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Unit 7
Recursive definitions

Puzzle: rabbits on an island 

• A ship leaves a pair of baby rabbits on an 
island (with a lot of food). 

• After a pair of rabbits reaches 2 months of 
age, they produce another pair of rabbits, 
and keep producing a pair every month 
thereafter.

• Which in turn start reproducing every  
month when reaching 2 months of age… 
– So every pair starts reproducing at 2 months, and 

creates a new pair every month from then on.

• How many pairs of rabbits will be on the 
island in 𝑛 months, assuming no rabbits die? 

Fibonacci sequence0
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To compute how many pairs of rabbits will be there at 𝑛𝑡ℎ month, add the number of 
pairs of rabbits at month 𝑛 − 1 and the number of pairs of rabbits at month 𝑛 − 2

• Number of adult rabbit pairs = number of rabbit pairs one month ago. 
– All rabbits become adults in one month, and have their own babies in two months. 

• + Number of baby rabbit pairs = number of rabbit pairs already born two month ago 
– Each of which was old enough to give birth to a pair of baby rabbits.

• 0th month:  0 pair    𝐹0 = 0

• 1st month: 1 pair  𝐹1 = 1

• 2nd month: 1 pairs     𝐹2 = 1

• 3rd month:  2 pairs  𝐹3 = 2

• 4th month:  3 pairs 𝐹4 = 3

• 5th month:  5 pairs 𝐹5 = 5

• …

• 𝑛𝑡ℎ month:  𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Sequences

• A sequence of elements from some set S is a function 𝑓: ℕ → 𝑆
– We usually start natural numbers with 0, but some books start with 1. 

– Elements (terms) of the sequence are written as 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛

• or using another letter with subscripts such as 𝐹0, 𝐹1, … or 𝑠0, 𝑠1, … , etc.

• 𝑎0 is called an initial term of the sequence.  

• For every 𝑖 , 𝑖𝑡ℎ term of a sequence is 𝑎𝑖, where 𝑎𝑖 = 𝑓(𝑖)

– Fibonacci sequence from the rabbit puzzle:
• 0,1,1,2,3,5,8,13…

– Sometimes these are also called Fibonacci numbers

• 𝐹0 = 0, 𝐹1 = 1, 𝐹2 = 1, 𝐹3 = 2, 𝐹4 = 3, 𝐹5 = 5, etc

Arithmetic and geometric progressions

• Arithmetic progression: 

– A sequence of the form 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑, … for some 
numbers 𝑎, 𝑑. Here, the initial term = 𝑎

• Example: 𝑎 = 2, 𝑑 = 3. Then  𝑠0 = 2, 𝑠1 = 5, 𝑠2 = 8, 𝑠3 = 11, 𝑠4 = 14 …

• Geometric progression: 

– A sequence of the form 𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, … for some numbers 𝑎, 𝑟

• Here, initial term is also 𝑎

• Example: 𝑎 = 2, 𝑟 = 3. Then  𝑠0 = 2, 𝑠1 = 6, 𝑠2 = 18, 𝑠3 = 54, 𝑠4 = 162 …

Recurrences

• A sequence is often described by saying how to compute the next 
element from the previous ones

– Fibonacci sequence: 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

• This kind of description, where 𝑎𝑛 is expressed as a formula 
dependent on values of previous elements in the sequence is 
called a recurrence. 

– Sometimes use recurrences to define functions directly, too. 

• A  recursive definition of a sequence  consists of a recurrence 
together with the values of the initial term (sometimes first few 
terms, called basis or initial condition). 

1 2

3 4

5 6



2020-12-16

2

Recurrences

• A recursive definition of a sequence  consists of a recurrence 
together with the values of the initial term (sometimes first few 
terms, called basis or initial condition). 

Arithmetic progression: 

– Basis:  𝑠0 = 𝑎

– Recurrence: 𝑠𝑛 = 𝑠𝑛−1 + 𝑑

Geometric progression:

– Basis:  𝑠0 = 𝑎

– Recurrence: 𝑠𝑛 = 𝑠𝑛−1 ∗ 𝑟

Fibonacci sequence: 

– Basis:  𝐹0 = 0, F1 = 1

– Recurrence: 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

A sequence of powersets:

– Basis: 𝐴0 = ∅

– Recurrence: 𝐴𝑛+1 = 𝒫 𝐴𝑛

Tower of Hanoi game

• Rules of the game: 
– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is not placed on top 

of a smaller disk. 
– Goal:  move the whole tower onto the second peg. 

• Question:  how many steps are needed to move the tower of 8 disks? 
How about 𝑛 disks?   

Tower of Hanoi game

• Rules of the game: 
– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is not placed on top 

of a smaller disk. 
– Goal:  move the whole tower onto the second peg. 

• Question:  how many steps are needed to move the tower of 8 disks? 
How about 𝑛 disks?   

Tower of Hanoi game

• Let us call the number of moves needed to transfer n disks H(n). 
– From any peg 𝑖 to any peg 𝑗 ≠ 𝑖 would take the same number of steps.

