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Unit 6
Induction

Order relations

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is an order if R is 

– Reflexive, Anti-symmetric, Transitive

• 𝑅1 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦}

• 𝑆𝑈𝐵𝑆𝐸𝑇𝑆 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 ∧ 𝐴 ⊆ 𝐵 }

• 𝐷𝐼𝑉𝐼𝑆𝑂𝑅𝑆 = {(x,y)| 𝑥, 𝑦 ∈ ℕ ∧ 𝑥, 𝑦 ≥ 2 ∧ ∃𝑧 ∈ ℕ 𝑦 = 𝑧 ⋅ 𝑥}

• An order may have minimal and maximal elements 
(maybe multiple)
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Well-ordering principle

• Theorem: Any non-empty subset of natural numbers 
contains the minimum element 

– With respect to the usual total order 𝑥 ≤ 𝑦

• There is smallest positive even number. Smallest composite number. 
Smallest square… 

– If there is a property which is not true for some natural numbers, 
there is a smallest natural number for which it is not true. 

– Very useful for proofs! 
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Puzzle:  coins 

• A not-too-far-away country recently got rid of a penny coin,  
and now everything needs to be rounded to the nearest 
multiple of 5 cents…  

– Suppose that instead of just dropping the penny, they would 
introduce a 3 cent coin.

• Like British three pence.   

– What is the largest amount that cannot be paid by using only existing 
coins (5, 10, 25) and a 3c coin? 

7c
Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5). 

– Well-ordering principle:  Any non-empty subset of natural numbers 
contains the least element  (with respect to 𝑥 ≤ 𝑦) 

• Coins:  ∀𝑥 ∈ ℕ, if 𝑥 > 7 then ∃ 𝑦, 𝑧 ∈ ℕ such that 𝑥 = 3𝑦 +
5𝑧.   So any amount >7 can be paid with 3s and 5s. 

– Suppose, for the sake of contradiction, that there are  amounts 
greater than 7 which cannot be paid with 3s and 5s. 

– Take a set S of all such amounts. Since 𝑆 ⊆ ℕ, and we assumed that 
𝑆 ≠ ∅, by well-ordering principle  S has the least element. Call it n. 

– Now, look at n-3; it cannot be paid by 3s and 5s either.  

– Since n is the least element of S,  𝑛 − 3 ≤ 7 < 𝑛

– Remains to show that all possible 𝑛 − 3 ≤ 7 don’t work

• Coins:  ∀𝑥 ∈ ℕ, if 𝑥 > 7 then ∃ 𝑦, 𝑧 ∈ ℕ such that 𝑥 =
3𝑦 + 5𝑧.   So any amount >7 can be paid with 3s and 5s. 

– Suppose, for the sake of contradiction, that there are  amounts 
greater than 7 which cannot be paid with 3s and 5s. 

–3  cases: 

• n=8.  Then n=3+5.   

• n = 9. Then  n=3*3 

• n = 10. Then  n=10=2*5.   

– In all three cases, got a contradiction. 

–Therefore,  for every 𝑥 ∈ ℕ, if  x >7 then x=3y+5z for  some 
𝑦, 𝑧 ∈ ℕ.    
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Well-ordering principle

Theorem: Any non-empty subset of natural numbers contains 
the minimum element 

• With respect to the usual total order 𝑥 ≤ 𝑦

• There is smallest positive even number. Smallest composite number. 
Smallest square… 

• If there is a property which is not true for some natural 
numbers, there is a smallest natural number for which it is not 
true. 

• Very useful for proofs! 
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Infinitely many primes 

• Definition: A natural number is prime iff it is divisible only by 1 and itself.  That 
is, 𝑛 is prime iff

∀𝑧 ∈ ℕ ( ∃𝑤 ∈ ℕ 𝑛 = 𝑧𝑤 → 𝑧 = 1 ∨ 𝑧 = 𝑛 )

• Theorem:   There are infinitely many primes. 
∀𝑥 ∈ ℕ 𝑃𝑟𝑖𝑚𝑒 𝑥 → ∃𝑦 ∈ ℕ𝑦 > 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦)

– Proven by Euclid ~300BC  

• 𝑃𝑟𝑖𝑚𝑒(𝑥) is a shorthand for ∀𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑥 = 𝑧𝑤 → 𝑧 = 1 ∨ 𝑧 = 𝑥
• To say “infinitely many” we  write that no matter what element of the domain we take, there is a 

larger one that has the property we are interested in (in this case, a prime).

