

1

Alphabet

- A finite set of symbols is called an alphabet.
- English alphabet contains 26 letters (ignoring case): $\{\mathrm{a}, . ., \mathrm{z}\}$
$-\{0,1\}$ is the binary alphabet. This is the most popular alphabet in computer science.
- An alphabet containing only one letter, for example \{a\}, is called a unary alphabet.

3

Finite strings, binary strings 'morni

- A finite string of length n is a string containing n symbols
- The length of a string s is denoted $|s|$
- The same notation as cardinality of a set (number of elements in a set): |A|
- |mun|=3. |1002|=4.
- There is an empty (null) string with the length 0
- Some books, including our textbook, denote the empty string by a Greek letter "lambda" λ, others by the Greek letter "epsilon" ϵ.
- A binary string is a finite string over the alphabet $\{0,1\}$
- 0011011, 1111, $\lambda, 0$ are binary strings
- with lengths $7,4,0,1$ respectively.

Sets and strings
 Mrimin

- How do we represent sets on a computer?
- We can list names of a set's elements, but that would make operations with sets less efficient: even to check if an element is in a set, we'd need to scan through the whole list.
- Instead, when the universe is finite (and reasonably small), we can represent a set by its characteristic string, stating whether each element of the universe is in the set or not.
- but first, let us recall and define what is a string.

2
Strings

- A string (over an alphabet A) is a sequence (list) of symbols from A
- Usually with repetition; order matters.
• We will talk about $1^{\text {st }} 2^{\text {nd }}$, $3^{\text {rd }}$ and so on symbol in a given string.
- "mun" is a string over English alphabet (lowercase). $2^{\text {nd }}$ symbol in "mun"
is " u ".
- English words are strings over English alphabet.
- 1002 " is a string over the alphabet of digits $\{0,1,2\}$.
- A natural number is a string over the alphabet of digits
$\{0,1,2,3,4,5,6,7,8,9\}$

4

Characteristic string of a set

- Let U be a universe. List its elements in some order
- It does not matter which order, as long as it is fixed and you know which element is $1^{\text {st, }}$, which is $2^{\text {nd }}$ and so on.
- For example, in $U=\{a, b, c, d, e\}$ we can arbitrarily call a the first element, b second, c third, d fourth and e fifth
- A characteristic string of a set $A \subseteq U$ is a binary string s of length |U| which for every position i in s has a 1 iff the $i^{t h}$ element of U is in A, and 0 iff the $i^{t h}$ element of U is not in A.
- Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$, in this order. Then
the characteristic string of a set $A=\{a, c, d\}$ is 10110 , since $1^{\text {st, }}, 3^{\text {rd }}$ and $4^{\text {th }}$ elements
of U are in A.
The characteristic string of \emptyset is 00000 . The characteristic string of U is 11111 .

6

Set operations with characteristic strings

- Characteristic strings make it easy to do set operations
- Complement: flip all 0 s to 1 s , and all 1 s to 0 s . A
- Union: put 1 if at least one of the strings has 1 in that position AUB (1n)
- Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \mathrm{A}=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{B}=\{\mathrm{a}, \mathrm{b}\}$.
- Then the characteristic string for A is 10110 , for B is 11000 .
- The characteristic string of \bar{A} is 01001 , corresponding to $\{\mathrm{b}, \mathrm{e}\}$
- The characteristic string of $A \cup B$ is 11110 , corresponding to set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
- The characteristic string of $A \cap B$ is 10000 , encoding the set $\{\mathrm{a}\}$.

Sets and strings are different types!

- Though strings can be used to represent sets
- with respect to a given finite universe and a given order of elements in it
strings and sets are different types!
- The main operation on a set is to check whether a given element is in a set: $a \in S$.
- There are no duplicates, and no intrinsic order of elements.
- The main operation on a string is to see what symbol is in a specific position i.
- A string is a special type of a sequence, where at every position the sequence is an element of the alphabet.

