

Recurrences

• A sequence is often described by saying how to compute the next element from the previous ones

- Fibonacci sequence: $F_n = F_{n-1} + F_{n-2}$

• This kind of description, where a_n is expressed as a formula dependent on values of previous elements in the sequence is called a *recurrence*.

- Sometimes use recurrences to define functions directly, too.

• A recursive definition of a sequence consists of a recurrence together with the values of the initial term (sometimes first few terms, called *basis* or *initial condition*).

- To transfer the remaining disk to peg 2, need 1 step.
- To transfer n-1 disks from peg 3 to peg 2 need H(n-1) steps again.
- So H(n) = 2H(n-1)+1 (recurrence).

of (especially recursive) algorithms.

- A closed form of the Tower of Hanoi recurrence is $H(n) = \sum_{i=0}^{n-1} 2^i = 2^n - 1$

number 10000...0 (1 followed by n-1 0s)

Closed form of some sequences

- Arithmetic progression: $a, a + d, a + 2d, a + 3d, \dots, a + nd, \dots$ - Closed form: $s_n = a + nd$
- Geometric progression: $a, ar, ar^2, ar^3, ..., ar^n, ...$ ٠ - Closed form: $s_n = a \cdot r^n$
- Fibonacci sequence: 1,1,2,3,5,8,13, ... $\begin{array}{l} - \mathit{F}_n = \mathit{F}_{n-1} + \mathit{F}_{n-2}, \mathit{F}_0 = 0, \mathit{F}_1 = 1 \\ - \text{Closed form:} \mathit{F}_n = \frac{\varphi^{n} - (1-\varphi)^n}{\sqrt{5}} \end{array}$ • Where φ ("phi") is the "golden ratio": a ratio such that $\frac{a+b}{a} = \frac{a}{b}$ A • $\varphi = \frac{1+\sqrt{5}}{2}$ a b a+b

25

26

27

Arithmetic expressions

Suppose you are writing a piece of code that takes an arithmetic expression ("5*3-1", "40-(x+1)*7", etc), checks that it is well-formed (input is correct), and evaluates it.

How to describe a well-formed arithmetic expression? Define a set of all wellformed arithmetic expressions recursively:

- Basis: A number or a variable is a well-formed arithmetic expression.
 5, 100, x, a
- Recursion: If A and B are well-formed arithmetic expressions then so are (A), $A+B, A-B, \ A*B, A$ / B.

40-(x+1)*7 is well-formed: first build 40, x, 1, 7. Then x+1. Then (x+1). Then (x+1)*7, finally 40-(x+1)*7 – Caveat: how do we know the order of evaluation? On that later.

37

38

50

51

TERM

not ambiguous $EXPR \rightarrow EXPR + TERM | EXPR - TERM | TERM$ $TERM <math>\rightarrow TERM * FACTOR | TERM / FACTOR | FACTOR | FACTOR | FACTOR | FACTOR | x | y | z$

- If s = 101 and t= 0011, then st = 1010011
- We always assume that the set S contains only elements produced from basis using recursion rule.

Structural induction

- Let $S \subseteq U$ be a recursively defined set
- Let F(x) be a predicate with domain U
- Think of F(x) as some property that elements of U may have.
 Then
- Then
 - if F(x) is true for all x in the basis of S,
 - $\mbox{ and applying the recursion rules preserves F. }$
 - then all elements in S have the property F.

55

56

Let's define a set S of numbers as follows.

- Recursion: if $x, y \in S$, then $x + y \in S$

Claim: all numbers in S are divisible by 3

- That is, $\forall x \in S \exists z \in \mathbb{N} x = 3z$.

- Base case: 3 is divisible by 3 (z=1).

Therefore, x + y is divisible by 3.

• Let $x, y \in S$. Then $\exists z, u \in \mathbb{N} \ x = 3z \land y = 3u$. (inductive hypothesis)

- As there are no other elements in S except for those constructed from 3 by

• Then x + y = 3z + 3u = 3(z + u). (induction step)

the recursion rule, all elements in S are divisible by 3.

Proof (by structural induction).

- Basis: $3 \in S$

- Recursive step:

