

1

Well-ordering principle

- Theorem: Any non-empty subset of natural numbers contains the minimum element
- With respect to the usual total order $x \leq y$
- There is smallest positive even number. Smallest composite number. Smallest square..
- If there is a property which is not true for some natural numbers, there is a smallest natural number for which it is not true.
- Very useful for proofs!

3

- Well-ordering principle: Any non-empty subset of natural numbers contains the least element (with respect to $x \leq y$)
- Coins: $\forall x \in \mathbb{N}$, if $x>7$ then $\exists y, z \in \mathbb{N}$ such that $x=3 y+$ $5 z$. So any amount >7 can be paid with 3 s and 5 s .
- Suppose, for the sake of contradiction, that there are amounts greater than 7 which cannot be paid with 3 s and 5 s .
- Take a set S of all such amounts. Since $S \subseteq \mathbb{N}$, and we assumed that $S \neq \emptyset$, by well-ordering principle S has the least element. Call it n.
- Now, look at $n-3$; it cannot be paid by 3 s and 5 s either.
- Since n is the least element of $\mathrm{S}, n-3 \leq 7<n$
- Remains to show that all possible $n-3 \leq 7$ don't work

Order relations

- A binary relation $R \subseteq A \times A$ is an order if R is
- Reflexive, Anti-symmetric, Transitive
- $R_{1}=\{(x, y) \mid x, y \in \mathbb{Z} \wedge x \leq y\}$
- SUBSETS $=\{(A, B) \mid A, B$ are sets $\wedge A \subseteq B\}$
- DIVISORS $=\{(x, y) \mid x, y \in \mathbb{N} \wedge x, y \geq 2 \wedge \exists z \in \mathbb{N} y=z \cdot x\}$
- An order may have minimal and maximal elements (maybe multiple)

2

Puzzle: coins

- A not-too-far-away country recently got rid of a penny coin, and now everything needs to be rounded to the nearest multiple of 5 cents...
- Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
- Like British three pence.
- What is the largest amount that cannot be paid by using only existing coins $(5,10,25)$ and a $3 c$ coin?

Any number $n>7$ can be paid with $3,5,10,25$ coins (even just 3 and 5).

4

- Coins: $\forall x \in \mathbb{N}$, if $x>7$ then $\exists y, z \in \mathbb{N}$ such that $x=$ $3 y+5 z$. So any amount >7 can be paid with 3 s and 5 s . -Suppose, for the sake of contradiction, that there are amounts greater than 7 which cannot be paid with $3 s$ and 5 s .
-3 cases:
- $n=8$. Then $n=3+5$.
- $\mathrm{n}=9$. Then $\mathrm{n}=3^{*} 3$
- $\mathrm{n}=10$. Then $\mathrm{n}=10=2 * 5$.
- In all three cases, got a contradiction.
-Therefore, for every $x \in \mathbb{N}$, if $\mathrm{x}>7$ then $\mathrm{x}=3 \mathrm{y}+5 \mathrm{z}$ for some $y, z \in \mathbb{N}$.

6

7

Infinitely many primes

- Definition: A natural number is prime iff it is divisible only by 1 and itself. That is, n is prime iff
$\forall z \in \mathbb{N}((\exists w \in \mathbb{N} n=z w) \rightarrow(z=1 \vee z=n))$
- Theorem: There are infinitely many primes.

$$
\forall x \in \mathbb{N} \operatorname{Prime}(x) \rightarrow \exists y \in \mathbb{N} y>x \wedge \operatorname{Prime}(y)
$$

- Proven by Euclid ~300BC
- Prime (x) is a shorthand for $\forall z \in \mathbb{N}(\exists w \in \mathbb{N} x=z w) \rightarrow z=1 \vee z=x$

To say "infinitely many" we write that no matter what element of the domain we take, there is a larger one that has the property we are interested in (in this case, a prime).

9

Theorem: There are infinitely many primes.

