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Unit 6

* Abinary relation R € A X Ais an order if R is
. 2 — Reflexive, Anti-symmetric, Transitive
Induction !

Order relations

R ={(x,)|x,y €ZAx <y}
o > * SUBSETS ={(A,B) | A,B are sets A AS B}
* DIVISORS ={(xy)| x,y ENAx,y 22 Adz€N y=1z-x}
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* An order may have minimal and maximal elements

{m Well-ordering principle

* Theorem: Any non-empty subset of natural numbers
contains the minimum element
— With respect to the usual total order x <y

* There is smallest positive even number. Smallest composite number.
Smallest square...

Puzzle: coins

* A not-too-far-away country recently got rid of a penny coin,
and now everything needs to be rounded to the nearest
multiple of 5 cents...

— Suppose that instead of just dropping the penny, they would

introduce a 3 cent coin.
— If there is a property which is not true for some natural numbers,

there is a smallest natural number for which it is not true.
— Very useful for proofs!

« Like British three pence.
— What is the largest amount that cannot be paid by using only existing
coins (5, 10, 25) and a 3c coin?

7c
Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).

eSel Seoll Nei

— Well-ordering principle: Any non-empty subset of natural numbers

* Coins: Vx €N, ifx > 7then3y,z € Nsuchthatx =
contains the least element (with respect to x < y)

3y + 5z. So any amount >7 can be paid with 3s and 5s.

. . —Suppose, for the sake of contradiction, that there are amounts
* Coins: Vx € N,ifx > 7then3y,z € Nsuchthatx = 3y + ) e
I greater than 7 which cannot be paid with 3s and 5s.
5z. So any amount >7 can be paid with 3s and 5s. o
— Suppose, for the sake of contradiction, that there are amounts =) CEHEE
greater than 7 which cannot be paid with 3s and 5s. * n=8. Then n=3+5.
— Take a set S of all such amounts. Since S € N, and we assumed that *n=9.Then n=3*3
S # @, by well-ordering principle S has the least element. Call it n. * n=10. Then n=10=2%*5.

— Now, look at n-3; it cannot be paid by 3s and 5s either.
—Since n is the least element of S, n—3<7<n
— Remains to show that all possible n — 3 < 7 don’t work

—In all three cases, got a contradiction.

—Therefore, for every x € N, if x >7 then x=3y+5z for some
v,z € N.
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Theorem: Any non-empty subset of natural numbers contains
the minimum element

Well-ordering principle

*  With respect to the usual total order x < y
* There is smallest positive even number. Smallest composite number.
Smallest square...
* If there is a property which is not true for some natural
numbers, there is a smallest natural number for which it is not
true.

« Very useful for proofs!