• Proof (by contradiction):  
– Assume, for the sake of contradiction, that the statement of the 

theorem is false:   
• So ∃𝑥 ∈ ℕ 𝑃𝑟𝑖𝑚𝑒 𝑥 ∧ (∀𝑦 ∈ ℕ𝑦 ≤ 𝑥 ∨ ¬𝑃𝑟𝑖𝑚𝑒(𝑦))

– Call this number 𝑛 (universal instantiation of ∀𝑥)

– Now consider the number N = (2 ⋅ 3 ⋅ … ⋅ 𝑛) + 1

– There are 2 cases. 
• Either 𝑁 is a prime, in which case we are done since we found a prime larger 

than 𝑛, contradicting our assumption. 

• or 𝑁 is not prime.  

Theorem:   There are infinitely many primes. 
∀𝑥 ∈ ℕ 𝑃𝑟𝑖𝑚𝑒 𝑥 → ∃𝑦 ∈ ℕ 𝑦 > 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦)

• Proof (continued):  
• Consider the number N = (2 ⋅ 3 ⋅ … ⋅ 𝑛) + 1

– Case 2: suppose 𝑁 is not prime, that is, for some 𝑘, q ∈ ℕ,  𝑁 = 𝑘𝑞, 
where 𝑘 ≠ 1 and 𝑘 ≠ 𝑁.  

• By the well-ordering principle, there is a smallest such 𝑘.

– Let us use 𝑘0 to refer to this smallest 𝑘.  

• Since 𝑁 ≡ 1 𝑚𝑜𝑑 𝑑 for all 𝑑 ≤ 𝑛,  𝑘0 is not divisible by any 𝑑 ≤ 𝑛, and 𝑘0 > 𝑛

• So since 𝑘0 is the smallest factor of  𝑁, 𝑘0 itself must be prime. 

• Therefore, there exists a prime number y > 𝑛 by existential generalization. 

Theorem:   There are infinitely many primes. 
∀𝑥 ∈ ℕ 𝑃𝑟𝑖𝑚𝑒 𝑥 → ∃𝑦 ∈ ℕ 𝑦 > 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦)

Well-ordering principle:  Any non-empty subset of natural 
numbers contains the least element  (with respect to 𝑥 ≤ 𝑦) • Proof (continued):  

– We showed that both cases of 𝑁 being prime and not being prime give us 
∃𝑦 ∈ ℕ 𝑦 > 𝑛 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦)
• In the first case, N itself was an instantiation of ∃𝑦, and in the second case, it was 

the smallest divisor of N. 

– There are no more cases, so we showed that ∃𝑦 ∈ ℕ 𝑦 > 𝑛 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦), 
contradicting the assumption for an arbitrary (prime) 𝑛
• We showed that,  for arbitrary 𝑛,  𝑃𝑟𝑖𝑚𝑒 𝑛 → ∃𝑦 ∈ ℕ 𝑦 > 𝑛 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦)

– By universal generalization, 

∀𝑥 ∈ ℕ 𝑃𝑟𝑖𝑚𝑒 𝑥 → ∃𝑦 ∈ ℕ 𝑦 > 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦)

Theorem:   There are infinitely many primes. 
∀𝑥 ∈ ℕ 𝑃𝑟𝑖𝑚𝑒 𝑥 → ∃𝑦 ∈ ℕ 𝑦 > 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑦)

□ (Done).
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Puzzle: sum of 
numbers 

• What is the sum of the first 100 
numbers? 

• That is, calculate  

1+2+3+4+5+… +98+99+100. 

Sums

• Sum notation (“sum from 1 to n”):  σ𝑖=1
𝑛 𝑖 = 1 + 2 + … + 𝑛

• Symbol Σ is the capital Greek letter sigma.

– If 𝑛 = 3, σ𝑖=1
3 𝑖 = 1 + 2 + 3 = 6.

– The name “𝑖“ does not matter (usually 𝑖, 𝑗 or 𝑘):    

• σ𝑖=1
𝑛 𝑖 = 1 + 2 + … + 𝑛 = σ𝑗=1

𝑛 𝑗

– Can start with any integer 𝑚,  not just 1:  σ𝑖=4
𝑛 𝑖 = 4 + 5 + … + 𝑛

• σ𝑖=𝑛
𝑛 𝑖 = n .  If 𝑛 < 𝑚, σ𝑖=𝑚

𝑛 𝑖 = 0.

– Can put a function of 𝑖 into the sum: 𝛴𝑖=1
𝑛 𝑖2 = 12 + 22 + ⋯ + 𝑛2

• This function has to return a number, but not necessarily an integer: 

• σ𝑖=2
4 1

𝑖
=

1

2
+

1

3
+

1

4
=

6+4+3

12
=

13

12

Products and factorial

• Can use a similar shorthand for product of lots of values:

– Π𝑖=1
𝑛 𝑖 = 1 ⋅ 2 ⋅ 3 ⋅ … ⋅ 𝑛

• Symbol  Π is Greek letter capital pi

– Factorial: another notation for 1 ⋅ 2 ⋅ … ⋅ 𝑛 = Π𝑖=1
𝑛 𝑖 = 𝑛!

