 choices to pick who gets ER-6031. Now 2 remain for ER-6032, and the last is stuck with ER-6033.
- By the product rule, get $4 * 3^{*} 2^{*} 1=4!=24$ (that is, 4 factorial)
- In general, number of permutations of n elements is $1^{*} 2^{*} \ldots * n=n$!
- "Permutations": the difference between choices is only the order of elements.

13

- How many ways to assign ER offices to 4 out of 24 faculty?
- Pick one out of 24 to be in ER-6030. One out of remaining 23 to be in ER6031, one out of 22 for ER-6032, one out of 21 for ER-6033
- By the product rule, get $\mathrm{P}(24,4)=24^{*} 23^{*} 22^{*} 21$.
- Alternative calculation:
- There are 24 ! ways to assign offices to everybody.
- Out of them, 20! ways to assign non-ER offices.
- We are not interested in what everybody else got - so once the way to assign ER offices is fixed, all sequences with this assignment to ER offices are the same for us.
$-P(24,4)=\frac{24!}{20!}=24 * 23^{*} 22 * 21$ ways to get 4 people specific offices in ER.

15
16

- r-permutations: $P(n, k)$ is number of ways to choose k objects out of n, where only the order of selected objects matters.
- General formula: the number of r-permutations out of n objects is

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

- Example: how many ways to choose $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ place winners in a contest with n participants?
- n choices for $1^{\text {st }}$ place, $(n-1)$ for $2^{\text {nd }}$ place, $(n-2)$ for $3^{\text {rd }}$ place.
$-P(n, 3)=\frac{n!}{(n-3)!}=n *(n-1) *(n-2)$

An r-permutation $P(n, r)$ is a number of ways to take r out of n objects, and arrange these r objects in a sequence.

- Before, we talked about permutations of all objects in the set.
- Choose 4 faculty members to go to Earth Sciences building, and assign offices to just these 4.

14

r-Permutations.

\qquad

Combinations.

- In general, how many ways to pick k out of n objects?
- The number of k-permutations divided by the number of different permutations of the k objects themselves.
- How many ways to choose 4 out of 24 faculty members to get an office in Earth Science?
-24 ! ways to assign offices altogether.
-4 ! ways to assign the first 4 offices (ones in Earth Sciences).
- 20! ways to assign offices not in Earth Sciences.
- Overall, $\frac{24!}{4!20!}$ ways to pick who gets an Earth Sciences office, - Considering only who goes to which building, ignoring which specific office they get.

Combinations.

- Combinations: $\mathrm{C}(\mathrm{n}, \mathrm{k})$ is number of ways to choose k objects out of n .
- "n choose k ": $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\mathrm{C}(\mathrm{n}, \mathrm{k})$
- How many ways to choose 4 out of 24 faculty members to get an office in Earth Science?
- $C(24,4)=\frac{24!}{4!20!}$ ways to pick who gets an Earth Science office.
- How many ways to select a crew of 6 astronauts out of a team of 30 to go to Mars?
- $C(30,6)=\binom{30}{6}=\frac{30!}{6!(24!)}=593,775$

Coffee ordering puzzle

- Suppose that 10 of you came to the office hour, and we decided to go to Jumping Bean to get some coffee.
- Jumping Bean sells 6 types of coffee drinks: drip coffee, cappucino, espresso, latte, mocca and americano.
- How many different combinations of drinks can we get, if each of 11 of us gets one coffee drink?
- Here, all of us getting drip coffee is one combination, 6 espresso and 5 americano is another, etc.

4 Whem

19
20

Coffee ordering puzzle

- Suppose that 10 of you came to the office hour, and we decided to go to Jumping Bean to get some coffee.
- Jumping Bean sells 6 types of coffee drinks: drip coffee, cappucino, espresso, latte, mocca and americano.
- How many different combinations of drinks can we get, if each of 11 of us gets one coffee drink?
- Here, all of us getting drip coffee is one combination, 6 espresso and 5 americano is another, etc.

