

1

Fibonacci sequence		
1.	- $0^{\text {the }}$ month: 0 pair	
2. \quad c	- $2^{\text {nd }}$ monothth 1 pairs	$\mathrm{F}_{1}=1$ $F_{2}=1$
	- $3^{\text {rd }}$ month: 2 pairs	$F_{3}=2$
$\cdots \infty$	- $4^{\text {th }}$ month: 3 pairs	$F_{4}=3$
$4 \leqslant \rightarrow$	- $5^{\text {tr }}$ month: 5 pairs	$F_{5}=5$
	$n^{\text {th }}$ month: F_{n}	${ }_{-1}+F_{n}$

To compute how many pairs of rabbits will be there at $n^{\text {th }}$ month, add the number of pairs of rabbits at month $n-1$ and the number of pairs of rabbits at month $n-2$

- Number of adult rabbit pairs = number of rabbit pairs one month ago.
- All rabbits become adults in one month, and have their own babies in two months.
- + Number of baby rabbit pairs = number of rabbit pairs already born two month ago
- Each of which was old enough to give birth to a pair of baby rabbits.

3

Arithmetic and geometric progressions

- Arithmetic progression:
- A sequence of the form $a, a+d, a+2 d, a+3 d, \ldots$ for some numbers a, d. Here, the initial term $=a$
- Example: $a=2, d=3$. Then $s_{0}=2, s_{1}=5, s_{2}=8, s_{3}=11, s_{4}=14 \ldots$
- Geometric progression:
- A sequence of the form $a, a r, a r^{2}, a r^{3}, \ldots$ for some numbers a, r
- Here, initial term is also a
- Example: $a=2, r=3$. Then $s_{0}=2, s_{1}=6, s_{2}=18, s_{3}=54, s_{4}=162 \ldots$

5

Sequences

- A sequence of elements from some set S is a function $f: \mathbb{N} \rightarrow S$
- We usually start natural numbers with 0 , but some books start with 1 .
- Elements (terms) of the sequence are written as $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$
- or using another letter with subscripts such as F_{0}, F_{1}, \ldots or s_{0}, s_{1}, \ldots, etc.
- a_{0} is called an initial term of the sequence.
- For every $i, i^{\text {th }}$ term of a sequence is a_{i}, where $a_{i}=f(i)$
- Fibonacci sequence from the rabbit puzzle:
- 0,1,1,2,3,5,8,13...
- Sometimes these are also called Fibonacci numbers
- $F_{0}=0, F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5$, etc

4

Recurrences

- A sequence is often described by saying how to compute the next element from the previous ones
- Fibonacci sequence: $F_{n}=F_{n-1}+F_{n-2}$
- This kind of description, where a_{n} is expressed as a formula dependent on values of previous elements in the sequence is called a recurrence.
- Sometimes use recurrences to define functions directly, too.
- A recursive definition of a sequence consists of a recurrence together with the values of the initial term (sometimes first few terms, called basis or initial condition).

6

Recurrences
- A recursive definition of a sequence consists of a recurrence
together with the values of the initial term (sometimes first few
terms, called basis or initial condition).
Fibonacci sequence: Arithmetic progression: - Basis: $F_{0}=0, F_{1}=1$ - Basis: $s_{0}=a$ - Recurrence: $F_{n}=F_{n-1}+F_{n-2}$ - Recurrence: $s_{n}=s_{n-1}+d$ A sequence of powersets: Geometric progression: - Basis: $A_{0}=\emptyset$ - Basis: $s_{0}=a$ - Recurrence: $A_{n+1}=\mathcal{P}\left(A_{n}\right)$ - Recurrence: $s_{n}=s_{n-1} * r$

7

9

Tower of Hanoi game

- Rules of the game:
- Start with all disks on the first peg.
- At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
- Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?