• “𝑛! " is pronounced “𝑛 factorial” 

– As for sums, can start from an arbitrary integer 𝑚, and have a 
function of 𝑖 in the product:  Π𝑖=𝑚

𝑛 𝑓 𝑖 = 𝑓 𝑚 ⋅ 𝑓 𝑚 + 1 ⋅ … ⋅ 𝑓 𝑛

• For  𝑓 𝑖 = 1/𝑖,  m = 2, 𝑛 = 4, Π𝑖=2
4 1/𝑖 = 1/2 ⋅ 1/3 ⋅ 1/4 = 24

• And can use another variable name. 

Properties of sums and products

• Let 𝑓 and 𝑔 be any functions with integer inputs,  𝑟 any number, 
𝑛, 𝑚 integers.   
– Can take the first or last element out of the sum by increasing m (first element) 

or decreasing n (last element)
• σ𝑖=𝑚

𝑛 𝑓 𝑖 =𝑓 𝑚 + σ𝑖=𝑚+1
𝑛 𝑓 𝑖 =  (σ𝑖=𝑚

𝑛−1 𝑓 𝑖 ) + 𝑓(𝑛)

– When 𝑛 < 𝑚, σ𝑖=𝑚
𝑛 𝑓(𝑖) = 0, 𝑎𝑛𝑑 Π𝑖=𝑚

𝑛 𝑓(𝑖) = 1
– Can add two sums with the same n, m, and multiply products 

• (σ𝑖=𝑚
𝑛 𝑓 𝑖 ) + (σ𝑖=𝑚

𝑛 𝑔 𝑖 ) = σ𝑖=𝑚
𝑛 (𝑓 𝑖 + 𝑔(𝑖))

– Can factor out a common factor in a sum (but not in a product)
• σ𝑖=𝑚

𝑛 𝑟 ⋅ 𝑓 𝑖 = 𝑟 ⋅ σ𝑖=𝑚
𝑛 𝑓(𝑖)

– Can have multiple nested sums (and products) 

• σ
𝑖=𝑚1

𝑛1 σ
𝑗=𝑚2

𝑛2 𝑓 𝑖, 𝑗 ,

• σ𝑖=2
4 Σ𝑗=10

11 𝑖 ⋅ 𝑗 = 2 ⋅ 10 + 2 ⋅ 11 + 3 ⋅ 10 + 3 ⋅ 11 + 4 ⋅ 10 + 4 ⋅ 11=189
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Puzzle: sum of 
numbers 

• What is the sum of the first 100 
numbers? 

• That is, calculate  

1+2+3+4+5+… +98+99+100. 

Gauss’ sum of first 100 numbers 

1 +   2 +  … +  99 + 100  

+ 100 +  99 + …  +   2 +   1   = 

= 101 + 101 + …  + 101 + 101   = 100*101

• So 1+2+ … + 99 + 100 =
100∗101

2
=5050

• Does this work for any n, or just n=100? 

• Suppose not.  Let S be a set of all numbers n’ such that σ𝑖=0
𝑛′

𝑖 ≠
𝑛′ 𝑛′+1

2
.  

• By the well-ordering principle, if 𝑆 ≠ ∅, there is the least number 𝑘 in S. 

– We will show that such k cannot exist. 

– By proof by cases: 

• 𝑘 is either 0, or > 0

• Case 1: k = 0

• Case 2: k  > 0

• Contradiction. So S is empty, thus the formula works for all 𝑛 ∈ ℕ.

Claim: for any n∈ ℕ, 0+1+…+(n-1)+n=σ𝑖=0
𝑛 𝑖 =

𝑛 𝑛+1

2

• Suppose not.  Let S be a set of all numbers n’ such that σ𝑖=0
𝑛′

𝑖 ≠
𝑛′ 𝑛′+1

2
.  

• By the well-ordering principle, if 𝑆 ≠ ∅, there is the least number 𝑘 in S. 

– Case 1:  k=0.  

• But σ𝑖=0
0 𝑖 = 0 =

0 0+1

2
. 

• So formula works for k=0.  

– Case 2:  k>0.  

• Contradiction. So S is empty, thus the formula works for all 𝑛 ∈ ℕ.

Claim: for any n∈ ℕ, 0+1+…+(n-1)+n=σ𝑖=0
𝑛 𝑖 =

𝑛 𝑛+1

2

• Suppose not.  Let S be a set of all numbers n’ such that σ𝑖=0
𝑛′

𝑖 ≠
𝑛′ 𝑛′+1

2
.  

• By the well-ordering principle, if 𝑆 ≠ ∅, there is the least number 𝑘 in S. 