• Basis:  only one disk can be transferred in one step. 
– So H(1) = 1 

• Recursion:  to transfer n disks from peg 1 to peg 2. 
– To transfer n-1 disks from peg 1 to peg 3 need 𝐻(𝑛 − 1) steps.  
– To transfer the remaining disk to peg 2, need 1 step. 
– To transfer n-1 disks from peg 3 to peg 2 need  H(n-1) steps again. 
– So  H(n) = 2H(n-1)+1   (recurrence). 

• Rules of the game: 
– Start with all disks on the first peg. 

– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk. 

– Goal:  move the whole tower onto the second peg. 

But how many steps does it really take? 

Closed form of a recurrence

• Tower of Hanoi for 𝑛 = 8

– 𝐻 8 = 2𝐻 7 + 1 = 2( 2𝐻 6 + 1 + 1 = 4𝐻 6 + 2 + 1 = 4𝐻 6 + 3

= 4 2𝐻 5 + 1 + 3 = 8𝐻 5 + 7 = 16𝐻 4 + 15 = 32𝐻 3 + 31

= 64𝐻 2 + 63 = 128𝐻 1 + 127 = 128 ∗ 1 + 127 = 255

• A closed form of a recurrence relation is an expression that defines an 
𝑛𝑡ℎ element in a sequence in terms of 𝑛 directly. 

– Often use recurrence relations and their closed forms to describe performance 
of (especially recursive) algorithms.

– A closed form of the Tower of Hanoi recurrence is 𝐻 𝑛 = Σ𝑖=0
𝑛−1 2𝑖 = 2𝑛 − 1
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Solving recurrences

• Solving a recurrence: finding a closed form. 
– Solving  the recurrence H(n)=2H(n-1)+1 

H(n)  = 2 ⋅ 𝐻 𝑛 − 1 + 1 = 2 2𝐻 𝑛 − 2 + 1 + 1 = 22𝐻 𝑛 − 2 + 2 + 1

= 23𝐻 𝑛 − 3 + 22 + 2 + 1 = 24 𝐻 𝑛 − 4 + 23 + 22 + 2 + 1 …

• Closed form of the Tower of Hanoi recurrence:  𝐻 𝑛 = Σ𝑖=0
𝑛−1 2𝑖 = 2𝑛 − 1

– Proof by induction (using recursive definition of 𝐻(𝑛)).
• Base case: H(1)=1. Induction hypothesis: 𝐻 𝑘 = 2𝑘 − 1. 

• Induction step:  𝐻 𝑘 + 1 = 2𝐻 𝑘 + 1 = 2 2𝑘 − 1 + 1 = 2𝑘+1 − 1

– Or by noticing that a binary number 111...1  (n-1 1s) plus 1 gives a binary 
number 10000…0  (1 followed by n-1 0s)

Function growth

• In Tower of Hanoi, adding one more disk doubles the number of steps. 𝐻 𝑛 = 2𝑛 − 1. 
– We say that the function  H(n) grows exponentially

• What does it mean that a function  “grows” at a certain rate? 
– Is 𝑓(𝑛) = 100𝑛 larger than 𝑔 𝑛 = 𝑛2?

• Only when 𝑛 < 100. For the remaining infinitely many values of n, 𝑓 𝑛 ≤ 𝑔(𝑛)
• So 𝑔(𝑛) grows faster than 𝑓(𝑛)

– To compare functions, check which becomes larger as n increases (to infinity).

• Often think of functions as describing running time of an algorithm. 
– For programs, performance on larger inputs matters more.  
– Constant factors don’t matter that much. 

Comparing growth rate of functions

• How to estimate the rate of growth of  a function? 
– Plotting a graph? 

• Not quite conclusive:
– How do you know what they will do past the part on the graph?  

Big-O notation

• We say that 𝑓(𝑛) grows at most as fast as 𝑔(𝑛) if
– There is a value 𝑛0 such that after 𝑛0,  f 𝑛 is always at most as large as g 𝑛
– Except if two functions differ by only a constant factor, consider them having the 

same growth rate.  
• So more correctly, there is a value 𝑛0 and a constant 𝑐 such that for all 𝑛 after  

𝑛0,  f 𝑛 is always at most as large as c ⋅ g 𝑛

• Denote set of all functions growing at most as fast as 𝑔 𝑛 by 𝑶 𝒈 𝒏
– Big-Oh of 𝑔(𝑛).

• Some books say “f is in O(g)”,  others “f is O(g)”, both are OK. 
– g(n) is an asymptotic upper bound for f(n). 

– When both 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 , write 𝑓 𝑛 ∈ Θ(𝑔 𝑛 )
• f(n) is in big-Theta of g(n)).  

Big-O notation

• More generally, for real-valued functions 𝑓(𝑥) and 𝑔(𝑥),  

• That is,  from some point 𝑥0 on, each  |𝑓 𝑥 | is less than |g(x)| 
(up to a fixed constant factor). 
– When functions describe program running times,  they give the number 

of steps a program takes on an input of size n, making them  ℕ → ℕ
• so use 𝑛 for 𝑥 and ignore | |. 