$\forall x \in \mathbb{N} \operatorname{Prime}(x) \rightarrow \exists y \in \mathbb{N} y>x \wedge \operatorname{Prime}(y)$

- Proof (continued): $\begin{aligned} & \text { Well-ordering principle: Any non-empty subset of natural } \\ & \text { numbers contains the least element (with respect to } x \leq y \text {) }\end{aligned}$
- Consider the number $\mathrm{N}=(2 \cdot 3 \cdot \ldots \cdot n)+1$
- Case 2: suppose N is not prime, that is, for some $k, \mathrm{q} \in \mathbb{N}, N=k q$, where $k \neq 1$ and $k \neq N$.
- By the well-ordering principle, there is a smallest such k. - Let us use k_{0} to refer to this smallest k.
- Since $N \equiv 1 \bmod d$ for all $d \leq n, k_{0}$ is not divisible by any $d \leq n$, and $k_{0}>n$
- So since k_{0} is the smallest factor of N, k_{0} itself must be prime.
- Therefore, there exists a prime number $\mathrm{y}>n$ by existential generalization.

Theorem: There are infinitely many primes.
$\forall x \in \mathbb{N} \operatorname{Prime}(x) \rightarrow \exists y \in \mathbb{N} y>x \wedge \operatorname{Prime}(y)$

- Proof (by contradiction):
- Assume, for the sake of contradiction, that the statement of the theorem is false:
- So $\exists x \in \mathbb{N} \operatorname{Prime}(x) \wedge(\forall y \in \mathbb{N} y \leq x \vee \neg \operatorname{Prime}(y))$
- Call this number n (universal instantiation of $\forall x$)
- Now consider the number $\mathrm{N}=(2 \cdot 3 \cdot \ldots \cdot n)+1$
- There are 2 cases.
- Either N is a prime, in which case we are done since we found a prime larger
than n, contradicting our assumption.
- or N is not prime.

10

Theorem: There are infinitely many primes.
 $\forall x \in \mathbb{N} \operatorname{Prime}(x) \rightarrow \exists y \in \mathbb{N} y>x \wedge \operatorname{Prime}(y)$

- Proof (continued):
- We showed that both cases of N being prime and not being prime give us $\exists y \in \mathbb{N} y>n \wedge \operatorname{Prime}(y)$
- In the first case, N itself was an instantiation of $\exists y$, and in the second case, it was the smallest divisor of N .
- There are no more cases, so we showed that $\exists y \in \mathbb{N} y>n \wedge \operatorname{Prime}(y)$, contradicting the assumption for an arbitrary (prime) n
- We showed that, for arbitrary n, $\operatorname{Prime}(n) \rightarrow \exists y \in \mathbb{N} y>n \wedge \operatorname{Prime}(y)$
- By universal generalization,

$$
\forall x \in \mathbb{N} \operatorname{Prime}(x) \rightarrow \exists y \in \mathbb{N} y>x \wedge \operatorname{Prime}(y)
$$

13

Puzzle: sum of numbers

- What is the sum of the first 100 numbers?
- That is, calculate
$1+2+3+4+5+\ldots+98+99+100$.

14

Sums

- Sum notation ("sum from 1 to n "): $\sum_{i=1}^{n} i=1+2+\ldots+n$ - Symbol Σ is the capital Greek letter sigma.
- If $n=3, \sum_{i=1}^{3} i=1+2+3=6$.
- The name " i " does not matter (usually i, j or k):
- $\sum_{i=1}^{n} i=1+2+\ldots+n=\sum_{j=1}^{n} j$
- Can start with any integer m, not just 1: $\sum_{i=4}^{n} i=4+5+\ldots+n$ - $\sum_{i=n}^{n} i=\mathrm{n}$. If $n<m, \sum_{i=m}^{n} i=0$.
- Can put a function of i into the sum: $\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+\cdots+n^{2}$
- This function has to return a number, but not necessarily an integer:
- $\sum_{i=2}^{4} \frac{1}{i}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{6+4+3}{12}=\frac{13}{12}$

15
$-\Pi_{i=1}^{n} i=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$

- Symbol Π is Greek letter capital pi
- " $n!$ " is pronounced " n factorial"
- And can use another variable name.