21

Coffee ordering: smaller puzzle

- Suppose that 2 students decided to get coffee at Treats.
- Treats sells 4 kinds of coffee: Medium, House, Decaf and Flavoured.
- How many different combinations of drinks can they get, if each gets one drink?
- If we take into account who gets what, then the answer would be 4×4 by the Cartesian product rule. But here we consider "decaf and Medium" to be the same as "Medium and decaf".
- Let's list the possibilities. To save space, let's denote each possible drink by the first letter (" m " for Medium, etc), and a combination by a string of letters in alphabetical order.
- So if they get one decaf and one flavoured, we'll write "df"
- dd, df,dh,dm,ff,fh,fm,hh,hm,mm: 10 combinations of drinks.

22

Suppose that 2 students decided to get coffee at Treats. Treats sells 4 kinds of coffee: Medium, Houseblend, Decaf and Flavoured. How many different combinations of drinks can they get, if each gets one drink?

- $\mathrm{dd}, \mathrm{df}, \mathrm{dh}, \mathrm{dm}, \mathrm{ff}, \mathrm{fh}, \mathrm{fm}, \mathrm{hh}, \mathrm{hm}, \mathrm{mm}: 10$ combinations of drinks.
- We could write $4+(4 * 4-4) / 2$ to count sets with 2 of the same drinks separately, but that does not quite generalize to 11 people getting drinks...
- Instead, let's encode combination of drinks differently. Rather than using letters (d,f,h,m), we'll encode which drink is which by "dividers".
- Let's now use "c" for "coffee", and "|" for a divider. So for 2 people it is 2 c's.
- We will need one less divider than the number of drink types (k bins, $k-1$ dividers)
- Then "c||c|" encodes one coffee of the first type (decaf), no coffees of the second type (no flavoured), one coffee of the third type (house), and no mediums
- |cc|| encodes two flavoured coffees

Coffee ordering: smaller puzzle

Suppose that 2 students decided to get coffee at Treats. Treats sells 4 kinds of coffee: Medium, Houseblend, Decaf and Flavoured. How many different combinations of drinks can they get, if each gets one drink?

- dd, df,dh,dm,ff,fh,fm,hh,hm,mm: 10 combinations of drinks.
- Now, the problem reduces to counting how many different strings we can make out of 2 " c " (for 2 coffees) and 3 dividers (for 4-1 coffee types).
- The number of ways to choose 2 places in a string of length $2+3$ to be " c "
- Equivalently, choosing 3 out of 5 places to be "।"
- Choosing k out of n is $C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}$
- $\binom{5}{2}=\frac{5!}{2!3!}=10$

Combinations with repetition

- Now we can do 11 people and 6 types drinks (any number of people and types of drinks)
-6 types of drinks give us 6-1=5 dividers
- Number of people + number of dividers: 11+6-1=16 positions in a string. - So $\binom{16}{11}=\binom{16}{5}=4368$ possible combinations of drinks.
- In general, number of ways to select r objects out of n categories with repetition is

$$
\binom{r+n-1}{r}
$$

25
26

Puzzle: misspelling OSOYOOS

- In the game of Scrabble, players make words out of the letters they have on a rack.
- Suppose that someone puts the word "OSOYOOS" on the board, using up all her 7 pieces.
- How many ways could she have had the letters arranged on the rack in front of her?
- The order of multiple copies of a letter does not matter: switching two S around results in the same sequence, but switching O and S does not.
- The letters on the rack do not have to form a word.

27
28

Puzzle: misspelling OSOYOOS

- In the game of Scrabble, players make words out of the letters they have on a rack.
- Suppose that someone puts the word "OSOYOOS" on the board, using up all her 7 pieces.
- How many ways could she have had the letters arranged on the rack in front of her?
- The order of multiple copies of a letter does not matter: switching two S around results in the same sequence, but switching O and S does not.
- The letters on the rack do not have to form a word.