– Case 1:  k=0.  But σ𝑖=0
0 𝑖 = 0 =

0 0+1

2
. So formula works for k=0.  

– Case 2:  k>0.  Then  𝑘 − 1 ≥ 0.

• So  σ𝑖=0
𝑘 𝑖 = (σ𝑖=0

𝑘−1 𝑖) +k  by definition of a sum.

• As k is the smallest “bad” number, the formula works for k-1.  So σ𝑖=0
𝑘−1 𝑖 =

k−1 k

2
.

• Now, σ𝑖=0
𝑘 𝑖 = (σ𝑖=0

𝑘−1 𝑖) +k = 
k−1 k

2
+ k =

k2−k+2k

2
=

k2+𝑘

2
=

𝑘(𝑘+1)

2

• So the formula works for k>0, too.  

• Contradiction. So S is empty, thus the formula works for all 𝑛 ∈ ℕ.

Claim: for any n∈ ℕ, 0+1+…+(n-1)+n=σ𝑖=0
𝑛 𝑖 =

𝑛 𝑛+1

2 Structure of a proof by well-ordering principle

Want to prove:                                      for some predicate 𝑃

Proof by contradiction. 

– Suppose that ∀𝑥 ∈ ℕ, 𝑃(𝑥) is false. 

– Take a set 𝑆 = x ∈ ℕ ¬𝑃(𝑥)}

– By the well-ordering principle, there is the smallest element 𝑘 ∈ 𝑆

– Prove that such 𝑘 cannot exist, using the fact that it is smallest in S

• This is where most the work  is!  

• Often proof by cases:  𝑘 = 0 or 𝑘 > 0

– Conclude that 𝑆 is empty, and, therefore, ∀𝑥 ∈ ℕ, 𝑃(𝑥) is true. 

Claim: ∀𝑥 ∈ ℕ, 𝑃(𝑥)

□ (Done).
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Structure of a proof by well-ordering principle

Want to prove:                                      for some predicate 𝑃

Proof by contradiction. 

– Suppose that ∀𝑥 ∈ ℕ, 𝑃(𝑥) is false. 

– Take a set 𝑆 = x ∈ ℕ ¬𝑃(𝑥)}

– By the well-ordering principle, there is the smallest element 𝑘 ∈ 𝑆

– Prove that such 𝑘 cannot exist, using the fact that it is smallest in S

• This is where most the work  is!  

• Often proof by cases:  𝑘 = 0 or 𝑘 > 0

– Conclude that 𝑆 is empty, and, therefore, ∀𝑥 ∈ ℕ, 𝑃(𝑥) is true. 

Claim: ∀𝑥 ∈ ℕ, 𝑃(𝑥)

□ (Done).

Mathematical induction

• Want to prove a statement  ∀𝑥 ∈ ℕ 𝑃 𝑥 .

– Check that 𝑃 0 holds 

– And whenever 𝑃 𝑘 does not hold for some k, 𝑃 𝑘 − 1 does not 
hold either

• Contradicting well-ordering principle. 

• Contrapositive:  

– if  P(k-1) holds for arbitrary k, 

– then P(k) also must be true.

– Conclude that ∀𝑥 ∈ ℕ 𝑃 𝑥

Mathematical induction

• Want to prove a statement  ∀𝑥 ∈ ℕ 𝑃 𝑥 .

– Check that 𝑃 0 holds 

– And whenever 𝑃 𝑘 does not hold for some k, 𝑃 𝑘 − 1 does not 
hold either

• Contradicting well-ordering principle. 

• Contrapositive:  

– if  P(k-1) holds for arbitrary k, 

– then P(k) also must be true.

– Conclude that ∀𝑥 ∈ ℕ 𝑃 𝑥

Proving that P(0) holds 
is called the base case. 

That P(k-1) holds is an induction hypothesis

Proving that P(k-1) → P(k)  
Is the induction step

Mathematical Induction principle:  
If  P 0 ∧ ∀ 𝑘 ∈ ℕ P(k) → P(k+1) then  ∀𝑥 ∈ ℕ 𝑃(𝑥)

Proof (by induction).

– Predicate 𝑃(𝑛) is 

– Base case: 𝑛 = 0. Then ….  𝑃 0 is true.  

– Induction hypothesis: Assume that 𝑃(… ) for an arbitrary k >0

•

– Induction step:  show that P(k-1) implies P(k). 

• … calculations …

• … by induction hypothesis.. 

• … calculations … 

– By induction, therefore,  P(n) holds for all 𝑛 ∈ ℕ.

Claim: for any n∈ ℕ 𝑃(𝑛)

□ (Done).