Properties of sums and products

- Let f and g be any functions with integer inputs, r any number, n, m integers.
- Can take the first or last element out of the sum by increasing m (first element) or decreasing n (last element)
- $\sum_{i=m}^{n} f(i)=f(m)+\sum_{i=m+1}^{n} f(i)=\left(\sum_{i=m}^{n-1} f(i)\right)+f(n)$
- When $n<m, \sum_{i=m}^{n} f(i)=0$, and $\prod_{i=m}^{n} f(i)=1$
- Can add two sums with the same n, m, and multiply products
- $\left(\sum_{i=m}^{n} f(i)\right)+\left(\sum_{i=m}^{n} g(i)\right)=\sum_{i=m}^{n}(f(i)+g(i))$
- Can factor out a common factor in a sum (but not in a product)
- $\sum_{i=m}^{n} r \cdot f(i)=r \cdot \sum_{i=m}^{n} f(i)$
- Can have multiple nested sums (and products)
- $\sum_{i=m_{1}}^{n_{1}} \sum_{j=m_{2}}^{n_{2}} f(i, j)$,
$\cdot \sum_{i=2}^{4} \Sigma_{j=10}^{11} \quad i \cdot j=2 \cdot 10+2 \cdot 11+3 \cdot 10+3 \cdot 11+4 \cdot 10+4 \cdot 11=189$

Products and factorial

- Can use a similar shorthand for product of lots of values:
- Factorial: another notation for $1 \cdot 2 \cdot \ldots \cdot n=\prod_{i=1}^{n} i=n$!
- As for sums, can start from an arbitrary integer m, and have a function of i in the product: $\prod_{i=m}^{n} f(i)=f(m) \cdot f(m+1) \cdot \ldots \cdot f(n)$
- For $f(i)=1 / i, \mathrm{~m}=2, n=4, \Pi_{i=2}^{4} 1 / i=1 / 2 \cdot 1 / 3 \cdot 1 / 4=24$

Puzzle: sum of

 numbers- What is the sum of the first 100 numbers?
- That is, calculate
$1+2+3+4+5+\ldots+98+99+100$.

19

Claim: for any $\mathrm{n} \in \mathbb{N}, 0+1+\ldots+(\mathrm{n}-1)+\mathrm{n}=\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$

- Suppose not. Let S be a set of all numbers n^{\prime} such that $\sum_{i=0}^{n^{\prime}} i \neq \frac{n^{\prime}\left(n^{\prime}+1\right)}{2}$.
- By the well-ordering principle, if $S \neq \emptyset$, there is the least number k in S .
- We will show that such k cannot exist.
- By proof by cases:
- k is either 0 , or >0
- Case 1: k=0
- Case 2: k >0
- Contradiction. So S is empty, thus the formula works for all $n \in \mathbb{N}$.

21

Claim: for any $\mathrm{n} \in \mathbb{N}, 0+1+\ldots+(\mathrm{n}-1)+\mathrm{n}=\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$