– You will see a lot of big-O notation in COMP 2002 
• and possibly some in COMP 1000 and COMP 1001

𝑓 𝑥 ∈ 𝑂 𝑔 𝑥 iff

∃ 𝑥0 ∈ ℝ≥0 ∃𝑐 ∈ ℝ>0 ∀𝑥 ≥ 𝑥0 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔 𝑥
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Big-O notation examples

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 2𝑛 .
– Take c=1, 𝑛0 = 4. 

– For every 𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝑔 𝑛
• Proof by induction. 

– So n2 ∈ 𝑂 2𝑛

• 𝑓 𝑛 = 𝑛2 + 100𝑛, 𝑔 𝑛 = 10𝑛2.
– Here, 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and also 𝑔 𝑛 ∈ 𝑂(𝑓 𝑛 )

• So 𝑓 𝑛 ∈ Θ(𝑔 𝑛 )

• 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 :   c = 20 and/or 𝑛0 = 100 work. 

• 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 : Take c=10, 𝑛0 = 1. 

– Can ignore constants and look only at the leading term in a sum. 

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 iff

∃ 𝑛0 ∈ ℕ ∃𝑐 ∈ ℝ>0 ∀𝑛 ≥ 𝑛0 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 10𝑛.
– Can take 𝑐 = 1, 𝑛0 = 10

– Or take arbitrary 𝑐

– No matter what 𝑐 is, when   

𝑛 > 𝑐 ⋅ 10, 𝑛2 ≥ 𝑐 ⋅ 10𝑛

– So 𝑛2 ∉ 𝑂 10𝑛 .

Common computational complexity classes

• As we can ignore constants and only consider leading (fastest 
growing) term in a sum,  common classes in Computer Science are: 
– Logarithmic:  𝑂(log 𝑛),  where log 𝑛 is usually log2 𝑛

• The base of the log does not matter, as base change multiplies by a constant. 

– Linear:  𝑂(𝑛)

– 𝑂(𝑛 log 𝑛):   No established name, but quite common in Computer Science

– Quadratic:  𝑂(𝑛2)

– Cubic: 𝑂(𝑛3)

– Polynomial:  𝑂(𝑛𝑘) for some 𝑘 ∈ ℕ

– Exponential:  𝑂(2𝑛 )  
• Note: 22𝑛 ∉ 𝑂 2𝑛 , since 22𝑛 = 2𝑛 2 = 2𝑛 ⋅ 2𝑛

• So a constant can only be ignored in front of the whole expression, not inside! 

Master theorem

• Solving recurrences in general might be tricky. 

– When the recurrence is of the form T(n)=a T(n/b)+f(n), there is a  
general method to estimate the growth rate of a function defined by 
the recurrence

– This is called the Master Theorem for recurrences. 

O-notation and computational complexity

• If there is an algorithm that for every input 𝑥 solves the problem in 

at most 𝑡 𝑥 steps for some 𝑡: ℕ → ℕ such that 𝑡 𝑛 ∈ 𝑂 𝑓 𝑛 ,

then the problem is solvable in time 𝑂 𝑓 𝑛 .

– If there are several ways to solve the problem, pick the 
algorithm with slowest growing t(n)

– Comparing number of steps rather than actual running times to 
avoid having to compare different implementations running on 
different hardware.

– Our algorithm for the Tower of Hanoi with n disks took 2𝑛 − 1
steps, so complexity of Tower of Hanoi is in 𝑂(2𝑛)

O-notation and computational complexity

Sometimes (rarely!) we can also prove that it is not possible to solve 
the problem faster than 𝑐 ⋅ 𝑓(𝑛): then, we say that the problem has 
complexity  Θ(𝑓(𝑛))

• For Tower of Hanoi,  any algorithm needs ≥ 2𝑛 −1 steps.

• So the  complexity of the Tower of Hanoi is Θ 2𝑛

Proving that there is no faster way to solve a problem is harder! 

– To put an upper bound  on complexity of a problem, enough to find one algorithm 
solving it in 𝑡 𝑛 ∈ 𝑂(𝑓 𝑛 ) steps. 

– To prove a lower bound 𝑓 𝑛 on complexity of a problem, have to show that every 

algorithm solving it correctly has 𝑓 𝑛 ∈ 𝑂 𝑡 𝑛

• Notation:  𝑡 𝑛 ∈ Ω 𝑓 𝑛 , pronounced “big-omega”
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Closed form of some sequences

• Arithmetic progression:   𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑, … , 𝑎 + 𝑛𝑑, …
– Closed form:  𝑠𝑛 = a + 𝑛𝑑

• Geometric progression:  𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, … , 𝑎𝑟𝑛 , …
– Closed form: 𝑠𝑛 = 𝑎 ⋅ 𝑟𝑛

• Fibonacci sequence:  1,1,2,3,5,8,13, …
– 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝐹0 = 0, 𝐹1 = 1

– Closed form: 𝐹𝑛 = 𝜑𝑛− 1−𝜑 𝑛

√5

• Where 𝜑 (“phi”) is the “golden ratio”:  a ratio such that   
𝑎+𝑏

𝑎
=

𝑎

𝑏

• 𝜑 =
1+ 5

2

a    b

a+b

More examples of recursive definitions

There is much more that can be defined with recursive definitions rather than just 
sequences and functions. 