Proof (by induction).
– Predicate 𝑃(𝑛) is  

– Base case: n=0.  Then 

– Induction hypothesis: Assume that                                       for an arbitrary k >0
• That is, for an arbitrary number n=k-1 ∈ ℕ

• Can take k instead of k-1, but k-1 makes calculations simpler.  

– Induction step:  show that P(k-1) implies P(k). 
• … calculations …

• … by induction hypothesis.. 

• … calculations … 

– By induction, therefore,  P(n) holds for all 𝑛 ∈ ℕ.

Claim: for any n∈ ℕ, 0+1+…+(n-1)+n=σ𝑖=0
𝑛 𝑖 =

𝑛 𝑛+1

2

□ (Done).
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Proof (by induction).

– Predicate 𝑃(𝑛) is  σ𝑖=0
𝑛 𝑖 =

𝑛 𝑛+1

2

– Base case: n=0.  Then σ𝑖=0
0 𝑖 = 0 =

0 0+1

2
. 

– Induction hypothesis: Assume that σ𝑖=0
𝑘−1 𝑖 =

𝑘−1 𝑘

2
for an arbitrary k >0

• That is, for an arbitrary number n=k-1 ∈ ℕ

• Can take k instead of k-1, but k-1 makes calculations simpler.  

– Induction step:  show that P(k-1) implies P(k). 

• σ𝑖=0
𝑘 𝑖 = (σ𝑖=0

𝑘−1 𝑖) +k.  

• By induction hypothesis,  σ𝑖=0
𝑘−1 𝑖 =

k−1 k

2

• Now, σ𝑖=0
𝑘 𝑖 = (σ𝑖=0

𝑘−1 𝑖) +k = 
k−1 k

2
+ k =

k2−k+2k

2
=

k2+𝑘

2
=

𝑘(𝑘+1)

2

– By induction, therefore,  P(n) holds for all 𝑛 ∈ ℕ.

Claim: for any n∈ ℕ, 0+1+…+(n-1)+n=σ𝑖=0
𝑛 𝑖 =

𝑛 𝑛+1

2

□ (Done).

“Proof” (by induction): 

– P(n):  any n horses are white. 

– Base case:  P(0) holds vacuously 

– Induction hypothesis: any k horses are white. 

– Induction step: if any k horses are white, then any k+1 horses are white. 

• Take an arbitrary set of k+1 horses.  Take a horse out. 

– The remaining k horses are white by induction hypothesis. 

• Now put that horse back in, and take out another horse.  

– Remaining k horses are again white by induction hypothesis. 

• Therefore, all the k+1 horses in that set are white.

– By induction, all horses are white. 

“Claim”: all horses are white. 

Puzzle: What is wrong 
with this proof? 

“Proof” (by induction): 

– P(n):  any n horses are white. 

– Base case:  P(0) holds vacuously 

– Induction hypothesis: any k horses are white. 

– Induction step: if any k horses are white, then any k+1 horses are white. 

• Take an arbitrary set of k+1 horses.  Take a horse out. 

– The remaining k horses are white by induction hypothesis. 

• Now put that horse back in, and take out another horse.  

– Remaining k horses are again white by induction hypothesis. 

• Therefore, all the k+1 horses in that set are white.

– By induction, all horses are white. 

“Claim”: all horses are white. 

Puzzle: What is wrong 
with this proof? 

• What if want to prove it only for 𝑥 ≥ 𝑎?

– Make 𝑎 the base case (when 𝑎 ≥ 0).  For the rest, assume 𝑘 ≥ 𝑎.  

• Here,  ∀𝑥 ≥ 𝑎 𝑃 𝑥 is a shorthand for ∀𝑥 ∈ ℕ 𝑥 ≥ 𝑎 → 𝑃 𝑥

– To prove it works, prove 𝑃(𝑛’) where 𝑛’ = 𝑛 − 𝑎.   

• In general,  let 𝑆 be a countable set, and 𝑓: ℕ → 𝑆 a bijection. 

Then the following is equivalent to the induction principle:

Mathematical Induction principle:  
If  P 0 ∧ ∀ 𝑘 ∈ ℕ P(k) → P(k+1) then  ∀𝑥 ∈ ℕ 𝑃(𝑥)

(P a ∧ ∀ 𝑘 ≥ 𝑎 P(k) → P(k+1))   → ∀𝑥 ≥ 𝑎 𝑃(𝑥)

𝑃 𝑓(0) ∧ ∀ 𝑘 ≥ 0 𝑃(𝑓 𝑘 ) → 𝑃(𝑓 𝑘 + 1 )) → ∀𝑥 ∈ 𝑆 𝑃(𝑥)