8

Pairs, triples, tuples

- For sets S_{1}, S_{2} define (ordered) pairs of elements (x_{1}, x_{2}) as a sequence of length 2 where the first element $x_{1} \in S_{1}$ and second element $x_{2} \in S_{2}$
- Notation (x_{1}, x_{2}), with round brackets () indicates that it is an sequence, ordered with distinguishable first and second elements. - E.g. $(1,2)$ or $(5,5)$; here $(1,2) \neq(2,1)$
- as opposed to curly brackets for sets: $\{1,2\}=\{2,1\}$
- So $\{1,2\}$ and $(1,2)$ mean different things!

10

Cartesian products

- Cartesian product of A and B is a set of all (ordered) pairs of elements with the first element from A, and the second element from B :
$-\mathrm{A} \times \mathrm{B}=\{(x, y) \mid x \in A \wedge y \in B\}$
$-A=\{1,2,3\}, B=\{a, b\}$

	1	2	3
a	$(1, \mathrm{a})$	$(2, \mathrm{a})$	$(3, \mathrm{a})$
b	$(1, \mathrm{~b})$	$(2, \mathrm{~b})$	$(3, \mathrm{~b})$

$-A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
$-B \times B=\{(a, a),(a, b),(b, a),(b, b)\}$

- Order of pairs does not matter, order within pairs does: $A \times B \neq B \times A$
- The name "Cartesian" is the same as in Cartesian coordinate system: every point is described by a pair of numbers in 2d (triple of numbers in 3 d).
- Number of elements in $A \times B$ is $|A \times B|=|A| \cdot|B|$
- Here, $|A|$ is the cardinality of A (number of elements in A)

12

Cartesian products

- Can define the Cartesian product for any number of sets:
$-A_{1} \times A_{2} \times \cdots \times A_{k}=\left\{\left(x_{1}, x_{2}, \ldots x_{k}\right) \mid x_{1} \in A_{1} \ldots x_{k} \in A_{k}\right\}$
$-A=\{1,2,3\}, B=\{a, b\}, C=\{3,4\}$
$-A \times B \times C=\{(1, a, 3),(1, a, 4),(1, b, 3),(1, b, 4)$,
(2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4),
$(3, a, 3),(3, a, 4),(3, b, 3),(3, b, 4)\}$
$-|A \times B \times C|=|A| \cdot|B| \cdot|C|$

13
14

Relations

- A set of tuples of elements (that is, a subset of a Cartesian product) is called a relation. In particular, a set of pairs of elements is called a binary relation.
- LESSTHAN $=\{(x, y) \mid x$ and y are real numbers such that $x<y\}$
- So $(1,2) \in$ LESSTHAN, but $(2,1) \notin$ LESSTHAN
- LESSTHAN $\subseteq \mathbb{R} \times \mathbb{R}$
- LIKES $=\{(x, y) \mid$ person x likes person $y\}$
- PARENT $=\{(x, y) \mid$ person x is a parent of person $y\}$
- REGISTRATIONS $=\{($ name , cour, sem $) \mid$ student name takes course cour in semester sem $\}$
- If Wei Lee takes COMP1002 in Fall 2020, then (Wei Lee, COMP1002, Fall 2020) \in REGISTRATIONS

15
16

Relation R	Predicate P
A set (collection) of pairs (generally, n tuples) of elements	True/false on a given pair (tuple) of elements
$\begin{aligned} & \mathrm{R}_{\mathrm{P}}=\{(x, y) \mid P(x, y) \text { is true }\} \\ & \begin{array}{r} \text { LESSTHAN }= \\ \{(x, y) \mid(x \in \mathbb{R}) \wedge(y \in \mathbb{R}) \wedge(x<y)\} \\ =\{(x, y) \mid \text { LessThan }(x, y) \text { is true }\} \\ (3,5) \in \text { LESSTHAN } \\ (3,2) \notin \text { LESSTHAN } \end{array} \end{aligned}$	$\left.\begin{array}{l} \qquad P_{R}(x, y) \equiv "(x, y) \in R^{\prime \prime} \\ \text { LessThan }(x, y) \equiv \\ (x \in \mathbb{R}) \wedge(y \in \mathbb{R}) \wedge(x<y) \\ \equiv(x, y) \in \operatorname{LESSTHAN} \end{array}\right] \begin{aligned} & \text { LessThan }(3,5) \text { is true } \\ & \text { LessThan }(3,2) \text { is false } \end{aligned}$