eNel Yol Neu
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w L i Theorem: There are infinitely many primes.
Infinitely many primes Vx € N Prime(x) - 3y € Ny > x A Prime(y)
* Definition: A natural number is prime iff it is divisible only by 1 and itself. That * Proof (by contradiction):
is, n is prime iff e
VZEN (BweENn=2zw) » (z=1vVz=1n)) — Assume, for the sake of contradiction, that the statement of the
theorem is false:
« Theorem: There are infinitely many primes. * Sodx € N Prime(x) A (Vy € Ny < x V ~Prime(y))
Vx € N Prime(x) - 3y € Ny > x A Prime(y) — Call this number n (universal instantiation of Vx)
— Now consider the number N = (2-3-..-n)+1
— Proven by Euclid ~300BC — T £ 2 CEEES
+ Prime(x)isashorthandfor vz e N@w e Nx =zw) 5z =1Vz=x * Either Nisa pri_m?, in which case we are done since we found a prime larger
* To say “infinitely many” we write that no matter what element of the domain we take, there is a than n, contradicting our assumption.
larger one that has the property we are interested in (in this case, a prime). « or N is not prime.
9 10
Theorem: There are infinitely many primes. Theorem: There are infinitely many primes.
Vx € N Prime(x) - 3y € Ny > x A Prime(y) Vx € N Prime(x) - 3y € Ny > x A Prime(y)
Well-ordering principle: Any non-empty subset of natural )
* Proof (continued): numbers contains the least element (with respect to x < * PfOOf (contmued):
* Consider the number N=(2-3-..-n) + 1 — We showed that both cases of N being prime and not being prime give us
— Case 2: suppose N is not prime, that is, for some k,q € N, N = kq, 3y € Ny > n A Prime(y)
wherek = 1and k £ N * In the first case, N itself was an instantiation of 3y, and in the second case, it was
) o ) the smallest divisor of N.
° Bytdie wekeriang (e s Athere basEl=s sEils — There are no more cases, so we showed that 3y € Ny > n A Prime(y),
— Let us use ky to refer to this smallest k. contradicting the assumption for an arbitrary (prime) n
« Since N = 1mod d forall d < n, k is not divisible by any d < n, and ky > n « We showed that, for arbitrary n, Prime(n) - 3y € Ny > n A Prime(y)
* So since k is the smallest factor of N, kj itself must be prime. — By universal generalization
« Therefore, there exists a prime number y > n by existential generalization. vx € N Prime(x) - 3y € Ny > x A Prime(y)
o (Done).
11 12
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Puzzle: sum of
numbers

* What is the sum of the first 100
numbers?

¢ That is, calculate

1+2+3+4+5+... +98+99+100.
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{ Sums
* Sum notation (“sum from1ton”): ¥, i=1+24 ..4+n
* Symbol X is the capital Greek letter sigma.
—fn=3Y,i=1+2+3=6.
—The name “i* does not matter (usually i, j or k):
Lii=1+2+ +n=%7,j
— Can start with any integer m, notjust1: Y, i=4+5+ ..+ n
Yt i=n.fn<mYyr, i=0.
—Can put a function of i into the sum: X7, i = 12 + 22 + ... + n?
* This function has to return a number, but not necessarily an integer:
Sy4 1_1

1,1 _ 6+443 _ 13
=773 2 T

15

1

Products and factorial

¢ Can use a similar shorthand for product of lots of values:
-M,i=1-2-3.-..on
« Symbol IIis Greek letter capital pi
— Factorial: another notation for1-2- ... -n =1, i =n!
« “n!" is pronounced “n factorial”

— As for sums, can start from an arbitrary integer m, and have a
function of i in the product: T}, f(i) = f(m) - f(m + 1) - ...- f(n)
s For f(i)=1/i, m=2,n=4, M}, 1/i=1/2-1/3-1/4 =24
* And can use another variable name.

16
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Properties of sums and products

Let f and g be any functions with integer inputs, r any number,
n, m integers.

— Can take the first or last element out of the sum by increasing m (first element)
or decreasing n (last element)
¢ T fD =) + Zinss f) = (Z5 FD)+ ()
—Whenn <m, ¥, f() =0,and N, f(i)=1
— Can add two sums with the same n, m, and multiply products
© Clm D)+ Clem 9D) =X FD + 9(D)
— Can factor out a common factor in a sum (but not in a product)
c im T fD =7 XL, f(D
— Can have multiple nested sums (and products)
0 E:‘;m, Z;‘imz G0,
0 x};m i-j=2-10+2-11+3-10+3-11+4-10+4-11=189




Puzzle: sum of
numbers

* What is the sum of the first 100
numbers?

¢ That is, calculate

1+2+3+4+5+... +98+99+100.
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Gauss’ sum of first 100 numbers E
1|+ 2|+ ..+ 99|+ 100
+[100 [+| 99 |+ .. + 2|+ 1 =
=201 J+(201 J+ .. +(201)+ 101 = 100*101
* S01+2+ ...+ 99+ 100 == =-1=5050
* Does this work for any n, or just n=100?
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Claim: for any n€ N, 0+1+...+(n-1)+n=Y" i = nntl)

2
r r 1
Suppose not. Let S be a set of all numbers n’ such that Z{‘;O i+ @

By the well-ordering principle, if S # @, there is the least number k in S.
o
— We will show that such k cannot exist.
— By proof by cases:
* kis either 0,or > 0
* Case1:k=0
* Case2:k >0

* Contradiction. So S is empty, thus the formula works for all n € N.