• Proof (by induction with basis 𝑎 = 4):
– Predicate 𝑃 𝑛 : 2𝑛 ≥ 𝑛2

– Base case:  n=4. 24 = 16 = 42

– Induction hypothesis: assume that for an arbitrary 𝑘 ≥ 4, 2𝑘 ≥ 𝑘2

– Induction step:  show that 2𝑘 ≥ 𝑘2 implies 2𝑘+1 ≥ (𝑘 + 1)2

• 2𝑘+1 = 2 ⋅ 2𝑘 = 2𝑘 + 2𝑘 ≥ 𝑘2 + 𝑘2 (last ≥ by induction hypothesis). 
• Want: 𝑘2 + 𝑘2 ≥ 𝑘 + 1 2. Since 𝑘 + 1 2 = 𝑘2 + 2𝑘 + 1, need to show 𝑘2 ≥ 2𝑘 + 1

– Dividing both sides of the last inequality by 𝑘:  show that 𝑘 ≥ 2 +
1

𝑘

– Since k ≥ 4, and 2 +
1

𝑘
≤ 3, 2 +

1

𝑘
≤ 3 < 4 ≤ 𝑘.  

– So 𝑘 ≥ 2 +
1

𝑘
and thus 𝑘2 ≥ 2𝑘 + 1

• So 2𝑘+1 = 2 ⋅ 2𝑘 = 2𝑘 + 2𝑘 ≥ 𝑘2 + 𝑘2 ≥ 𝑘2 + 2𝑘 + 1 = 𝑘 + 1 2

– By induction, for all 𝑛 ≥ 4, 2𝑛 ≥ 𝑛2

• Corollary:  as input size 𝑛 grows, an algorithm running  in time  𝑛2 will quickly start 
outperforming an algorithm running in time 2𝑛

Claim: for all 𝑛 ≥ 4, 2𝑛 ≥ 𝑛2

31 32
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• Proof (by induction):
– Predicate 𝑃 𝑛 : ∃𝑦, 𝑧 ∈ ℕ 𝑛 = 3𝑦 + 5𝑧

– Base case:  𝑛 = 8.
• 𝑃 8 holds with  𝑦 = 1, 𝑧 = 1, since 8 = 3 ⋅ 1 + 5 ⋅ 1

– Induction hypothesis:  assume that 𝑃 𝑘 holds for an arbitrary 𝑘 ∈ ℕ, where k>7.
• That is, ∃𝑦, 𝑧 ∈ ℕ such that 𝑘 = 3𝑦 + 5𝑧

– Induction step:  show that 𝑃(𝑘 + 1) holds
• That is, show that ∃𝑦′, 𝑧′ ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 k + 1 = 3y′ + 5z′

– Construct 𝑦′, 𝑧′ from 𝑦, 𝑧

• If 𝑧 > 0, 𝑡ℎ𝑒𝑛 𝑦′ = 𝑦 + 2, 𝑧′ = 𝑧 − 1. 

– 𝑘 + 1 = 𝑘 − 5 + 6

• If 𝑧 = 0, then 𝑦′ = 𝑦 − 3, 𝑧’ = 2

– 𝑘 + 1 = 𝑘 − 9 + 10

– Therefore,  for every 𝑥 ∈ ℕ, if  x >7 then 𝑥 = 3𝑦 + 5𝑧 for  some 𝑦, 𝑧 ∈ ℕ.    

Claim: ∀𝑥 ∈ ℕ, if x >7 then ∃ 𝑦, 𝑧 ∈ ℕ such that 𝑥 = 3𝑦 + 5𝑧.
So any amount >7 can be paid with 3s and 5s

Strong induction

• In our well-ordering proof that every amount > 7 can be paid with 3s and 
5s we needed to consider k-3, and to look at three cases.   
– n=8, n=9, n=10. 

• Mathematical Induction principle:  
– (P 0 ∧ ∀ 𝑘 ∈ ℕ P(k) → P(k+1))   → ∀𝑥 ∈ ℕ 𝑃(𝑥)
– If first domino falls, and each domino falls on next, all dominos fall.

• Strong Induction principle:  

– ∃𝑏 ∈ ℕ ∀𝑐 ∈ ℕ 0 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 → P c

∧ ∀ 𝑘 > 𝑏 (∀ 𝑖 ∈ {0, … , 𝑘 − 1} P(i)) → P(k))  
→ ∀𝑥 ∈ ℕ 𝑃(𝑥)

– If first few dominos fall, and if all preceding dominos go down then the next one 
falls too, then all dominos fall.  

• Proof (by strong induction):

– Predicate 𝑃 𝑛 : ∃𝑦, 𝑧 ∈ ℕ 𝑛 = 3𝑦 + 5𝑧

– Base cases: 𝑎 = 8, 𝑏 = 10, so 𝑐 ∈ 8,9,10

• n=8.    8 = 3 ⋅ 1 + 5 ⋅ 1, so y=1, z=1. 