19

Database queries

- Predicate logic gives us a way to query relational databases!
- Using predicates for database relations.
- Then build a query as a formula.
- Input of the query:
- Can be nothing (if no free variables)
- Or specific values for its free variables.
- Output of the query:
- Either true/false
- Or a set of elements (values of its free variables) satisfying the query.

20

21

Querying databases

- Suppose we want to find out if someone called Manrique is teaching COMP1001.
- First, define predicates corresponding to the relations:
- ProfData(firstname, lastname, of fice)
- CourseData(course, days, time, room, instructor)
- Now, let's write a formula using these predicates which would be true if and only if Manrique is teaching COMP1001.

22

24

PROFDATA			COURSEDATA		
4 A B	c	${ }^{\text {B }}$	-11	D	
arique Mata-Mo	EN-2033	COMP1000 MWV	11:00-11:50		
Sharene Bungay Antonina Kolokolova	ER-6032	2 COMP1001 MWF	12:00-12:50	EN-2040	Bungay
Now let's make it more general: given person's name x and course name y, is person x teaching course y ? $\exists \ln \exists o \exists d \exists t \exists r \operatorname{Prof} \operatorname{Data}(x, \ln , o) \wedge$ CourseData $(\mathrm{y}, \mathrm{d}, \mathrm{t}, \mathrm{r}, \ln)$ - Here, x and y are free variables.					
Now let's write a query that check that everybody teaches something. $\forall x \exists y \exists \ln \exists o \exists d \exists t \exists r \operatorname{ProfData}(x, \ln , o) \wedge$ CourseData $(\mathrm{y}, \mathrm{d}, \mathrm{t}, \mathrm{r}, \ln)$					
Finally, let's return a relation containing all pairs (x, y) such that x teaches y - TEACHES $=\{(x, y) \mid \exists \ln \exists o \exists d \exists t \exists r \operatorname{ProfData}(x, \ln , o) \wedge$ CourseData $(\mathrm{y}, \mathrm{d}, \mathrm{t}, \mathrm{r}, \ln)\}$					

25

26


```
##T, Building sets from sets (and other stuff).
```



```
- A bunch of tuples is a set called a relation.
- A set of all possible tuples of elements of given sets is a Cartesian product
- A bunch of strings is just a set of strings.
- The set of all binary strings has a special notation: \(\{0,1\}^{*}\)
- Star stands for "repeat elements of the set \(\{0,1\}\) zero or more times".
- In general, a set of all strings over an alphabet A is denoted \(A^{*}\) (A star).
- You will see the reason for this notation in COMP 1003.
```

- What is a bunch of sets? And a set of all sets?

27

Power sets

- A power set of a set A , denoted $P(A)$, is a set elements of which are all subsets of A.
- Think of sets as boxes of elements.
- A subset of a set A is a box with elements of A
- maybe some, maybe all, maybe none
- Then $\mathcal{P}(A)$ is a box containing all possible boxes corresponding to subsets of A
- When you open the box $P(A)$, you don't see chocolates (elements of A), you see boxes.
$-A=\{1,2\}, \quad P(A)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$
- If A has n elements, then $P(A)$ has 2^{n} elements

28

29

Type checking: power set and cartesian product

- Power set is a set, elements of which are themselves sets.
- If A has n elements, then $P(A)$ has 2^{n} elements, each of which is a set
- Empty set \emptyset is an element of $P(A)$ for any A.
- Because for every $A, \emptyset \subseteq A$
- Cartesian product of two sets is a set of pairs of elements - Of k sets, (ordered) \boldsymbol{k}-tuples of elements.
- Remember that (a, b) and $\{a, b\}$ mean very different things!
- If a program expects a pair and you give it a set, you get an ERROR!
- Power set: $\{\emptyset,\{ \},\{ \},\{ \}\} \quad\left(2^{|A|}\right.$ sets inside $)$
- Cartesian product: $\{(),(),(),()\}(|A| \cdot \mid B$ rs inside)