10

Closed form of a recurrence

- Tower of Hanoi for $n=8$

$$
\begin{aligned}
-H(8) & =2 H(7)+1=2((2 H(6)+1)+1=4 H(6)+2+1=4 H(6)+3 \\
& =4(2 H(5)+1)+3=8 H(5)+7=16 H(4)+15=32 H(3)+31 \\
& =64 H(2)+63=128 H(1)+127=128 * 1+127=255
\end{aligned}
$$

- A closed form of a recurrence relation is an expression that defines an $n^{\text {th }}$ element in a sequence in terms of n directly.
- Often use recurrence relations and their closed forms to describe performance of (especially recursive) algorithms.
- A closed form of the Tower of Hanoi recurrence is $H(n)=\sum_{i=0}^{n-1} 2^{i}=2^{n}-1$

Solving recurrences

- Solving a recurrence: finding a closed form.
- Solving the recurrence $\mathrm{H}(\mathrm{n})=2 \mathrm{H}(\mathrm{n}-1)+1$
$\mathrm{H}(\mathrm{n})=2 \cdot H(n-1)+1=2(2 H(n-2)+1)+1=2^{2} H(n-2)+2+1$
$=2^{3} H(n-3)+2^{2}+2+1=2^{4} H(n-4)+2^{3}+2^{2}+2+1 \ldots$
- Closed form of the Tower of Hanoi recurrence: $H(n)=\sum_{i=0}^{n-1} 2^{i}=2^{n}-1$
- Proof by induction (using recursive definition of $H(n)$).
- Base case: $H(1)=1$. Induction hypothesis: $H(k)=2^{k}-1$.
- Induction step: $H(k+1)=2 H(k)+1=2\left(2^{k}-1\right)+1=2^{k+1}-1$
- Or by noticing that a binary number 111... 1 ($n-11 \mathrm{~s}$) plus 1 gives a binary number 10000... 0 (1 followed by $\mathrm{n}-10 \mathrm{~s}$)

13
14

Function growth

- In Tower of Hanoi, adding one more disk doubles the number of steps. $H(n)=2^{n}-1$. - We say that the function $H(n)$ grows exponentially
- What does it mean that a function "grows" at a certain rate?
- Is $f(n)=100 n$ larger than $g(n)=n^{2}$?
- Only when $n<100$. For the remaining infinitely many values of $\mathrm{n}, f(n) \leq g(n)$
- So $g(n)$ grows faster than $f(n)$
- To compare functions, check which becomes larger as n increases (to infinity).
- Often think of functions as describing running time of an algorithm.
- For programs, performance on larger inputs matters more.
- Constant factors don't matter that much.

Comparing growth rate of functions

- How to estimate the rate of growth of a function? - Plotting a graph?

- Not quite conclusive:
- How do you know what they will do past the part on the graph?

16

Big-O notation

- We say that $f(n)$ grows at most as fast as $g(n)$ if
- There is a value n_{0} such that after $n_{0}, \mathrm{f}(n)$ is always at most as large as $\mathrm{g}(n)$
- Except if two functions differ by only a constant factor, consider them having the same growth rate.
- So more correctly, there is a value n_{0} and a constant c such that for all n after $n_{0}, \mathrm{f}(n)$ is always at most as large as $\mathrm{c} \cdot \mathrm{g}(n)$
- Denote set of all functions growing at most as fast as $g(n)$ by $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ - Big-Oh of $g(n)$.
- Some books say " f is in $\mathrm{O}(\mathrm{g})$ ", others " f is $\mathrm{O}(\mathrm{g})$ ", both are OK.
$-\mathrm{g}(\mathrm{n})$ is an asymptotic upper bound for $\mathrm{f}(\mathrm{n})$.
- When both $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$, write $f(n) \in \Theta(g(n))$ - $f(n)$ is in big-Theta of $g(n)$).

Big-O notation

- More generally, for real-valued functions $f(x)$ and $g(x)$,

$f(x) \in O(g(x))$ iff
$\exists x_{0} \in \mathbb{R}^{\geq 0} \exists c \in \mathbb{R}^{>0} \forall x \geq x_{0}\|f(x)\| \leq c \cdot\|g(x)\|$

- That is, from some point x_{0} on, each $|f(x)|$ is less than $|\mathrm{g}(\mathrm{x})|$ (up to a fixed constant factor).
- When functions describe program running times, they give the number of steps a program takes on an input of size n, making them $\mathbb{N} \rightarrow \mathbb{N}$ - so use n for x and ignore |।.
- You will see a lot of big-O notation in COMP 2002
- and possibly some in COMP 1000 and COMP 1001