• n=9.    9=3⋅ 3,  y=3, z=0

• n=10.  10=5 ⋅ 2. y=0, z=2. 

– Induction hypothesis: Let k be an arbitrary natural number with 𝑘 > 10.
Assume that ∀𝑖 ∈ ℕ such that 8 ≤ 𝑖 < 𝑘, ∃ 𝑦𝑖, 𝑧𝑖 ∈ ℕ 𝑖 = 3𝑦𝑖 + 5𝑧𝑖

– Induction step:  show that 𝑃(𝑘) holds

Claim: ∀𝑥 ∈ ℕ, if x >7 then ∃ 𝑦, 𝑧 ∈ ℕ such that 𝑥 = 3𝑦 + 5𝑧.
So any amount >7 can be paid with 3s and 5s

Strong Induction:  

(∃𝑏 ∈ ℕ ∀𝑐 ∈ ℕ 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 → P c
∧ ∀ 𝑘 > 𝑏 (∀ 𝑖 ∈ {𝑎, … , 𝑘 − 1} P(i)) → P(k)) 

→ ∀𝑥 ∈ ℕ 𝑥 ≥ 𝑎 → 𝑃 𝑥

• Proof (by strong induction):
– Predicate 𝑃 𝑛 : ∃𝑦, 𝑧 ∈ ℕ 𝑛 = 3𝑦 + 5𝑧

– Base cases: 𝑃(8), 𝑃(9), 𝑃(10) hold. 

– Induction hypothesis: Let k be an arbitrary natural number such that 𝑘 > 10.
Assume that ∀𝑖 ∈ ℕ such that 8 ≤ 𝑖 < 𝑘, ∃ 𝑦𝑖 , 𝑧𝑖 ∈ ℕ 𝑖 = 3𝑦𝑖 + 5𝑧𝑖

– Induction step:  show that 𝑃(𝑘) holds

• Since 𝑘 ≥ 𝑏, 𝑘 − 3 ≥ 𝑎.

• So by induction hypothesis ∃ 𝑦𝑘−3, 𝑧𝑘−3 ∈ ℕ 𝑘 − 3 = 3𝑦𝑘−3 + 5𝑧𝑘−3.

• Now take 𝑧 = 𝑧𝑘−3 and 𝑦 = 𝑦𝑘−3 + 1.   Then 𝑘 = 3𝑦 + 5𝑧.

– Therefore,  for every 𝑥 ∈ ℕ, if 𝑥 > 7 then 𝑥 = 3𝑦 + 5𝑧 for  some 𝑦, 𝑧 ∈ ℕ.

– By strong induction, get that for all x > 7, ∃ 𝑦, 𝑧 ∈ ℕ such that x = 3y+5z.

Claim: ∀𝑥 ∈ ℕ, if x >7 then ∃ 𝑦, 𝑧 ∈ ℕ such that 𝑥 = 3𝑦 + 5𝑧.
So any amount >7 can be paid with 3s and 5s

Strong Induction:  

(∃𝑏 ∈ ℕ ∀𝑐 ∈ ℕ 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 → P c
∧ ∀ 𝑘 > 𝑏 (∀ 𝑖 ∈ {𝑎, … , 𝑘 − 1} P(i)) → P(k)) 

→ ∀𝑥 ∈ ℕ 𝑥 ≥ 𝑎 → 𝑃 𝑥

□ (Done).

37 38
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• Here, assume primes are written in a specific order: say from smallest to 
largest. 
– For example, 12 = 2 ⋅ 2 ⋅ 3, 17 = 17, 30 = 2 ⋅ 3 ⋅ 5

– We do not consider 12 = 2 ⋅ 3 ⋅ 2, because it is not in the right order.

– Also do not consider 12 = 3 ⋅ 4, since 4 is not a prime. 

• This theorem consists of two statements, which have to be proven separately. 
– Existence: every 𝑛 > 1 can be written as a product of primes.

• We will prove this using strong induction. 

– Uniqueness:  for every 𝑛 > 1, there cannot be two different products of primes that 
are both equal to 𝑛.
• We will omit this proof here, as we need a bit more number theory to do it properly.

• You can read it in textbook, chapter 4.3.