31

Graphs of binary relations

- A (directed) graph (digraph) of a binary relation $R \subseteq A \times A$ is a diagram consisting of - $|\mathrm{A}|$ points, with a point (often drawn as a circle with a label, called a vertex or a node) for each element of A
- An arrow (called an edge, an arc or a link) from point x to point y for each $(x, y) \in R$
- We draw a loop with an arrow for each $x \in A$ such that $(x, x) \in R$
- Let $A=\{1,2,3\}$

- This is a different notion of a graph than plotting a function on plane!

33

32

34

Reflexive relations

- A binary relation $R \subseteq A \times A$ is reflexive if $\forall x \in A, R(x, x)$
- Every x is related to itself.
- On a graph, every vertex has a loop $\xrightarrow[R_{1}]{\sim}$-E.g. $\mathrm{A}=\{1,2\}, R_{1}=\{(1,1),(2,2),(1,2)\}$
$R_{1} \quad$-On $\mathbf{A}=\mathbb{Z}, R_{2}=\{(x, y) \mid x=y\}$ is reflexive
-But not $R_{3}=\{(x, y) \mid x<y\}$

R_{2}

Anti-reflexive relations

- A binary relation $R \subseteq A \times A$ is anti-reflexive if $\forall x \in A, \neg R(x, x)$
- Graph of R has no loops.
$0 \longrightarrow$ D
- E.g. $\mathbf{A}=\{1,2\}, R_{6}=\{(1,2)\}$
- but not $R_{1}=\{(1,1),(2,2),(1,2)\}$ (reflexive)
$R_{6}=\{(1,2)\} \quad-$ nor $R_{7}=\{(1,1),(1,2)\}$ (neither)
- For $A=\mathbb{Z}$, not $R_{2}=\{(x, y) \mid x=y\}$
- Nor $R_{4}=\{(x, y) \mid x \equiv y \bmod 3\}$
- But $R_{3}=\{(x, y) \mid x<y\}$ is anti-reflexive. - So are $R_{5}=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x+1=y\}$
- And PARENT $=\{(x, y) \in$ PEOPLE \times PEOPLE $\mid x$ is a parent of $y\}$
- A relation R can be neither reflexive nor anti-reflexive.

Symmetric relations

- A binary relation $R \subseteq A \times A$ is symmetric iff $\forall x, y \in A,(x, y) \in R \leftrightarrow(y, x) \in R$
-For every arrow in a graph (except loops) another goes the opposite way
$-R_{1}$ and R_{3} from previous slides are not symmetric. R_{2} is.
$-R_{8}=\{(1,2),(2,1),(1,1)\}$ is symmetric
$-\mathrm{A}=\mathbb{Z}, R_{4}=\{(x, y) \mid x \equiv y \bmod 3\}$ is symmetric.

37

$$
\overbrace{R_{8}}
$$

Anti-symmetric relations

- A binary relation $R \subseteq A \times A$ is anti-symmetric iff $\forall x, y \in$ $A,(x, y) \in R \wedge(y, x) \in R \rightarrow x=y$
- For every arrow, there is no arrow the other way. Loops OK.
$R_{8} \quad R_{1}, R_{3}, R_{5}, R_{6}, R_{7}$, PARENT are anti-symmetric.
$\leftrightarrow \leftrightarrow$ - R_{4} is not.
$R_{1} \quad \cdot R_{2}$ is both symmetric and anti-symmetric.
- $R_{9}=\{(1,2),(1,3),(3,1)\}$ is neither symmetric
(e) nor anti-symmetric.