Claim: for any n€ N, 0+1+..+(n-1)+n=Y"( i = @

’ r 1
* Suppose not. Let S be a set of all numbers n’ such that Z{';o i+ @

* By the well-ordering principle, if S # @, there is the least number k in S.
— Case 1: k=0.

. 0(0+1)
. ButE?=0 i=0 ==
* So formula works for k=0.
— Case 2: k>0.

* Contradiction. So S is empty, thus the formula works for all n € N.

21
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Claim: for any n€ N, 0+1+...4(n-1)+n=Y7( i = @

’ r
. 1
Suppose not. Let S be a set of all numbers n’ such that Z{‘;O i g3 @

By the well-ordering principle, if S + @, there is the least number k in S.

—Case 1: k=0. But X0, i=0= @. So formula works for k=0.

—Case 2: k>0. Then k—12=0.
+ So 3K i = (T i) +k by definition of a sum.

* As k is the smallest “bad” number, the formula works for k-1. So Z’i';oli E @
= 2_ 2

* Now, T i = (Shod i) #k= DK 4 o = ISl I0nk_ k(o)

* So the formula works for k>0, too.

* Contradiction. So S is empty, thus the formula works for all n € N.

Structure of a proof by well-ordering principle

Want to prove: {8kl Z8=\WdEaN for some predicate P

Proof by contradiction.
— Suppose that Vx € N, P(x) is false.
—TakeasetS = {x € N| =P(x)} 1
— By the well-ordering principle, there is the smallest element k € S

— Prove that such k cannot exist, using the fact that it is smallest in S
* This is where most the work is!
« Often proof by cases: k =0ork >0

— Conclude that S is empty, and, therefore, Vx € N, P(x) is true.

23

o (Done).

24
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Structure of a proof by well-ordering principle

Want to prove: falligNER=\WAEIN for some predicate P

Proof by contradiction.
— Suppose that Vx € N, P(x) is false.
—TakeasetS ={x EN|-P(x)} (H}1}
— By the well-ordering principle, there is the smallest element k € S

— Prove that such k cannot exist, using the fact that it is smallest in S
« This is where most the work is!

 Often proof by cases: k =0ork >0

— Conclude that S is empty, and, therefore, Vx € N, P(x) is true.

25

o (Done).

26

Mathematical induction

Mathematical induction
* Want to prove a statement Vx € N P(x).

* Want to prove a statement Vx € N P(x).
— Check that P(0) holds

— Check that P(0) holds e cae th base o,
— And whenever P (k) does not hold for some k, P(k — 1) does not
hold either

— And whenever P(k) does not hold for some k, P(k — 1) does not
hold either
« Contradicting well-ordering principle.

+ Contradicting well-ordering principle.
« Contrapositive:

« Contrapositive:
—if P(k-1) holds for arbitrary k,

—then P(k) also must be true.
— Conclude that Vx € N P(x)

That P(k-1) holds is an induction hypothesis
—if P(k-1) holds for arbitrary k,

—then P(k) also must be true.
— Conclude that Vx € N P(x)

Mathematical Induction principle:
If P(O)AVk €N P(k) - P(k+1) then Vx € N P(x)

s
Proving that P(k-1) > P(k)
Is the induction step

({
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Claim: for any n€ N P(n) Claim: for any n€ N, 0+1+...+(n-1)+n=
Proof (by induction).
— Predicate P(n) is

— Base case: n = 0. Then .... P(0) is true.