- Suppose not. Let S be a set of all numbers n^{\prime} such that $\sum_{i=0}^{n^{\prime}} i \neq \frac{n^{\prime}\left(n^{\prime}+1\right)}{2}$.
- By the well-ordering principle, if $S \neq \emptyset$, there is the least number k in S .
- Case 1: $\mathrm{k}=0$. But $\sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$. So formula works for $\mathrm{k}=0$.
- Case 2: $\mathrm{k}>0$. Then $k-1 \geq 0$.
- So $\sum_{i=0}^{k} i=\left(\sum_{i=0}^{k-1} i\right)+\mathrm{k}$ by definition of a sum.
- As k is the smallest "bad" number, the formula works for $\mathrm{k}-1$. So $\sum_{i=0}^{k-1} i=\frac{(\mathrm{k}-1) \mathrm{k}}{2}$.
- Now, $\sum_{i=0}^{k} i=\left(\sum_{i=0}^{k-1} i\right)+\mathrm{k}=\frac{(\mathrm{k}-1) \mathrm{k}}{2}+\mathrm{k}=\frac{\mathrm{k}^{2}-\mathrm{k}+2 \mathrm{k}}{2}=\frac{\mathrm{k}^{2}+\mathrm{k}}{2}=\frac{k(\mathrm{k}+1)}{2}$
- So the formula works for $k>0$, too.
- Contradiction. So S is empty, thus the formula works for all $n \in \mathbb{N}$.

Gauss' sum of first 100 numbers

1
$+\left(\begin{array}{r}2 \\ 100 \\ 101\end{array}+\ldots+r+r\right.$
99
101
---:
2
$+\ldots$
---:
101

- So $1+2+\ldots+99+100=\frac{100 * 101}{2}=5050$
- Does this work for any n, or just $\mathrm{n}=100$?

20

Claim: for any $\mathrm{n} \in \mathbb{N}, 0+1+\ldots+(\mathrm{n}-1)+\mathrm{n}=\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$

- Suppose not. Let S be a set of all numbers n^{\prime} such that $\sum_{i=0}^{n^{\prime}} i \neq \frac{n^{\prime}\left(n^{\prime}+1\right)}{2}$.
- By the well-ordering principle, if $S \neq \emptyset$, there is the least number k in S . - Case 1: $\mathrm{k}=0$.
- But $\sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$.
- So formula works for $\mathrm{k}=0$.
- Case 2: $\mathrm{k}>0$.
- Contradiction. So S is empty, thus the formula works for all $n \in \mathbb{N}$.

22

Structure of a proof by well-ordering principle

Want to prove: Claim: $\forall x \in \mathbb{N}, P(x)$ for some predicate P Proof by contradiction.

- Suppose that $\forall x \in \mathbb{N}, P(x)$ is false.
- Take a set $S=\{\mathrm{x} \in \mathbb{N} \mid \neg P(x)\}$ \} 243 .
- By the well-ordering principle, there is the smallest element $k \in S$
- Prove that such k cannot exist, using the fact that it is smallest in S
- This is where most the work is!
- Often proof by cases: $k=0$ or $k>0$
- Conclude that S is empty, and, therefore, $\forall x \in \mathbb{N}, P(x)$ is true.

25

Mathematical induction

- Want to prove a statement $\forall x \in \mathbb{N} P(x)$.
- Check that $P(0)$ holds
- And whenever $P(k)$ does not hold for some $\mathrm{k}, P(k-1)$ does not hold either
- Contradicting well-ordering principle.
- Contrapositive:
-if $\mathrm{P}(\mathrm{k}-1)$ holds for arbitrary k ,
-then $\mathrm{P}(\mathrm{k})$ also must be true.
- Conclude that $\forall x \in \mathbb{N} P(x)$

27

Mathematical induction

- Want to prove a statement $\forall x \in \mathbb{N} P(x)$.
- Check that $P(0)$ holds

Proving that $\mathrm{P}(0)$ holds
is called the base case.

- And whenever $P(k)$ does not hold for some $k, P(k-1)$ does not hold either
- Contradicting well-ordering principle
- Contrapositive: That $\mathrm{P}(\mathrm{k}-1)$ holds is an induction hypothesis - if $\mathrm{P}(\mathrm{k}-1)$ holds for arbitrary k ,
- then $P(k)$ also must be true.
- Conclude that $\forall x \in \mathbb{N} P(x)$ If $P(0) \wedge \forall k \in \mathbb{N} P(k)$ Induction principle: If $\mathrm{P}(0) \wedge \forall k \in \mathbb{N} \mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ then $\forall x \in \mathbb{N} P(x)$

28

Claim: for any $\mathrm{n} \in \mathbb{N}, 0+1+\ldots+(\mathrm{n}-1)+\mathrm{n}=\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$

Proof (by induction).