18

Big-O notation examples

$$
\begin{aligned}
& \text { - } f(n)=n^{2}, g(n)=2^{n} \text {. } \\
& \text { - Take c=1, } n_{0}=4 \text {. } \\
& \text { - For every } n \geq n_{0}, f(n) \leq g(n) \\
& \text { - Proof by induction. } \\
& \text { - So } \mathrm{n}^{2} \in O\left(2^{n}\right)
\end{aligned}
$$

- $f(n)=n^{2}+100 n, g(n)=10 n^{2}$.
- Here, $f(n) \in O(g(n))$ and also $g(n) \in O(f(n))$ - So $f(n) \in \Theta(g(n))$
- $f(n) \in O(g(n)): c=20$ and/or $n_{0}=100$ work.
- $g(n) \in O(f(n)):$ Take $c=10, n_{0}=1$.
- Can ignore constants and look only at the leading term in a sum.
$\exists n_{0} \in \mathbb{N} \exists c \in \mathbb{R}^{>0} \forall n \geq n_{0} f(n) \leq c \cdot g(n)$
- $f(n)=n^{2}, g(n)=10 n$.
- Can take $c=1, n_{0}=10$
- Or take arbitrary c
- No matter what c is, when $n>c \cdot 10, n^{2} \geq c \cdot 10 n$ - So $n^{2} \notin O(10 n)$.

Common computational complexity classes

- As we can ignore constants and only consider leading (fastest growing) term in a sum, common classes in Computer Science are:
- Logarithmic: $O(\log n)$, where $\log n$ is usually $\log _{2} n$
- The base of the log does not matter, as base change multiplies by a constant.
- Linear: $O(n)$
$-O(n \log n)$: No established name, but quite common in Computer Science
- Quadratic: $O\left(n^{2}\right)$
- Cubic: $O\left(n^{3}\right)$
- Polynomial: $O\left(n^{k}\right)$ for some $k \in \mathbb{N}$
- Exponential: $O\left(2^{n}\right)$
- Note: $2^{2 n} \notin O\left(2^{n}\right)$, since $2^{2 n}=\left(2^{n}\right)^{2}=2^{n} \cdot 2^{n}$
- So a constant can only be ignored in front of the whole expression, not inside!

20

Master theorem

- Solving recurrences in general might be tricky.
- When the recurrence is of the form $T(n)=a T(n / b)+f(n)$, there is a general method to estimate the growth rate of a function defined by the recurrence
- This is called the Master Theorem for recurrences.

21

Master theorem

Closed form of some sequences

- Arithmetic progression: $a, a+d, a+2 d, a+3 d, \ldots, a+n d, \ldots$ - Closed form: $s_{n}=\mathrm{a}+n d$
- Geometric progression: $a, a r, a r^{2}, a r^{3}, \ldots, a r^{n}, \ldots$
- Closed form: $s_{n}=a \cdot r^{n}$
- Fibonacci sequence: $1,1,2,3,5,8,13, \ldots$
$-F_{n}=F_{n-1}+F_{n-2}, F_{0}=0, F_{1}=1$
- Closed form: $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$
- Where $\varphi\left(\right.$ " $p h i$ ") is the "golden ratio": a ratio such that $\frac{a+b}{a}=\frac{a}{b}$
- $\varphi=\frac{1+\sqrt{5}}{2} \curvearrowright \xlongequal[a+b]{a \quad b}$

25

27

More examples of recursive definitions

There is much more that can be defined with recursive definitions rather than just sequences and functions.

In the following recursive definitions, we will call the recursive step "recursion" rather than "recurrence", as we are not defining $n^{t h}$ element of a sequence (or function value at n)

Recursive definition of a sum (where $n \geq m$)

- Basis: $\sum_{i=m}^{m} f(i)=f(m)$
- Recursion: $\sum_{i=m}^{n+1} f(i)=\left(\sum_{i=m}^{n} f(i)\right)+f(n+1)$

Recursive definition of a product (where $n \geq m$)

- Basis: $\prod_{i=m}^{m} f(i)=f(m)$.
- Recursion: $\prod_{i=m}^{n+1} f(i)=\left(\prod_{i=m}^{n+1} f(i)\right) * f(n+1)$

26

28

29

Mathematical fractals

- Koch curve and snowflake
- Sierpinski triangle, pyramid, carpet
- Hilbert space-filling curve

- Mandelbrot set

30

31

33

Koch curve

Recursive definition of Koch curve:

- Basis: an interval
- Recursion: Replace the inner third of each interval with two intervals of the same length sticking out in a triangle
- That is, make a equilateral triangle on top of the middle third, then remove the middle third leaving the remaining two sides of the triangle.