— Induction hypothesis: Assume that P(...) for an arbitrary k >0

k-1
— Induction hypothesis: Assume that Z = @ for an arbitrary k >0
. . . . * That is, for an arbitrary number n=k-1 € N =0
— Induction s.tep. show that P(k-1) implies P(k). * Can take k instead of k-1, but k-1 makes calculations simpler.
7 o SRS o — Induction step: show that P(k-1) implies P(k).
* ... by induction hypothesis..
* ... calculations ...

* ... calculations ...
« ... by induction hypothesis..
* ... calculations ...

o (Done). — By induction, therefore, P(n) holds for alln € N.
29

30

— By induction, therefore, P(n) holds for alln € N.

o (Done).
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im”: all hor re white.
Claim: for any n€ N, 0+1+...+(n-1)+n B Cla Bl el £ s )
Proof (by induction). . “Proof” (by induction):
— Predicate P(n) is Yo i = @ — P(n): any n horses are white. ! .
— Base case: P(0) holds vacuously
— Base case: n=0. Then X9, i = 0 = 2D
Lizo 2 —_— — Induction hypothesis: any k horses are white.

— Induction hypothesis: Assume that X1 i = —,foran arbitrary k >0 — Induction step: if any k horses are white, then any k+1 horses are white.

* That is, for an arbitrary number n=k-1 € N * Take an arbitrary set of k+1 horses. Take a horse out.
« Can take kinstead of k-1, but k-1 makes calculations simpler.

—The remaining k horses are white by induction hypothesis.
— Induction step: show that P(k-1) implies P(k).

* Now put that horse back in, and take out another horse.
. Zf:o i= (Zf;ol i) +k. —Remaining k horses are again white by induction hypothesis.

* By induction hypothesis, Zé‘:‘oli = @ * Therefore, all the k+1 horses in that set are white.

= = —Byi i ite. P g i
* Now, T o i = (Zkoi) +k = Gk o Kikizk _ K24k _ k(ktl) By induction, all horses are white uzzI‘e What is wrong
2 2 2 2 e © with this proof?
— By induction, therefore, P(n) holds foralln € N. o (Done). . - ‘
31 32

“Claim”: all horses are white.

“Proof” (by induction):
—P(n): any n horses are white. 2
— Base case: P(0) holds vacuously ‘
— Induction hypothesis: any k horses are white. "
— Induction step: if any k horses are white, then any k+1 horses are white.
* Take an arbitrary set of k+1 horses. Take a horse out.
—The remaining k horses are white by induction hypothesis.
« Now put that horse back in, and take oufiSiGthemhorse.
—Remaining k horses are again white by induction hypothesis.
* Therefore, all the k+1 horses in that set are white.

— By induction, all horses are white. Puzzle: What is wrong

e © with this proof? ‘
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X . . Claim: for alln > 4, 2™ > n?
Mathematical Induction principle: . . . -
If PO)AV k €N P(k) > P(k+1) then Vx € N P(x) > ey lEhadiap vl Cish @ = 4
— Predicate P(n): 2" > n?
. = 4 — 42
* What if want to prove it only for x > a? = BiRaEs =5, 2" = 10=4
P \4 — Induction hypothesis: assume that for an arbitrary k > 4, 2% > k?
— Make a the base case (when a = 0). For the rest, assume k = a. — Induction step: show that 2K > k2 implies 2K*1 > (k + 1)2
(P@) AV k=a Pk) - Pk+l) - Vx=a P(x) o 2k+1 = 2.2k = 2k 4 2K > k2 + k2 (last > by induction hypothesis).
* Here, Vx > a P(x) isashorthand forvx € N (x = a - P(x)) « Want: k? + k? = (k + 1)2.Since (k + 1)? = k? + 2k + 1, need to show k? > 2k + 1
—To prove it works, prove P(n‘) e =n=a — Dividing both sides of the last inequality by k: show that k > 2 +%
) = .