In the following recursive definitions, we will call the recursive step “recursion” rather than 
“recurrence”, as we are not defining 𝑛𝑡ℎ element of a sequence (or function value at n)  

Recursive  definition of a sum (where 𝑛 ≥ 𝑚)
– Basis:  σ𝑖=𝑚

𝑚 𝑓 𝑖 = 𝑓(𝑚) .

– Recursion:  σ𝑖=𝑚
𝑛+1 𝑓(𝑖) = σ𝑖=𝑚

𝑛 𝑓(𝑖) + 𝑓 𝑛 + 1

Recursive definition  of a product (where 𝑛 ≥ 𝑚)
– Basis:  ς𝑖=𝑚

𝑚 𝑓(𝑖) = 𝑓(𝑚).
– Recursion: ς𝑖=𝑚

𝑛+1 𝑓(𝑖) = (ς𝑖=𝑚
𝑛+1 𝑓(𝑖)) ∗ 𝑓 𝑛 + 1

Fractals

• Can use recursive definitions to define fractals

– And draw them

– And prove their properties. 

• A fractal is a self-similar object: a part looks like the whole. 

Fractals in nature

• A fern leaf

• Mountains

• Romanesco broccoli

• Stock market 

Mathematical fractals

• Koch curve and snowflake

• Sierpinski triangle, pyramid, carpet

• Hilbert space-filling curve

• Mandelbrot set 
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Koch curve

Recursive definition of  Koch curve:

• Basis: an interval

• Recursion: Replace the inner third of each 
interval with two intervals of the same length 
sticking out in a triangle

– That is, make a equilateral triangle on top of the 
middle third, then remove the middle third 
leaving the remaining two sides of the triangle.  

Is it a line? Is it a plane?  It is a fractal!  Its dimension is log3 4

Playing with fractals

• Fractal Grower by  Joel Castellanos:  

• http://www.cs.unm.edu/~joel/PaperFoldingFractal/paper.html

Stage 0
(Basis)

Stage 2
Stage 1

(Do recursion once)
Stage 3 Stage 4 Stage 5

Recursive definitions of sets 

• So far, we talked about recursive definitions of sequences, functions, 
formulas and fractals.  We can, in general, recursively define sets. 
– Recursive definition of a set S= 0,1 ∗

• Basis:  empty string 𝜆 is in S. 
• Recursion:  if 𝑤 ∈ 𝑆, then 𝑤0 ∈ 𝑆 and 𝑤1 ∈ 𝑆

– Here, 𝑤0 means string w with 0 appended at the end; same for w1 
– If 𝑤 = 011, then 𝑤0 = 0110, and 𝑤1 = 0111

– Alternatively:
• Basis: empty string 𝜆, 0 and 1 are in S. 
• Recursion:  if s  and t are in S, then 𝑠𝑡 ∈ 𝑆

– here, 𝑠𝑡 is concatenation: symbols of s followed by symbols of  t 
– If s = 101 and t= 0011, then st = 1010011

– We always assume  that  the set S contains only elements produced from basis 
using recursion rule. 

Trees 

• In computer science, a tree is an undirected graph 
without cycles 

– Undirected: all edges go both ways, no arrows. 

– Cycle: sequence of edges going back to the same point. 

• Recursive definition of trees: 

– Basis: A single vertex         is a tree.

– Recursion:  

• Let 𝑇 be a tree, and 𝑣 a new vertex not in  𝑇. 

• Then a new tree consist of 𝑇, 𝑣, and an edge (connection) 
between some vertex of 𝑇 and 𝑣.

1

2

3

Undirected cycle
(not a tree)

𝑣

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5

31 32

33 34

35 36

http://www.cs.unm.edu/~joel/PaperFoldingFractal/paper.html
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Arithmetic expressions

Suppose you are writing a piece of code that takes an arithmetic expression (“5*3-1”,  
“40-(x+1)*7”, etc), checks that it is well-formed (input is correct), and evaluates it. 

How to describe a well-formed arithmetic expression? Define a set of all well-
formed arithmetic expressions recursively: 
• Basis: A number or a variable is a well-formed arithmetic expression. 

– 5, 100, x, a

• Recursion:  If A and B are well-formed arithmetic expressions then so are           
(A), 𝐴 + 𝐵, 𝐴 − 𝐵, 𝐴 ∗ 𝐵, 𝐴 / B.

40-(x+1)*7 is well-formed:  first build 40, x, 1, 7. Then x+1. Then (x+1). Then 
(x+1)*7, finally 40-(x+1)*7

– Caveat:  how do we know the order of evaluation? On that later.

+

Bool Bool

Bool

Formulas

• What is a well-formed propositional logic formula? 