32

34

Recursive definitions of sets

- So far, we talked about recursive definitions of sequences, functions, formulas and fractals. We can, in general, recursively define sets.
- Recursive definition of a set $S=\{0,1\}^{*}$
- Basis: empty string λ is in S .
- Recursion: if $w \in S$, then $w 0 \in S$ and $w 1 \in S$
- Here, $w 0$ means string w with 0 appended at the end; same for $w 1$ - If $w=011$, then $w 0=0110$, and $w 1=0111$
- Alternatively:
- Basis: empty string $\lambda, 0$ and 1 are in S .
- Recursion: if s and t are in S, then $s t \in S$
- here, st is concatenation: symbols of s followed by symbols of t - If $s=101$ and $t=0011$, then $s t=1010011$
- We always assume that the set S contains only elements produced from basis using recursion rule.

Arithmetic expressions
 Suppose you are writing a piece of code that takes an arithmetic expression ("5*3-1", " $40-(x+1)^{*} 7$ ", etc), checks that it is well-formed (input is correct), and evaluates it.
 How to describe a well-formed arithmetic expression? Define a set of all wellformed arithmetic expressions recursively:
 - Basis: A number or a variable is a well-formed arithmetic expression. - 5, 100, x, a
 - Recursion: If A and B are well-formed arithmetic expressions then so are (A), $A+B, A-B, A * B, A / B$.
 $40-(x+1) * 7$ is well-formed: first build $40, x, 1,7$. Then $x+1$. Then $(x+1)$. Then $(x+1) * 7$, finally $40-(x+1) * 7$
 - Caveat: how do we know the order of evaluation? On that later.

37

39

Puzzle

- Are the following English sentences built the same way?
-Time flies like an arrow.

-Fruit flies like an apple.

Formulas

- What is a well-formed propositional logic formula?
$-(p \vee \neg q) \wedge r \rightarrow(\neg p \rightarrow r)$
- Basis: a propositional variable $p, q, r \ldots$
- Or a constant TRUE, FALSE
- Recursion: if F and G are propositional formulas, so are $(F), \neg F$, $F \wedge G, F \vee G, F \rightarrow G, F \leftrightarrow G$.
- And nothing else is a well-formed propositional logic formula.

40

41

Puzzle

- Are the following English sentences built the same way?

Grammars

- Remember that sets of strings are called languages.
- A type of recursive definition of a language is called a grammar.
- Different natural languages also have different grammars!
- English: Subject/Verb/Object
- Japanese: Subject/Object/Verb
- Gaelic: Verb/Subject/Object
- Russian: order does not matter

43
44

Context-free grammars

A context-free grammar: a set V of variables, including a start variable S , a set Σ (Sigma) of terminals (alphabet) and a set R of rules of the form $\mathrm{A} \rightarrow w$, where $A \in V, w \in(V \cup \Sigma)^{*}$

- If $A \rightarrow w$ is a rule, we say variable A yields string w.
- Can use A within the rule, as many times as we want: recursion!
- Different occurrences of the same variable can produce different strings.
- A derivation is a sequence of strings each of which is obtained from the previous by applying some rule to its substring.
- If $w=\ell A r$ and there is a rule $A \rightarrow u$, then $\ell u r$ is directly derived from w, written $w \Rightarrow$ Øur.
$-w_{n}$ is derived from w_{0} if there is a sequence $w_{0}, w_{1}, \ldots, w_{n}$ where $\forall i w_{i} \Rightarrow w_{i+1}$
- A language generated by a grammar consists of all strings of terminals that can be derived from the start variable S.

45

Language L of all strings over $\{0,1\}$
 with all Os before all 1 s .

Strings in $L: \lambda, 0,1,11,001,00111,011111,00000000, \ldots$ Strings not in $L: 10,1110,010101,00100000$...