- Predicate $P(n)$ is $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
- Base case: $\mathrm{n}=0$. Then $\sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$
$\begin{aligned} & \text { - Induction hypothesis: Assume that } \\ & \text { - That is, for an arbitrary number } \mathrm{n}=\mathrm{k}-1 \in \mathbb{N}\end{aligned} \sum_{i=0}^{k-1} i=\frac{(k-1) k}{2}$ for an arbitrary $\mathrm{k}>0$
- Can take k instead of $\mathrm{k}-1$, but $\mathrm{k}-1$ makes calculations simpler.
- Induction step: show that $\mathrm{P}(\mathrm{k}-1)$ implies $\mathrm{P}(\mathrm{k})$.
- ... calculations ...
- ... by induction hypothesis.
- ... calculations ...
- By induction, therefore, $\mathrm{P}(\mathrm{n})$ holds for all $n \in \mathbb{N}$.
Claim: for any $\mathrm{n} \in \mathbb{N}, 0+1+\ldots+(\mathrm{n}-1)+\mathrm{n}=\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
Proof (by induction).
- Predicate $P(n)$ is $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
- Base case: $\mathrm{n}=0$. Then $\sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$.
- Induction hypothesis: Assume that $\sum_{i=0}^{k-1} i=\frac{(k-1) k}{2}$ for an arbitrary $\mathrm{k}>0$
- That is, for an arbitrary number $\mathrm{n}=\mathrm{k}-1 \in \mathbb{N}$
- Can take k instead of $\mathrm{k}-1$, but $\mathrm{k}-1$ makes calculations simpler.
- Induction step: show that $\mathrm{P}(\mathrm{k}-1)$ implies $\mathrm{P}(\mathrm{k})$.
- $\sum_{i=0}^{k} i=\left(\sum_{i=0}^{k-1} i\right)+\mathrm{k}$.
- By induction hypothesis, $\sum_{i=0}^{k-1} i=\frac{(\mathrm{k}-1) \mathrm{k}}{2}$
- Now, $\sum_{i=0}^{k} i=\left(\sum_{i=0}^{k-1} i\right)+\mathrm{k}=\frac{(\mathrm{k}-1) \mathrm{k}}{2}+\mathrm{k}=\frac{\mathrm{k}^{2}-\mathrm{k}+2 \mathrm{k}}{2}=\frac{\mathrm{k}^{2}+k}{2}=\frac{k(k+1)}{2}$
- By induction, therefore, $\mathrm{P}(\mathrm{n})$ holds for all $n \in \mathbb{N}$.

31

33
"Claim": all horses are white.
"Proof" (by induction):
$-P(n)$: any n horses are white.

- Base case: $P(0)$ holds vacuously
- Induction hypothesis: any k horses are white.

- Induction step: if any k horses are white, then any $k+1$ horses are white.
- Take an arbitrary set of $k+1$ horses. Take a horse out.
- The remaining k horses are white by induction hypothesis.
- Now put that horse back in, and take out another horse.
- Remaining k horses are again white by induction hypothesis.
- Therefore, all the $k+1$ horses in that set are white.
- By induction, all horses are white.

Puzzle: What is wrong with this proof?