-Sincek > 4,and2+7<3, 2+ <3<4<k
—Sok22+iandthusk222k+1

eS02k 1 =2.2Kk =2k 4 2k > k2 4 k2 > k2 + 2k + 1= (k+ 1)?
Then the following is equivalent to the induction principle: — By induction, for alln > 4, 2" > n?

* In general, let S be a countable set, and f: N — S a bijection.

P(f(0))AVEk=20 P(f(k)) » P(f(k+1))) - Vx€S P(x) * Corollary: as input size n grows, an algorithm running in time n? will quickly start
outoerforming an algorithm running in time 2™

35 36
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Claim: Vx € N, if x >7 then 3 y,z € N such that x = 3y + 5z.

So any amount >7 can be paid with 3s and 5s
* Proof (by induction):

— Predicate P(n): 3y,z€ N n=3y+5z
— Base case: n = 8.

* P(8) holdswith y =1,z=1, since8=3-1+5-1

— Induction hypothesis: assume that P (k) holds for an arbitrary k € N, where k>7.
* Thatis, 3y,z € N such thatk = 3y + 5z

— Induction step: show that P(k + 1) holds

* Thatis, show that 3y’,z’ € N such that k+ 1 =3y’ + 5z
— Construct y’, z' from y,z

*Ifz >0,theny' =y+2,z' =z—1.
—k+1=k-5+6

*Ifz=0,theny’' =y—3, 2 =2
-k+1=k-9+10

— Therefore, for every x € N, if x>7 then x = 3y + 5z for some y,z € N.

37
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Claim: Vx € N, if x >7 then 3 y,z € N such that x = 3y + 5z.
Strong induction

So any amount >7 can be paid with 3s and 5s

Proof (by strong induction): Strong Induction:
In our well-ordering proof that every amount > 7 can be paid with 3s and
5s we needed to consider k-3, and to look at three cases.

@beNVceN(a<cAc<b- P(0))
— Predicate P(n): 3y,z € N n =3y +5z | AVk>b (Vi €Efa. k1) P~ P()
b 1 1 - VxeN(x=a- P(x))
2 8, 1, i, — Base cases: a =8, b = 10, so c € {8,9,10}
Mathematical Induction principle: *n=8. 8=3-1+5-1,s0y=1,2=L
— (P(0)AVEk €N P(k) - P(k+1)) - Vx € N P(x) +n=9. 9=3-3, y=3,2=0
— If first domino falls, and each domino falls on next, all dominos fall. * n=10. 10=5 - 2. y=0, z=2.
Strong Induction principle:

.

-(3beNvceN(0<cacsh- P@©))
AVk>Db (Vi €{0,..,k—1} P(i)) = P(k))
- Vx € NP(x)

— If first few dominos fall, and if all preceding dominos go down then the next one
falls too, then all dominos fall.

— Induction hypothesis: Let k be an arbitrary natural number with k > 10.
Assume that Vi € Nsuchthat8 <i <k, 3y;,z, €N i=3y;+5z
— Induction step: show that P (k) holds

39 40
Claim: Vx € N, if x >7 then 3y,z € N such that x = 3y + 5z.
So any amount >7 can be paid with 3s and 5s
* Proof (by strong induction): Strong Induction: ( )
. (@beNVceN(a<cAc<b- P()
— Predicate P(n): 3y,z€ N n=3y+ 5z AVE> b (Vi €{d .k 1} P() = P(K)
— Base cases: P(8),P(9), P(10) hold. SVieN(x2a- P@)
— Induction hypothesis: Let k be an arbitrary natural number such that k > 10.
Assume that Vi € Nsuchthat8 <i <k, 3y;,2z €N i=3y;+5z
— Induction step: show that P (k) holds
e Sincek>2bh, k—32=a.
* So by induction hypothesis 3 yy_3,2zx—3 € N k —3 = 3y,_3 + 5z4_3.
* Nowtake z = zy_3 andy = y,_3+1. Thenk = 3y +5z.
— Therefore, for every x € N, if x > 7 then x = 3y 4+ 5z for some y,z € N.
— By strong induction, get that for all x> 7, 3 ¥,z € N such that x = 3y+5z.
o (Done).
41 42




Theorem (fundamental theorem of arithmetic):

Every natural number >1 can be uniquely written as a product of primes.