29

Puzzle: misspelling OSOYOOS

- Suppose that someone puts the word "OSOYOOS" on the board, using up all her 7 pieces. How many ways could she have had the letters arranged on the rack in front of her?
- There are 7 letters in the word OSOYOOS. If they were all distinct, that would be 7! = 5040 ways.
- But there are 4 Os , and 2 Ss , order of which does not matter.
- There are 4! ways to order Os, and 2! ways to order Ss.
- Therefore, the total number of ways to order the letters
- Therefore, the total number of ways to order the letters
ignoring the order of Os and Ss is $7!/ 4!2!=105$

30

Puzzle: misspelling OSOYOOS

- Suppose that someone puts the word "OSOYOOS" on the board, using up all her 7 pieces. How many ways could she have had the letters arranged on the rack in front of them, such that Ss are not next to each other?
- First, let's consider all possible orderings of remaining letters: 5!/4! of them - Since order of Os does not matter, there are 5 choices where to put Y .
- Now, consider places where S can go, without two S being next to each other: _o_o_y_o_0_ (here, ooyoo are in arbitrary order). There are 6 such places. - So there are $\binom{6}{2}=6!/ 2!4!$ ways to place Ss.
- Therefore, the total number of ways to order the letters ignoring the order of Os and Ss and with Ss not next to each other is $5!6!/ 4!4!2!=75$
- Alternatively, consider all orderings with Ss next to each other: there are $\frac{6!}{4!}=30$ of them (treating the "SS" as a single letter).
- Now, the total is $105-30=75$.

31
32

Binomial coefficients

- Binomial expansion: open parentheses in $(x+y)^{n}$
- Open the parentheses in $(x+y)^{2}:(x+y)^{2}=x^{2}+2 x y+y^{2}$
- Open parentheses in $(x+y)^{3}$
$\cdot x^{3}+x x y+x y x+y x x+x y y+y x y+y y x+y^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
- That is, a coefficient in front of $x^{2} y$ is the number of ways to pick one y (or $2 x$) out of 3 positions.
- The coefficient in front of $x^{k} y^{n-k}$ in the expansion of $(x+y)^{n}$ is $C(n, k)=\binom{n}{k}$
- Call these coefficients binomial coefficients.

Binomial theorem: $\quad(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$

33

Pascal's identity and triangle

- How to compute binomial coefficients?
- Only need to compute them for $0 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$, since $\binom{n}{k}=\binom{n}{n-k}=\frac{n!}{k!(n-k)!}$
- Pascal's identity: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$
- Recurrence for $\binom{n}{k}$, with $\binom{n}{n}=\binom{n}{0}=1$ as basis
- In practice, use Stirling approximation $\mathrm{n}!\sim \sqrt{2 \pi n}(n / e)^{n}$
- So $\frac{\mathrm{n}^{\mathrm{k}}}{\mathrm{k}^{\mathrm{k}}} \leq\binom{ n}{k}<\frac{(e n)^{k}}{k^{k}}$,

11
121 $\begin{array}{llll}1 & 3 & 3 & 1\end{array}$

- And $\ln n!\sim n \ln n-n$

Binomial theorem

- Binomial theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
- Corollary 1: $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
- Proof: Apply the binomial theorem with $x=y=1$.
$2=1+1$, so $2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} 1^{n-k}=\sum_{k=0}^{n}\binom{n}{k}$
- Corollary 2: $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=0$
- Proof: Apply the binomial theorem with $x=-1, y=1$.
$0=(-1)+1$, so $0=0^{n}=((-1)+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} 1^{n-k}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}$

Enrollment puzzle

- There are 160 students in COMP 1000 this semester
- There are 105 students in COMP 1002
- The total number of students in either of these two courses is 200
- How many students are in both COMP 1000 and COMP 1002?

37

39

40

Rule of inclusion-exclusion

- Let A and B be two sets. Then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- Why? Elements in $|A \cap B|$ are counted twice in $|\mathrm{A}|+|\mathrm{B}|$, so need to subtract one copy.
- If A and B are disjoint, then $|A \cup B|=|A|+|B|$
- If there are 160 students in COMP 1000, 105 in COMP 1002, and 65 of them are in both, then the total number of students in 1000 or 1002 is $160+105-65=200$.
- What if we have three sets?