34

Mathematical Induction principle:
 If $\mathrm{P}(0) \wedge \forall k \in \mathbb{N} \mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ then $\forall x \in \mathbb{N} P(x)$

- What if want to prove it only for $x \geq a$?
- Make a the base case (when $a \geq 0$). For the rest, assume $k \geq a$.

$$
(\mathrm{P}(\mathrm{a}) \wedge \forall k \geq a \quad \mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \rightarrow \forall x \geq a \quad P(x)
$$

- Here, $\forall x \geq a P(x)$ is a shorthand for $\forall x \in \mathbb{N} \quad(x \geq a \rightarrow P(x))$
- To prove it works, prove $P\left(n^{\prime}\right)$ where $n^{\prime}=n-a$.
- In general, let S be a countable set, and $f: \mathbb{N} \rightarrow S$ a bijection. Then the following is equivalent to the induction principle:
$P(f(0)) \wedge \forall k \geq 0 \quad P(f(k)) \rightarrow P(f(k+1))) \rightarrow \forall x \in S P(x)$

Claim: for all $n \geq 4,2^{n} \geq n^{2}$

- Proof (by induction with basis $a=4$):
- Predicate $P(n): \quad 2^{n} \geq n^{2}$
- Base case: $n=4.2^{4}=16=4^{2}$
- Induction hypothesis: assume that for an arbitrary $k \geq 4,2^{k} \geq k^{2}$
- Induction step: show that $2^{k} \geq k^{2}$ implies $2^{k+1} \geq(k+1)^{2}$
- $2^{k+1}=2 \cdot 2^{k}=2^{k}+2^{k} \geq k^{2}+k^{2}$ (last \geq by induction hypothesis).
- Want: $k^{2}+k^{2} \geq(k+1)^{2}$. Since $(k+1)^{2}=k^{2}+2 k+1$, need to show $k^{2} \geq 2 k+1$ - Dividing both sides of the last inequality by k : show that $k \geq 2+\frac{1}{k}$
- Since $k \geq 4$, and $2+\frac{1}{k} \leq 3,2+\frac{1}{k} \leq 3<4 \leq k$.
- So $k \geq 2+\frac{1}{k}$ and thus $k^{2} \geq 2 k+1$
- So $2^{k+1}=2 \cdot 2^{k}=2^{k}+2^{k} \geq k^{2}+k^{2} \geq k^{2}+2 k+1=(k+1)^{2}$
- By induction, for all $n \geq 4,2^{n} \geq n^{2}$
- Corollary: as input size n grows, an algorithm running in time n^{2} will quickly start atnerforming an algorithm running in time 2^{n}

Claim: $\forall x \in \mathbb{N}$, if $\mathrm{x}>7$ then $\exists y, z \in \mathbb{N}$ such that $x=$

So any amount >7 can be paid with 3 s and 5 s

- Proof (by induction):
- Predicate $P(n): \exists y, z \in \mathbb{N} n=3 y+5 z$
- Base case: $n=8$.
- $P(8)$ holds with $y=1, z=1$, since $8=3 \cdot 1+5 \cdot 1$
- Induction hypothesis: assume that $P(k)$ holds for an arbitrary $k \in \mathbb{N}$, where $\mathrm{k}>7$.
- That is, $\exists y, z \in \mathbb{N}$ such that $k=3 y+5 z$
- Induction step: show that $P(k+1)$ holds
- That is, show that $\exists y^{\prime}, z^{\prime} \in \mathbb{N}$ such that $\mathrm{k}+1=3 \mathrm{y}^{\prime}+5 z^{\prime}$ - Construct y^{\prime}, z^{\prime} from y, z
- If $z>0$, then $y^{\prime}=y+2, z^{\prime}=z-1$.
$-k+1=k-5+6$
- If $z=0$, then $y^{\prime}=y-3, z^{\prime}=2$
$-k+1=k-9+10$
- Therefore, for every $x \in \mathbb{N}$, if $\mathrm{x}>7$ then $x=3 y+5 z$ for some $y, z \in \mathbb{N}$.