* Here, assume primes are written in a specific order: say from smallest to
largest.

— Forexample, 12=2-2-3, 17=17,30=2-3-5
— We do not consider 12 = 2 - 3 - 2, because it is not in the right order.
— Also do not consider 12 = 3 - 4, since 4 is not a prime.

This theorem consists of two statements, which have to be proven separately.
— Existence: every n > 1 can be written as a product of primes.
* We will prove this using strong induction.
— Uniqueness: for every n > 1, there cannot be two different products of primes that
are both equal to n.

* We will omit this proof here, as we need a bit more number theory to do it properly.
* You can read it in textbook, chapter 4.3.
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Theorem:¥n € N, ifn > 1 n can be written as a product of primes.

Proof (by strong induction):
* Predicate P(n): 3m € N, 3 primes p; ...py, suchthatn =p; - ... ppy
Base case:a=b =2
— 2 is prime, so P(2) holds withm = 1,p; = 2
Induction hypothesis: Let k be an arbitrary natural number with k > 2.
Assume that Vi € N where 2 < < k 3Im;, 3 primes py; ... D, i, Such
thati =py; - .- Pmyi
Induction step: show that P (k) holds
— That s, find m’, primes q; ... @y, suchthatk =gy * ... g,
— We will prove the induction step by cases:

1. kis prime

—Easy case:m’ =1,q, = k.
2. kis not prime.

Strong Induction:
@beNVceN(a<cAc<b- P())
AVk>b (Vi €{a, .., k—1} P(i)) > P(K)

>VxEN(x>a- P(x))

Proof (by strong induction):

n > 1 then n can be written as a product of primes.

Induction hypothesis: Let k be an arbitrary natural number > 2. Assume that
Vi € Nwhere 2 < <k 3Im;, 3 primes py; ... Dmi, suchthat i =py; - .- Py
Induction step: show that P (k) holds
— Case 1: k is prime (easy case: m’ = 1,q; = k).
— Case 2: k is not prime.

* Thenk = a- b forsome a,b suchthat2 < a,b <k

* By induction hypothesis, there are mg, my, € N, primes p1 g, ..., Pmg,a» P1,bs = » Py b

suchthat @ =pyq .. Pmga aNd Db =P1p - oo Pmyp
* NowK =p1gq . Pmga Pib = Pmyps 50 P(K) holds with m’ = m, +m,,
—Rearrange py g, -, Pmg,a P1,bs -+ Pmy,b from smallest to largest to get q; ... G,

— This completes the proof of the induction step, as there are no more cases.
By strong induction, every n > 1 can be written as a product of primes.
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Puzzle: rabbits on an islan

A ship leaves a pair of rabbits on an island
(with a lot of food).

After a pair of rabbits reaches 2 months of
age, they produce another pair of rabbits,
and keep producing a pair every month
thereafter.

Which in turn start reproducing every
month when reaching 2 months of age...

— So every pair starts reproducing at 2 months, and

creates a new pair every month from then on.

How many pairs of rabbits will be on the s
island in n months, assuming no rabbits die?

47

Equivalence of well-ordering,
induction and strong induction
Strong induction seems stronger... but in fact, mathematical

induction, strong induction and well-ordering principles are

equivalent to each other. '

— So choose the most convenient one.

Can prove induction from well-ordering principle
— Look at the smallest k such that P (k) does not hold
Can prove strong induction statement by normal induction.

— Prove P'(n) = Vi < n P(n) by induction.
Can prove well-ordering principle from strong induction.