Recursive definition:

- Basis: $\lambda \in L$
- Recursion: if $w \in L$, then $0 w \in L$ and $w 1 \in L$
- Grammar for L consists of 3 rules: $S \rightarrow 0 S, S \rightarrow S 1, S \rightarrow \lambda$
- Shorter description of the grammar: $S \rightarrow 0 S|S 1| \lambda$
- Variables: S. Terminals: 0 and 1. As before, λ is the empty string.
- Derivation of a string 001: $S \Rightarrow 0 S \Rightarrow 0 S 1 \Rightarrow 00 S 1 \Rightarrow 00 \lambda 1=001$
- Alternative derivation of 001: $S \Rightarrow S 1 \Rightarrow 0 S 1 \Rightarrow 00 S 1 \Rightarrow 00 \lambda 1=001$

46

Parse trees:

- Parse trees: visualizing derivations
- Similar to syntax trees,
- except all internal nodes are variables,
- and all nodes on the bottom are terminals.

Grammar: $S \rightarrow 0 S|S 1| \lambda$

- Derivation of a string 001:
$S \Rightarrow 0 S \Rightarrow 00 S \Rightarrow 00 S 1 \Rightarrow 00 \lambda 1=001$
- Alternative derivation of 001:
$S \Rightarrow S 1 \Rightarrow 0 S 1 \Rightarrow 00 S 1 \Rightarrow 00 \lambda 1=001$

Propositional formulas

- Recursive definition:
- Basis: a propositional variable p, q, r or a constant TRUE, FALSE
- Recursion: if F and G are propositional formulas, then so are Recursion: if F and G are propositional
$(F), \neg F, F \wedge G, F \vee G, F \rightarrow G, F \leftrightarrow G$.
- Grammar: $F \rightarrow F \vee F|F \wedge F| \neg F|(F)| F \rightarrow G \mid F \leftrightarrow G$ $F \rightarrow p|q| r \mid$ TRUE \mid FALSE

Here, the only variable is F (it is a start variable), and the set of terminals is $\{\mathrm{V}, \wedge, \neg, \rightarrow, \leftrightarrow,(), p, q, r, T R U E, F A L S E\}$

Deriving $(p \vee \neg q) \wedge r: F \Rightarrow F \wedge F \Rightarrow(F) \wedge F \Rightarrow(F) \wedge r \Rightarrow$ $\Rightarrow(F \vee F) \wedge r \Rightarrow(p \vee F) \wedge r \Rightarrow(p \vee \neg F) \wedge r \Rightarrow(p \vee \neg q) \wedge r$

49

Context-free grammars for arithmetic expressions

```
EXPR ->EXPR +EXPR |EXPR -EXPR|EXPR *EXPR
EXPR ->EXPR / EXPR |(EXPR) | O|NUMBER|-NUMBER
NUMBER }->\mathrm{ 1DIGITS |..|9DIGITS
DIGITS }->\lambda|\\NUMBER|0DIGITS
```

- Variables: EXPR, NUMBER, DIGITS (EXPR is starting).
- Terminals: $+,-, *, /, 0, \ldots, 9,($,$) .$
- Problem: this definition of arithmetic expressions (and the previous definition of propositional formulas) do not have any information about order of operations.

50

Encoding order of precedence

- Easier to specify in which order to process parts of the formula.
- Better grammar for arithmetic expressions (for simplicity, with only x, y, z instead of numbers):
$E X P R \rightarrow E X P R+T E R M|E X P R-T E R M| T E R M$
TERM \rightarrow TERM $*$ FACTOR \mid TERM / FACTOR \mid FACTOR
FACTOR \rightarrow (EXPR) $|\mathrm{x}| \mathrm{y} \mid \mathrm{z}$
- Here, variables are EXPR, TERM and FACTOR (with EXPR a starting variable).
- Now can encode precedence.

51
52
\square

53

Recursive definitions of sets

- So far, we talked about recursive definitions of sequences, functions, formulas and fractals. We can, in general, recursively define sets.
- Recursive definition of a set $S=\{0,1\}^{*}$
- Basis: empty string λ is in S .
- Recursion: if $w \in S$, then $w 0 \in S$ and $w 1 \in S$
- Here, $w 0$ means string w with 0 appended at the end; same for w1 - If $w=011$, then $w 0=0110$, and $w 1=0111$
- Alternatively:
- Basis: empty string $\lambda, 0$ and 1 are in S.
- Recursion: if s and t are in S, then $s t \in S$
- here, st is concatenation: symbols of s followed by symbols of t - If $\mathrm{s}=101$ and $\mathrm{t}=0011$, then $\mathrm{st}=1010011$
- We always assume that the set S contains only elements produced from basis using recursion rule.