37

38

Strong induction

- In our well-ordering proof that every amount >7 can be paid with 3 s and 5 s we needed to consider k-3, and to look at three cases.
- $n=8, n=9, n=10$.
- Mathematical Induction principle:
$-(\mathrm{P}(0) \wedge \forall k \in \mathbb{N} \mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \rightarrow \forall x \in \mathbb{N} P(x)$
- If first domino falls, and each domino falls on next, all dominos fall.
- Strong Induction principle:
$-(\exists b \in \mathbb{N} \forall c \in \mathbb{N}(0 \leq c \wedge c \leq b \rightarrow \mathrm{P}(\mathrm{c})))$
$\wedge \forall k>b \quad(\forall i \in\{0, \ldots, k-1\} \mathrm{P}(\mathrm{i})) \rightarrow \mathrm{P}(\mathrm{k}))$

$$
\rightarrow \forall x \in \mathbb{N} P(x)
$$

- If first few dominos fall, and if all preceding dominos go down then the next one falls too, then all dominos fall.

39

Claim: $\forall x \in \mathbb{N}$, if $\mathrm{x}>7$ then $\exists y, z \in \mathbb{N}$ such that $x=3 y+5 z$. So any amount >7 can be paid with 3 s and 5 s

- Proof (by strong induction):
-Predicate $P(n): \exists y, z \in \mathbb{N} n=3 y+5 z$
- Base cases: $a=8, b=10$, so $c \in\{8,9,10\}$
- $\mathrm{n}=8 . \quad 8=3 \cdot 1+5 \cdot 1$, so $\mathrm{y}=1, \mathrm{z}=1$.
- $n=9$. $9=3 \cdot 3, y=3, z=0$
- $n=10.10=5 \cdot 2 . y=0, z=2$
- Induction hypothesis: Let k be an arbitrary natural number with $k>10$ Assume that $\forall i \in \mathbb{N}$ such that $8 \leq i<k, \exists y_{i}, z_{i} \in \mathbb{N} i=3 y_{i}+5 z_{i}$
- Induction step: show that $P(k)$ holds

Claim: $\forall x \in \mathbb{N}$, if $\mathrm{x}>7$ then $\exists y, z \in \mathbb{N}$ such that $x=3 y+5 z$. So any amount >7 can be paid with 3 s and 5 s

- Proof (by strong induction):
- Predicate $P(n): \exists y, z \in \mathbb{N} n=3 y+5 z$
- Base cases: $P(8), P(9), P(10)$ hold.

Strong Induction:

$(\exists b \in \mathbb{N} \forall c \in \mathbb{N}(a \leq c \wedge c \leq b \rightarrow \mathrm{P}(\mathrm{c}))$
$\wedge \forall k>b \quad(\forall i \in\{a, \ldots, k-1\} \mathrm{P}(\mathrm{i})) \rightarrow \mathrm{P}(\mathrm{k}))$ $\rightarrow \forall x \in \mathbb{N}(x \geq a \rightarrow P(x))$

- induction hypothesis: Let k be an arbitrary natural number such that $k>10$. Assume that $\forall i \in \mathbb{N}$ such that $8 \leq i<k, \exists y_{i}, z_{i} \in \mathbb{N} i=3 y_{i}+5 z_{i}$
- Induction step: show that $P(k)$ holds
- Since $k \geq b, \quad k-3 \geq a$.
- So by induction hypothesis $\exists y_{k-3}, z_{k-3} \in \mathbb{N} k-3=3 y_{k-3}+5 z_{k-3}$.
- Now take $z=z_{k-3}$ and $y=y_{k-3}+1$. Then $k=3 y+5 z$.
- Therefore, for every $x \in \mathbb{N}$, if $x>7$ then $x=3 y+5 z$ for some $y, z \in \mathbb{N}$.
- By strong induction, get that for all $x>7, \exists y, z \in \mathbb{N}$ such that $x=3 y+5 z$.

Theorem (fundamental theorem of arithmetic):
 Every natural number >1 can be uniquely written as a product of primes.