– 𝑝 ∨ ¬𝑞 ∧ 𝑟 → ¬𝑝 → 𝑟

– Basis:  a propositional variable 𝑝, 𝑞, 𝑟 …

• Or a constant 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸

– Recursion:  if F and G are propositional formulas, so are 𝐹 , ¬𝐹,
𝐹 ∧ 𝐺, 𝐹 ∨ 𝐺, 𝐹 → 𝐺, 𝐹 ↔ 𝐺.

– And nothing else is a well-formed propositional logic formula. 

∨

Bool Bool

Bool

Formulas

What is a well-formed predicate logic formula? 
∃𝑥 ∈ 𝐷 ∀𝑦 ∈ ℤ (𝑃 𝑥, 𝑦 ∨ 𝑄 𝑥, 𝑧 ) ∧ 𝑥 = 𝑦

• Basis:  a predicate with inputs from its domain
– P(x),  x=y, Even(5),… 

• Recursion: 
– If F and G are predicate logic formulas, so are 𝐹 , ¬𝐹, 𝐹 ∧ 𝐺, 𝐹 ∨ 𝐺, 𝐹 → 𝐺, 𝐹 ↔ 𝐺.

– If 𝐹 is a predicate logic formula with a free variable x,  and D is the domain of 𝑥, then 
∃𝑥 ∈ 𝐷 𝐹 and  ∀𝑥 ∈ 𝐷 𝐹 are predicate logic formulas. 

• And nothing else. 
– So ∃𝑥 ∈ 𝑃𝑒𝑜𝑝𝑙𝑒 𝐿𝑖𝑘𝑒𝑠 𝑥, 𝑦 ∧ 𝑥 , 𝐿𝑖𝑘𝑒𝑠 𝑦 ≠ 𝑥 is not a well-formed predicate logic 

formula! 

∀
𝐹𝑜𝑟𝑚𝑢𝑙𝑎

element 
name 

Set
Formula

Puzzle

• Are the following English sentences built the same way? 

–Time flies like an arrow. 

– Fruit flies like an apple. 

Puzzle

• Are the following English sentences built the same way?

–Time flies like an arrow. 

– Fruit flies like an apple. 

37 38
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Grammars

• Remember that sets of strings are called languages. 

• A type of recursive definition of a language is called a grammar.  

• Different natural languages also 

have different  grammars!
– English:  Subject/Verb/Object

– Japanese: Subject/Object/Verb 

– Gaelic:  Verb/Subject/Object

– Russian: order does not matter  

Context-free grammars

A special kind of grammars is context-free grammars, where symbols 
have the same meaning wherever they are. 

A context-free grammar consists of 
– A set V of variables (using capital letters), including a start variable S.

• Note: these are variables, not sets.  

– A set Σ of terminals (disjoint from V; alphabet of the language.) 

– A set R of rules, where each rule consists of a variable from V, followed by 
→, followed by  a string of variables and terminals. 
• This is not the same “→ " as implication, a different use of the same symbol. 

• If several rules start with the same non-terminal such as 𝐴 → 𝑤1 , 𝐴 → 𝑤2, etc, we 
use a shortcut  “|”  (means “or”) to write them as one rule:    𝐴 → 𝑤1 𝑤2 … |𝑤𝑘

Context-free grammars
A context-free grammar: a set V of variables, including a start variable S,  a set Σ (Sigma) of 
terminals (alphabet) and a set R of rules of the form  A → 𝑤, where 𝐴 ∈ 𝑉, 𝑤 ∈ 𝑉 ∪ Σ ∗

• If 𝐴 → 𝑤 is a rule, we say variable 𝐴 yields string w.  
– Can use A within the rule, as many times as we want: recursion!  
– Different occurrences of the same variable can produce different strings.

• A derivation is a sequence of strings each of which is obtained from the 
previous by applying some rule to its substring. 
– If 𝑤 = ℓ𝐴𝑟 and there is a rule 𝐴 → 𝑢, then  ℓ𝑢𝑟 is directly derived from 𝑤,

written  𝑤 ⇒ ℓ𝑢𝑟. 
– 𝑤𝑛 is derived from 𝑤0 if there is a sequence 𝑤0 , 𝑤1, … , 𝑤𝑛 where ∀𝑖 𝑤𝑖 ⇒ 𝑤𝑖+1

• A language generated by a grammar consists of all strings of terminals 
that can be derived from the start variable S. 

Language 𝐿 of all strings over {0,1}  
with all 0s before all 1s. 