Rule of inclusion-exclusion

- How many students in total if
- 160 students in COMP1000 (A), 105 in COMP1002 (B), and 120 in COMP 1001 (C),

- where 45 are in both COMP 1000 and COMP 1002: $|A \cap B|=45$
- 30 are in both COMP 1000 and COMP 1001: $|A \cap C|=30$
- 50 are in both COMP 1001 and COMP 1002: $|B \cap C|=50$.
- 20 students are in all three: $|A \cap B \cap C|=20$
$-|A|+|B|+|C|$ counts students in all three 3 times, students in two courses twice.
$-|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|$ counts students in two courses once, but subtracts out students in all three courses! Need to add them back in.

$$
\begin{aligned}
|A \cup B \cup C|=|A|+|B|+|C| & \\
& \quad|A \cap B|-|A \cap C|-|B \cap C| \\
& +\mid A \cap B \cap C
\end{aligned}
$$

So total number of students in COMP 1000,1001, 1002 is:

$$
|A \cup B \cup C|=160+105+120-45-30-50+20=280
$$

Rule of inclusion-exclusion

Rule of inclusion-exclusion

- What happens if there are n sets?
- Suppose an element is in k sets out of n .
- It will appear $k=C(k, 1)$ times when counting individual sets
- $C(k, 2)$ times when counting intersections of 2 sets...
- $C(k, i)$ times when counting intersections of i sets...
- $C(k, k)$ times when counting intersections of k sets.
- Suppose x is in all three sets A, B, C.
- It is counted $3=C(3,1)$ times in $|A|+|B|+|C|$,
- $3=C(3,2)$ times in in $|A \cap B|+|A \cap C|+|B \cap C|$
- and once, $\mathrm{C}(3,3)$ times, in $|A \cap B \cap C|$.

43
44

Rule of inclusion-exclusion

-What happens if there are n sets?

- Suppose an element is in k sets out of n.
- It will appear $k=C(k, 1)$ times when counting individual sets
- $C(k, 2)$ times when counting intersections of 2 sets...
- $C(k, i)$ times when counting intersections of i sets...
- $C(k, k)$ times when counting intersections of k sets.
- Remember the binomial theorem (or, rather, its corollary):
$\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=C(k, 0)-C(k, 1)+C(k, 2)-\cdots+(-1)^{k} C(k, k)=0$
- Now, $1=C(k, 0)=C(k, 1)-C(k, 2)-\cdots-(-1)^{k} C(k, k)$
- Writing $-(-1)^{k}$ as $(-1)^{k+1}$, get $1=C(k, 1)-C(k, 2)+\cdots+(-1)^{k+1} C(k, k)$

45

- What happens if there are n sets?
- Suppose an element is in k sets out of n .
- It will appear $k=C(k, 1)$ times when counting individual sets
- $C(k, 2)$ times when counting intersections of 2 sets..
- $C(k, i)$ times when counting intersections of i sets...
- $C(k, k)$ times when counting intersections of k sets.
- Suppose $x \in A$, and $x \in B$ and $x \notin C$.
- Then x is counted twice $(C(2,1)=2)$ in $|A|+|B|+|C|$,
- and once $(C(2,2)=1)$ in $|A \cap B|+|A \cap C|+|B \cap C|$.
- It is not in $|A \cap B \cap C|$, so counted 0 times there.

46

47

Functions

- A function $f: X \rightarrow Y$ is a relation on $\mathrm{X} \times Y$ such that for every $x \in \mathrm{X}$ there is at most one $y \in Y$ for which (x, y) is in the relation.
- Usual notation: $f(x)=y$, where
$-y$ is an image of x under f.
$-X$ is the domain of f
$-Y$ is the codomain of f
- Range of f (image of X under f):
- $\{\mathrm{y} \in Y \mid \exists x \in X, f(x)=y\}$
- Preimage of a y in range of f :
- $\{x \in X \mid f(x)=y\}$ - Preimage of b is $\{2,3\}$.