- Here, assume primes are written in a specific order: say from smallest to largest.
- For example, $12=2 \cdot 2 \cdot 3,17=17,30=2 \cdot 3 \cdot 5$
- We do not consider $12=2 \cdot 3 \cdot 2$, because it is not in the right order.
- Also do not consider $12=3 \cdot 4$, since 4 is not a prime.
- This theorem consists of two statements, which have to be proven separately.
- Existence: every $n>1$ can be written as a product of primes.
- We will prove this using strong induction.
- Uniqueness: for every $n>1$, there cannot be two different products of primes that are both equal to n.
- We will omit this proof here, as we need a bit more number theory to do it properly. - You can read it in textbook, chapter 4.3.

Theorem: $\forall n \in \mathbb{N}$, if $n>1$ then n can be written as a product of primes.

Proof (by strong induction):

- Predicate $P(n): \exists m \in \mathbb{N}, \exists$ primes $p_{1} \ldots p_{m}$ such that $n=p_{1} \cdot \ldots \cdot p_{m}$
- Base case: $a=b=2$
-2 is prime, so $P(2)$ holds with $m=1, p_{1}=2$
- Induction hypothesis: Let k be an arbitrary natural number with $k>2$. Assume that $\forall i \in \mathbb{N}$ where $2 \leq i<k \exists m_{i}, \exists$ primes $p_{1, i} \ldots p_{m_{i}, i}$, such that $i=p_{1, i} \cdot \ldots \cdot p_{m_{i}, i}$
- Induction step: show that $P(k)$ holds
- That is, find m^{\prime}, primes $q_{1} \ldots q_{m}$ such that $k=q_{1} \cdot \ldots \cdot q_{m}$
- We will prove the induction step by cases:

1. k is prime

$$
\text { - Easy case: } m^{\prime}=1, q_{1}=k .
$$

2. k is not prime.

44

Theorem: $\forall n \in \mathbb{N}$, if $n>1$ then n can be written as a product of primes.

Proof (by strong induction):

- Induction hypothesis: Let k be an arbitrary natural number >2. Assume that $\forall i \in \mathbb{N}$ where $2 \leq i<k \exists m_{i}$, \exists primes $p_{1, i} \ldots p_{m_{i}, i}$, such that $i=p_{1, i} \cdot \ldots \cdot p_{m_{i}, i}$
- Induction step: show that $P(k)$ holds
- Case 1: k is prime (easy case: $m^{\prime}=1, q_{1}=k$).
- Case 2: k is not prime.
- Then $k=a \cdot b$ for some a, b such that $2 \leq a, b<k$
- By induction hypothesis, there are $m_{a}, m_{b} \in \mathbb{N}$, primes $p_{1, a}, \ldots, p_{m_{a}, a}, p_{1, b}, \ldots, p_{m_{b}, b}$ such that $a=p_{1, a} \cdot \ldots \cdot p_{m_{a}, a}$ and $b=p_{1, b} \cdot \ldots \cdot p_{m_{b}, b}$
- Now $k=p_{1, a} \cdot \ldots \cdot p_{m_{a}, a} \cdot p_{1, b} \cdot \ldots \cdot p_{m_{b}, b}$, so $P(k)$ holds with $m^{\prime}=m_{a}+m_{b}$ - Rearrange $p_{1, a}, \ldots, p_{m_{a}, a}, p_{1, b}, \ldots, p_{m_{b}, b}$ from smallest to largest to get $q_{1} \ldots q_{m}$
- This completes the proof of the induction step, as there are no more cases.
- By strong induction, every $n>1$ can be written as a product of primes.

Equivalence of well-ordering, induction and strong induction

- Strong induction seems stronger... but in fact, mathematical induction, strong induction and well-ordering principles are equivalent to each other.
- So choose the most convenient one.
- Can prove induction from well-ordering principle - Look at the smallest k such that $P(k)$ does not hold
- Can prove strong induction statement by normal induction - Prove $P^{\prime}(n)=\forall i<n P(n)$ by induction.
- Can prove well-ordering principle from strong induction.

47