Theorem (fundamental theorem of arithmetic):
Every natural number >1 can be uniquely written as a product of primes. Proof (by strong induction):

• Predicate 𝑃 𝑛 : ∃𝑚 ∈ ℕ, ∃ primes 𝑝1 … 𝑝𝑚 such that 𝑛 = 𝑝1 ⋅ … ⋅ 𝑝𝑚

• Base case: 𝑎 = 𝑏 = 2
– 2 is prime, so 𝑃(2) holds with 𝑚 = 1, 𝑝1 = 2

• Induction hypothesis: Let k be an arbitrary natural number with 𝑘 > 2.
Assume that ∀𝑖 ∈ ℕ where 2 ≤ 𝑖 < 𝑘 ∃𝑚𝑖 , ∃ primes 𝑝1,𝑖 … 𝑝𝑚𝑖,𝑖, such 
that 𝑖 = 𝑝1,𝑖 ⋅ … ⋅ 𝑝𝑚𝑖,𝑖

• Induction step:  show that 𝑃(𝑘) holds
– That is, find 𝑚′, primes 𝑞1 … 𝑞𝑚′ such that 𝑘 = 𝑞1 ⋅ … ⋅ 𝑞𝑚′

– We will prove the induction step by cases:  
1. 𝑘 is prime 

– Easy case: 𝑚′ = 1, 𝑞1 = 𝑘.
2. 𝑘 is not prime. 

Strong Induction:  

(∃𝑏 ∈ ℕ ∀𝑐 ∈ ℕ 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 → P c
∧ ∀ 𝑘 > 𝑏 (∀ 𝑖 ∈ {𝑎, … , 𝑘 − 1} P(i)) → P(k)) 

→ ∀𝑥 ∈ ℕ 𝑥 ≥ 𝑎 → 𝑃 𝑥

Theorem:∀𝑛 ∈ ℕ, if 𝑛 > 1 then 𝑛 can be written as a product of primes. 

Proof (by strong induction):

• Induction hypothesis: Let k be an arbitrary natural number > 2. Assume that        
∀𝑖 ∈ ℕ where 2 ≤ 𝑖 < 𝑘 ∃𝑚𝑖 , ∃ primes 𝑝1,𝑖 … 𝑝𝑚𝑖,𝑖, such that 𝑖 = 𝑝1,𝑖 ⋅ … ⋅ 𝑝𝑚𝑖,𝑖

• Induction step:  show that 𝑃(𝑘) holds
– Case 1: 𝑘 is prime (easy case: 𝑚′ = 1, 𝑞1 = 𝑘).

– Case 2: 𝑘 is not prime. 

• Then 𝑘 = 𝑎 ⋅ 𝑏 for some 𝑎, 𝑏 such that 2 ≤ 𝑎, 𝑏 < 𝑘

• By induction hypothesis, there are 𝑚𝑎 , 𝑚𝑏 ∈ ℕ, primes 𝑝1,𝑎, … , 𝑝𝑚𝑎 ,𝑎 , 𝑝1,𝑏 , … , 𝑝𝑚𝑏,𝑏

such that  𝑎 = 𝑝1,𝑎 ⋅ … ⋅ 𝑝𝑚𝑎,𝑎, and 𝑏 = 𝑝1,𝑏 ⋅ … ⋅ 𝑝𝑚𝑏,𝑏

• Now 𝑘 = 𝑝1,𝑎 ⋅ … ⋅ 𝑝𝑚𝑎,𝑎 ⋅ 𝑝1,𝑏 ⋅ … ⋅ 𝑝𝑚𝑏,𝑏, so 𝑃(𝑘) holds with 𝑚′ = 𝑚𝑎 + 𝑚𝑏

– Rearrange 𝑝1,𝑎, … , 𝑝𝑚𝑎 ,𝑎 , 𝑝1,𝑏 , … , 𝑝𝑚𝑏,𝑏 from smallest to largest to get 𝑞1 … 𝑞𝑚′

– This completes the proof of the induction step, as there are no more cases. 

• By strong induction, every 𝑛 > 1 can be written as a product of primes. 

Theorem:∀𝑛 ∈ ℕ, if 𝑛 > 1 then 𝑛 can be written as a product of primes. Equivalence of well-ordering,
induction and strong induction 

• Strong induction seems stronger… but in fact, mathematical 
induction, strong induction and well-ordering principles are 
equivalent to each other.
– So choose the most convenient one.  

• Can prove induction from well-ordering principle
– Look at the smallest k such that 𝑃(𝑘) does not hold

• Can prove strong induction statement by normal induction. 
– Prove 𝑃′ 𝑛 = ∀𝑖 < 𝑛 𝑃(𝑛) by induction.

• Can prove well-ordering principle from strong induction. 

Puzzle: rabbits on an island 

• A ship leaves a pair of rabbits on an island 
(with a lot of food). 

• After a pair of rabbits reaches 2 months of 
age, they produce another pair of rabbits, 
and keep producing a pair every month 
thereafter.

• Which in turn start reproducing every  
month when reaching 2 months of age… 
– So every pair starts reproducing at 2 months, and 

creates a new pair every month from then on.

• How many pairs of rabbits will be on the 
island in 𝑛 months, assuming no rabbits die? 

43 44

45 46

47