49

50

Functions

- Composition of functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is a function $g \circ f: X \rightarrow Z$ such that $(g \circ f)(x)=g(f(x))$
$-f(x)=\frac{x}{5}, g(x)=\lceil x\rceil$, over \mathbb{R}
- $\lceil x\rceil$ is ceiling: x rounded up to nearest integer.
$-(g \circ f)(x)=g(f(x))=\left\lceil\frac{x}{5}\right\rceil$
$-(f \circ g)(x)=f(g(x))=\frac{[x]}{5}$
$-(g \circ f)(12.5)=[2.5]=3 .(f \circ g)(12.5)=13 / 5=2.6$
- Order matters!

51
52

Barbers club puzzle

- In a certain barbers club,
- Every member has shaved at least one other member
- No member shaved himself

- No member has been shaved by more than one member
- There is a member who has never been shaved.
- Question: how many barbers are in this club?

Infinitely many!
Barber 0 grows a beard.
For all $n \in \mathbb{N}$, barber n shaves barber $n+1$

Cardinalities of infinite sets

- Two finite sets A and B have the same cardinality (size) if they have the same number of elements
- That is, for each element of A there is exactly one matching element of B.
- For infinite A and B, define $|A|=|B|$ iff there exists a bijection between A and B.
- If it is possible to map every element of A to one element of B, covering all elements of B.
- So that every element of A and every element of B is paired up with exactly one element from the other set.

55

56

- An infinite set A is countable iff $|A|=|\mathbb{N}|$.
- That is, there is a bijection between elements of A and natural numbers.
- So it is possible to assign a natural number to each element of A, that is,
"count" elements of A.
Name the first element of A, the second element of A, and so on, covering
- So it is possible to assign a natural number to each element of A, that is,
"count" elements of A.
- Name the first element of A, the second element of A, and so on, covering all elements of A.
- Starting with either 0 or 1 is ok.
- Either $f: A \rightarrow \mathbb{N}$ or $f: \mathbb{N} \rightarrow A$ is OK .

Countable sets

6

58

59

Counting finite strings

- Let us first show that the set of finite strings over $\{a, b\}$, denoted $\{a, b\}^{*}$, is countable.
- We will count strings in order of their increasing lengths, counting shorter strings before longer strings.
- First, count all strings of length 0 . There is one such string: λ
- Map it to number 1 : let's start with 1 this time.
- Then count strings of length 1 : there are two, " a " and " b ".
- Map them to numbers 2 and 3 , respectively
- Four strings of length 2 : aa , ab , ba, bb : map those to $4,5,6,7 \ldots$

61

449

뀨ำ뀪

Order of strings

- Couldn't we just count strings in dictionary order? - $\lambda, a, a a, a a a, a a a a$..
- But that would go forever, and we would never get to " b ".
- We must count shorter strings before longer strings to avoid this.
- But when we are counting strings of the same length, then we might as well do it in the dictionary order.
- Length 3 strings: aaa, aab, aba, abb, baa, bab, bba, bbb.
- So what is the actual formula for f ?
- There are 2^{n} strings of length n,
- And $2^{n}-1$ strings of length less than n (we will show it later).
- So $f(x)=2^{|x|}-1+\operatorname{index}(x)$, where index (x) is its index in dictionary order among strings of length $|x|, 1$ to $2^{|x|}$.
- You can check that $f(x)$ is a bijection.

62

63

64

4444
 뉴ㄴㅠㅠNN Useful properties of countable sets

- An infinite subset of a countable set is itself a countable set.
- A union, intersection or difference of countable sets is a countable set.
- A Cartesian product of countable sets is a countable set.

Cartesian product of sets

Theorem: the Cartesian product of countable sets is countable.
Proof:

- Let's first show that $\mathbb{N} \times \mathbb{N}$ is countable
- $\mathbb{N} \times \mathbb{N}:(0,0),(0,1),(1,0),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2), \ldots$
- Count pairs with elements summing up to 0 first, then summing up to 1 , etc
- There are $n+1$ pairs summing up to n for each n
- Now build a bijection $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ in a similar way to the $\{a, b\}^{*}$ example.
- Let A, B be countable sets
- That is, there are bijections $f_{1}: A \rightarrow \mathbb{N}$ and $f_{2}: B \rightarrow \mathbb{N}$
- To show that $A \times B$ is countable, define a bijection $f: A \times B \rightarrow \mathbb{N}$ as follows:
- For every $a \in A, b \in B$, let $f(a, b)=g\left(f_{1}(a), f_{2}(b)\right)$, where $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is the bijection we just defined above.