Strings in 𝐿: 𝜆, 0, 1, 11, 001, 00111, 011111, 00000000,… 
Strings not in 𝐿: 10, 1110, 010101, 00100000… 

Recursive definition:  
• Basis:  𝜆 ∈ 𝐿
• Recursion:  if w ∈ 𝐿, then 0𝑤 ∈ 𝐿 and 𝑤1 ∈ 𝐿

• Grammar for L consists of 3 rules:  𝑆 → 0𝑆, 𝑆 → 𝑆1, 𝑆 → 𝜆
– Shorter description of the grammar:   𝑆 → 0𝑆 𝑆1 𝜆
– Variables: S.  Terminals: 0 and 1. As before, 𝜆 is the empty string. 
– Derivation of a string 001: 𝑆 ⇒ 0𝑆 ⇒ 0𝑆1 ⇒ 00𝑆1 ⇒ 00𝜆1 = 001

• Alternative derivation of 001:  𝑆 ⇒ 𝑆1 ⇒ 0𝑆1 ⇒ 00𝑆1 ⇒ 00𝜆1 = 001

𝑆 → 𝜆
𝑆 → 0𝑆
𝑆 → 𝑆1

Parse trees: 

• Parse trees: visualizing derivations 

– Similar to syntax trees, 

– except all internal nodes are variables, 

– and all nodes on the bottom are terminals. 

Grammar:  𝑆 → 0𝑆 𝑆1 𝜆

– Derivation of a string 001: 
𝑆 ⇒ 0𝑆 ⇒ 00𝑆 ⇒ 00𝑆1 ⇒ 00𝜆1 = 001

– Alternative derivation of 001: 

𝑆 ⇒ 𝑆1 ⇒ 0𝑆1 ⇒ 00𝑆1 ⇒ 00𝜆1 = 001

S

S

S

1

0

0

S

𝜆
0           0                1

S

S

S

0

1

0

S

𝜆
0        0                 1

Examples of context-free grammars

• L contains two strings 1 and 00
𝑆 → 1 | 00

– Variables: S.   

– Terminals: 1 and 00 (or 1 and 0). 

• L is strings over 𝑎, 𝑏, 𝑐, 𝑑 with 
even number of “a”s
𝑆 → 𝑆𝑎𝑆𝑎𝑆 𝑆𝑏𝑆 𝑆𝑐𝑆|𝑆𝑑𝑆| 𝜆

– Variables: S.  Terminals: a,b,c,d. 

• Natural numbers, start symbol N
N → 0 | 𝑀

M → 1𝐷 2𝐷 3𝐷|4𝐷

𝑀 → 5𝐷 6𝐷 7𝐷 8𝐷 9𝐷

𝐷 → 𝑀|0𝐷|𝜆

• Rational numbers: same as natural 
numbers plus a new start symbol 
𝑅, new variable P and new rules

𝑅 → 𝑃|-𝑃

P → 𝑁|𝑁/𝑀|𝑁. 𝑁

43 44

45 46

47 48
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Propositional formulas

• Recursive definition: 
– Basis:  a propositional variable 𝑝, 𝑞, 𝑟 or a constant 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸
– Recursion:  if F and G are propositional formulas, then so are     

𝐹 , ¬𝐹, 𝐹 ∧ 𝐺, 𝐹 ∨ 𝐺, 𝐹 → 𝐺, 𝐹 ↔ 𝐺.

• Grammar:   𝐹 → 𝐹 ∨ 𝐹|𝐹 ∧ 𝐹|¬𝐹| 𝐹 |𝐹 → 𝐺|𝐹 ↔ 𝐺
𝐹 → 𝑝 𝑞 𝑟 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸

Here, the only variable is  F  (it is a start variable),  and the set 
of terminals  is   {∨,∧, ¬, →,↔, , , 𝑝, 𝑞, 𝑟, 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸}

Deriving  𝑝 ∨ ¬𝑞 ∧ 𝑟: 𝐹 ⇒ 𝐹 ∧ 𝐹 ⇒ 𝐹 ∧ 𝐹 ⇒ 𝐹 ∧ 𝑟 ⇒
⇒ 𝐹 ∨ 𝐹 ∧ 𝑟 ⇒ 𝑝 ∨ 𝐹 ∧ 𝑟 ⇒ 𝑝 ∨ ¬𝐹 ∧ 𝑟 ⇒ 𝑝 ∨ ¬𝑞 ∧ 𝑟

F

F

FF

𝒓( )
∧

F F∨

𝒑 F

q

𝑝 ∨ ¬ 𝑞 ∧ 𝑟

¬

Context-free grammars for arithmetic expressions

𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 + 𝐸𝑋𝑃𝑅 𝐸𝑋𝑃𝑅 − 𝐸𝑋𝑃𝑅 𝐸𝑋𝑃𝑅 ∗ 𝐸𝑋𝑃𝑅

𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 / 𝐸𝑋𝑃𝑅 | 𝐸𝑋𝑃𝑅 0 𝑁𝑈𝑀𝐵𝐸𝑅|-NUMBER 

NUMBER → 1𝐷𝐼𝐺𝐼𝑇𝑆 … 9𝐷𝐼𝐺𝐼𝑇𝑆

𝐷𝐼𝐺𝐼𝑇𝑆 → 𝜆| 𝑁𝑈𝑀𝐵𝐸𝑅|0𝐷𝐼𝐺𝐼𝑇𝑆

– Variables: EXPR, NUMBER, DIGITS (EXPR is starting).  

– Terminals: +,-,*, /, 0,…,9,(,). 