Structural induction

- Let $S \subseteq U$ be a recursively defined set
- Let $\mathrm{F}(\mathrm{x})$ be a predicate with domain U
- Think of $F(x)$ as some property that elements of U may have.
- Then
- if $F(x)$ is true for all x in the basis of S ,
- and applying the recursion rules preserves F.
- then all elements in S have the property F.

55

Trees

- In computer science, a tree is an undirected graph without cycles

- Undirected: all edges go both ways, no arrows.
- Cycle: sequence of edges going back to the same point
- Recursive definition of trees:
- Base: A single vertex (1) is a tree.
- Recursion:
- Let T be a tree, and v a new vertex.
- Then a new tree consist of T, v, and an edge (connection) between some vertex of T and v.

57

Height of a full binary tree

- The height of a rooted tree, $h(T)$, is the maximum number of edges to get from any vertex to the root.
- Height of a tree with a single vertex is 0 .
- Claim: Let $n(T)$ be the number of vertices in a full binary tree T. Then $n(T) \leq 2^{h(T)+1}-1$
- Alternatively, height of a binary tree is at least $\log _{2} n(T)$

- If you have a recursive program that calls itself twice

Height of a full binary tree

- Claim: Let $n(T)$ be the number of vertices in a full binary tree T.

$$
\text { Then } n(T) \leq 2^{h(T)+1}-1 \text {, where } h(T) \text { is the height of } T \text {. }
$$

- Proof (by structural induction)
- Base case: a tree with a single vertex has $n(T)=1$ and $h(T)=0$.
- So $2^{h(T)+1}-1=1 \geq 1$
- Recursion: Suppose T was built by attaching T_{1}, T_{2} to a new root vertex v.
- Number of vertices in T is $\mathrm{n}(\mathrm{T})=n\left(T_{1}\right)+n\left(T_{2}\right)+1$
- Every vertex in T_{1} or T_{2} now has one extra step to get to the new root in T. - So $h(T)=1+\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)$
- By the induction hypothesis, $n\left(T_{1}\right) \leq 2^{h\left(T_{1}\right)+1}-1$ and $n\left(T_{2}\right) \leq 2^{h\left(T_{2}\right)+1}-1$
- $\mathrm{n}(\mathrm{T})=\cdots$ (see next page)
- Claim: Let $n(T)$ be the number of vertices in a full binary tree T. Then $n(T) \leq 2^{h(T)+1}-1$, where $h(T)$ is the height of T.
- Proof (by structural induction)
- Base case: holds.
- Recursion: Suppose T was built by attaching T_{1}, T_{2} to a new root vertex v.
- Number of vertices in T is $\mathrm{n}(\mathrm{T})=n\left(T_{1}\right)+n\left(T_{2}\right)+1$
- Every vertex in T_{1} or T_{2} now has one extra step to get to the new root in T.
- So $h(T)=1+\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)$
- By the induction hypothesis, $n\left(T_{1}\right) \leq 2^{h\left(T_{1}\right)+1}-1$ and $n\left(T_{2}\right) \leq 2^{h\left(T_{2}\right)+1}-1$
- $\mathrm{n}(\mathrm{T})=n\left(T_{1}\right)+n\left(T_{2}\right)+1$ $\leq 1+\left(2^{h\left(T_{1}\right)+1}-1\right)+\left(2^{h\left(T_{2}\right)+1}-1\right) \quad$ (by ind. hyp) $\leq 2 \cdot \max \left(2^{h\left(T_{1}\right)+1}, 2^{h\left(T_{2}\right)+1}\right)-1$

$$
\leq 2 \cdot 2^{\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)+1}-1
$$

$$
=2 \cdot 2^{h(T)}-1=2^{h(T)+1}-1
$$

Therefore, the number of vertices of any binary tree T is $\leq 2^{h(T)+1}-1$

Puzzle: chocolate squares

- Suppose you have a piece of chocolate like this:

- How many squares are in it? - of all sizes, from single to the whole thing