ㅁ(Done).
66

Set of all rational numbers is countable

Corollary: The set of rational numbers \mathbb{Q} is countable

- Every rational number r is representable by an irreducible pair of integers $(n, m): r=n / m$
- To make it a bijection, assume that $m>0$, in addition to irreducibility.
- So $\mathbb{Q} \subset \mathbb{Z} \times \mathbb{Z}$, and we just showed that $\mathbb{Z} \times \mathbb{Z}$ is countable.
- Since $\mathbb{Z} \times \mathbb{Z}$ is a Cartesian product of countable sets.
- Therefore, \mathbb{Q} is an infinite subset of a countable set, and so \mathbb{Q} is countable.
- An easy way to see that \mathbb{Q} is infinite is to note that $\mathbb{N} \subset \mathbb{Q}$.
\square (Done).
67

68

69

70

71

Uncountable sets

- Infinite sets that are not countable (that is, which have cardinality larger than $|\mathbb{N}|)$ are called uncountable.
- We will introduce a technique called "diagonalization" due to Georg Cantor, and use it to show that
- the set of all real numbers, \mathbb{R}, is uncountable.
- a power set of a set is always larger than the original set
- Thus a power set of a countable set is uncountable
- And finish with a surprising computer science consequence:
- There are well-defined computational problems that are unsolvable!
- Including bug-checking in software...

73

Diagonalization: \mathbb{R}

- \mathbb{R} is uncountable. Even $[0,1$) interval of the real line is uncountable!
- Reals may have infinite strings of digits after the decimal point.
- Imagine if there were a numbered list of all reals in $[0,1)$
- $a_{1}, a_{2}, a_{3}, \ldots$
- For example:
- $a_{1}=0.23145$..
- $a_{2}=0.30000$...
- ...
- Let $d[i]=\left(a_{i}[i]+1\right) \bmod 10$ - Here, $[i]$ is $i^{\text {th }}$ digit.
- This d is a valid real number!

- But if number d were in the list, e.g. $k^{\text {th }}$, a contradiction
- It would have to differ from itself in $k^{t h}$ place.

75
76

77

Diagonalization: set of all languages

- Recall that a language is a set of finite strings over a finite alphabet: $-\{a, b\}^{*}$, English, PYTHON... Each is countable.
- Theorem: Set of all languages is uncountable. - Here, we'll prove it for languages over $\{0,1\}^{*}$
- Encode a language L by its "characteristic string" - Put "yes" if string $s \in L$, "no" if $s \notin L$
- Let language D be: $\mathrm{s}_{\mathrm{i}} \in \mathrm{D}$ iff $s_{i} \notin L_{i}$
- If D were in the list, e.g. L_{k}, contradiction:

- It would have to differ from itself in $k^{\text {th }}$ place.
- So there is a language for which there is no Python program which would correctly print "yes" on strings in the language, and "no" otherwise.
- In general, for any set A , finite or infinite, its powerset $P(A)$ is larger than A : that is, $|\mathrm{A}|<P(A)$

Puzzle: playing poker

- There are 52 cards in a standard deck; 4 suits of 13 ranks each.
- In poker, some 5-card combinations ("hands") are special:
- For example, a "three of a kind" consists of three cards with the same rank, together with two arbitrary cards
What are the chances to get
- a three of a kind hand?
- A two pairs hand (5 cards with 2 same-rank pairs)? - Other hands?...

\qquad Puzzle: playing poker
- There are 52 cards in a standard deck; 4 suits of
13 ranks each.
- In poker, some 5-card combinations ("hands")
are special: - For example, a "three of a kind" consists of three cards with the same rank, together with two arbitrary cards.
What are the chances to get - a three of a kind hand? - A two pairs hand (5 cards with 2 same-rank pairs)? - Other hands?...

78