• Problem: this definition of arithmetic expressions (and the previous 
definition of propositional formulas) do not have any information 
about order of operations.  

Grammar for natural numbers

Encoding order of precedence

• Easier to specify in which order to process parts of the formula. 

– Better grammar for arithmetic expressions (for simplicity, with only x,y,z
instead of numbers):

𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 + 𝑇𝐸𝑅𝑀 |𝐸𝑋𝑃𝑅 − 𝑇𝐸𝑅𝑀| 𝑇𝐸𝑅𝑀

𝑇𝐸𝑅𝑀 → 𝑇𝐸𝑅𝑀 ∗ 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝑇𝐸𝑅𝑀 / 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝐹𝐴𝐶𝑇𝑂𝑅

𝐹𝐴𝐶𝑇𝑂𝑅 → 𝐸𝑋𝑃𝑅 | x | y | z

– Here, variables are EXPR, TERM and FACTOR (with EXPR a starting variable). 

– Now can encode precedence.

Ambiguous grammars
• A context-free grammar is ambiguous if there is 

some string with more than one possible parse tree. 
– Grammar 𝑆 → 0𝑆 𝑆1 𝜆 was ambiguous 
since 001 had two parse trees.    

• First grammar for arithmetic expressions (and 
grammar for propositional formulas) were 
ambiguous: 𝑥 + 𝑦 ∗ 𝑧 has two parse rees. 

𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 + 𝐸𝑋𝑃𝑅|𝐸𝑋𝑃𝑅 − 𝐸𝑋𝑃𝑅
𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 ∗ 𝐸𝑋𝑃𝑅 | 𝐸𝑋𝑃𝑅 / 𝐸𝑋𝑃𝑅
𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 x y|z

• Second grammar for arithmetic expressions is
not ambiguous
𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 + 𝑇𝐸𝑅𝑀 |𝐸𝑋𝑃𝑅 − 𝑇𝐸𝑅𝑀| 𝑇𝐸𝑅𝑀
𝑇𝐸𝑅𝑀 → 𝑇𝐸𝑅𝑀 ∗ 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝑇𝐸𝑅𝑀 / 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝐹𝐴𝐶𝑇𝑂𝑅
𝐹𝐴𝐶𝑇𝑂𝑅 → 𝐸𝑋𝑃𝑅 | x | y | z

EXPR

EXPR

FACTOR

FACTOR

x

+

*

FACTOR

y

z

TERM

TERMEXPR

TERM

EXPR

EXPR

x

+

*EXPR

y z

EXPREXPR

EXPREXPR

x

+

*

y

z

EXPR

EXPR EXPR

Recursive definitions of sets 

• So far, we talked about recursive definitions of sequences, functions, 
formulas and fractals.  We can, in general, recursively define sets. 
– Recursive definition of a set S= 0,1 ∗

• Basis:  empty string 𝜆 is in S. 
• Recursion:  if 𝑤 ∈ 𝑆, then 𝑤0 ∈ 𝑆 and 𝑤1 ∈ 𝑆

– Here, 𝑤0 means string w with 0 appended at the end; same for w1 
– If 𝑤 = 011, then 𝑤0 = 0110, and 𝑤1 = 0111

– Alternatively:
• Basis: empty string 𝜆, 0 and 1 are in S. 
• Recursion:  if s  and t are in S, then 𝑠𝑡 ∈ 𝑆

– here, 𝑠𝑡 is concatenation: symbols of s followed by symbols of  t 
– If s = 101 and t= 0011, then st = 1010011

– We always assume  that  the set S contains only elements produced from basis 
using recursion rule. 

49 50
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Structural induction

• Let 𝑆 ⊆ 𝑈 be a recursively defined set

• Let F(x)  be a predicate with domain 𝑈

– Think of 𝐹(𝑥) as some property that elements of U may have. 

• Then 

– if 𝐹 𝑥 is true for all 𝑥 in the basis of S,  

– and applying the recursion rules preserves F.

– then all elements in S have the property F. 

Let’s define a set S of numbers as follows. 
– Basis:  3 ∈ 𝑆

– Recursion: if  𝑥, 𝑦 ∈ 𝑆, then 𝑥 + 𝑦 ∈ 𝑆

Claim: all numbers in S are divisible by 3 
– That is, ∀𝑥 ∈ 𝑆 ∃ 𝑧 ∈ ℕ 𝑥 = 3𝑧.

Proof (by structural induction). 
– Base case:  3 is divisible by 3 (z=1). 

– Recursive step:
• Let 𝑥, 𝑦 ∈ 𝑆. Then ∃𝑧, 𝑢 ∈ ℕ 𝑥 = 3𝑧 ∧ 𝑦 = 3𝑢. (inductive hypothesis)

• Then 𝑥 + 𝑦 = 3𝑧 + 3𝑢 = 3 𝑧 + 𝑢 . (induction step) 

• Therefore, 𝑥 + 𝑦 is divisible by 3. 

– As there are no other elements in S except for those constructed from 3 by 
the recursion rule, all elements in S are divisible by 3.   

Trees 

• In computer science, a tree is an undirected graph 
without cycles 

– Undirected: all edges go both ways, no arrows. 

– Cycle: sequence of edges going back to the same point. 

• Recursive definition of trees: 

– Base: A single vertex         is a tree.

– Recursion:  

• Let 𝑇 be a tree, and 𝑣 a new vertex. 

• Then a new tree consist of 𝑇, 𝑣, and an edge (connection) 
between some vertex of 𝑇 and 𝑣.

1

2

3

Undirected cycle
(not a tree)

𝑣

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5

Binary  trees 

• Rooted trees are trees with a special vertex designated as a root.  
– Rooted trees are binary if every vertex has at most three edges: one going 

towards the root, and two going away from the root. 
• For a vertex in a rooted tree,  its neighbour towards the root is called “parent”

• And its neighbours away from the root are called “children” 

– Full if every vertex has either 2 or 0 edges going away from the root.

• Recursive definition of full binary trees: 
– Basis: A single vertex         is a full binary tree with that vertex as a root.

– Recursion:  
• Let 𝑇1, 𝑇2 be full binary trees with roots 𝑟1, 𝑟2, respectively.  Let 𝑣 be a  new vertex. 

• A new full binary tree with root 𝑣 is formed by connecting 𝑟1 and 𝑟2 to 𝑣.

𝑣

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

Height of a full binary tree
• The height of a rooted tree, ℎ 𝑇 , is the maximum number of edges 

to get from any vertex to the root.  
– Height of a tree with a single vertex is 0. 

• Claim:  Let 𝑛(𝑇) be the number of vertices in a full binary tree T.  

Then 𝑛 𝑇 ≤ 2ℎ 𝑇 +1 − 1

• Alternatively,  height of a binary tree is at least log2 𝑛(𝑇)
– If you have a recursive program that calls itself twice 
– Then if this code executes n times (maybe on n different cases) 
– Then your program will run in time at least log2 𝑛 , even when cases are 

checked in parallel. 

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

Height 2

Height of a full binary tree

• Claim:  Let 𝑛(𝑇) be the number of vertices in a full binary tree T.  

Then 𝑛 𝑇 ≤ 2ℎ 𝑇 +1 − 1, where ℎ 𝑇 is the height of T.

• Proof (by structural induction) 
– Base case:  a tree with a single vertex has 𝑛 𝑇 = 1 and ℎ 𝑇 = 0.

• So 2ℎ 𝑇 +1 − 1 = 1 ≥ 1

– Recursion:  Suppose  𝑇 was built by attaching 𝑇1, 𝑇2 to a new root vertex 𝑣.
• Number of vertices in 𝑇 is n T = 𝑛 𝑇1 + 𝑛 𝑇2 + 1

• Every vertex in 𝑇1 or 𝑇2 now has one extra step to get to the new root in 𝑇.

– So ℎ 𝑇 = 1 + max(ℎ 𝑇1 , ℎ 𝑇2 )

• By the induction hypothesis, 𝑛 𝑇1 ≤ 2ℎ 𝑇1 +1 − 1 and 𝑛 𝑇2 ≤ 2ℎ 𝑇2 +1 − 1

• n T = ⋯ (see next page)

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5
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• Claim:  Let 𝑛(𝑇) be the number of vertices in a full binary tree T.  

Then 𝑛 𝑇 ≤ 2ℎ 𝑇 +1 − 1, where ℎ 𝑇 is the height of T.
• Proof (by structural induction) 

– Base case:  holds. 

– Recursion:  Suppose  𝑇 was built by attaching 𝑇1, 𝑇2 to a new root vertex 𝑣.
• Number of vertices in 𝑇 is n T = 𝑛 𝑇1 + 𝑛 𝑇2 + 1

• Every vertex in 𝑇1 or 𝑇2 now has one extra step to get to the new root in 𝑇.

– So ℎ 𝑇 = 1 + max(ℎ 𝑇1 , ℎ 𝑇2 )

• By the induction hypothesis, 𝑛 𝑇1 ≤ 2ℎ 𝑇1 +1 − 1 and 𝑛 𝑇2 ≤ 2ℎ 𝑇2 +1 − 1

• n T = 𝑛 𝑇1 + 𝑛 𝑇2 + 1

≤ 1 + (2ℎ 𝑇1 +1−1)+(2ℎ 𝑇2 +1 − 1 )     (by ind. hyp)

≤ 2 ⋅ max(2ℎ 𝑇1 +1, 2ℎ 𝑇2 +1) − 1

≤ 2 ⋅ 2max ℎ 𝑇1 ,ℎ 𝑇2 +1 − 1

= 2 ⋅ 2ℎ 𝑇 − 1 = 2ℎ 𝑇 +1 − 1

Therefore, the number of vertices of any binary tree 𝑇 is  ≤ 2ℎ 𝑇 +1 −1

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

Puzzle: chocolate squares

• Suppose you have a piece of chocolate like this:

• How many squares are in it? 

– of all sizes, from single to the whole thing 
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