R_{9}

38

40

Extending relations to have desired properties

- Often, we start with a relation which is not reflexive - Or not symmetric, or not transitive
- But we'd really prefer if it were reflexive (symmetric, transitive)!
- In this case, we change our relation to get a relation with the property we want.
- We always want to keep all the original edges: never lose information.
- And we want to make as few changes as possible.
- If R is a relation, then its transitive, reflexive or symmetric closure is the smallest transitive, reflexive or symmetric relation, respectively, containing R.

A reflexive closure of a relation

- Let $R \subseteq\{1,2,3\} \times\{1,2,3\}, \mathrm{R}=\{(1,1),(1,2),(2,2),(3,1)\}$
- To compute a reflexive closure of R, we just need to add all missing self-loops. - In this case, there is only one: $(3,3)$
- This will give us the smallest possible reflexive relation containing R.
- So to compute a reflexive closure of a given relation, add all missing pairs (x, x), and nothing else.
- Another example: a reflexive closure of $R_{3}=\{(x, y) \mid x<y\}$ is $\{(x, y) \mid x \leq y\}$

Reflexive closure of R $\{(1,1),(1,2),(2,2),(3,1),(3,3)\}$

43

A transitive closure of a relation

- A transitive closure of a relation R is the smallest transitive relation that contains R.
- Add edge (x, z) whenever $(x, y) \in R,(y, z) \in R$, but $(x, z) \notin R$
- Keep doing it again and again, until the resulting relation is transitive
- Not enough to just go through edges once.
- There are faster ways you will learn in your algorithms course.

46

A symmetric closure of a relation

- Let $R \subseteq\{1,2,3\} \times\{1,2,3\}, \mathrm{R}=\{(1,1),(1,2),(2,1),(2,2),(3,1)\}$
- To compute a symmetric closure of R , check every pair $(x, y) \in R$ for which $x \neq y$. If $(y, x) \notin R$, then add (y, x) to the symmetric closure of R.
- In this case, $(1,2)$ and $(2,1)$ are both in R, but $(1,3) \notin R$ even though $(3,1) \in R$, so we add $(1,3)$ to the symmetric closure of R.
- We don't need to bother with $(2,3),(3,2)$ since neither is in R.
- This will give us the smallest possible symmetric relation containing R.
- Example: a symmetric closure of $\mathrm{R}_{3}=\{(x, y) \mid x<y\}$ is $\{(x, y) \mid x \neq y\}$

44

Transitive closure: routes from flights

- If you are trying to get to Boston from Gander, you would be more interested in a sequence of flights that would get you there than whether there is a direct flight.
- You need a transitive closure of the FLIGHT relation.

45

Paths in graphs

- A path in a graph G from a vertex x to a vertex y is a sequence $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$ of edges of G, where $v_{0}=x$ and $v_{k}=y$.
- If no vertex repeats, it is called a simple path.
- Number of edges k is the length of the path.
- If $x=y$, it is called a cycle.
- A pair (x, y), where $x \neq y$, is in the transitive closure of a relation R iff there is a path from x to y in the graph of R.
- If (x, y) is in R , it is also in its transitive closure even if $x=y$.

Simple path from 6 to 2

Combining closures

- To compute a closure that is both, for example, reflexive and transitive, compute one first and then the other of the result. - The order does not matter.
- For example, let $R=\{(x, y) \mid x+1=y\}$, for $x, y \in \mathbb{Z}$.
- Transitive closure of R is $\{(x, y) \mid x<y\}$
- Reflexive closure of R is $\{(x, y) \mid x+1=y \vee x=y\}$
- Symmetric closure of R is $\{(x, y) \mid x+1=y \vee y+1=x\}$
- Reflexive transitive closure of R is R is $\{(x, y) \mid x \leq y\}$
- Symmetric transitive closure of R is $\{(x, y) \mid x \neq y\}$
- Reflexive, symmetric, transitive closure of R is $\mathbb{Z} \times \mathbb{Z}$

Transitive closure and limitations of predicate logic

- One reason why computing transitive closures is so useful for databases is that it lets us circumvent a limitation of predicate logic:
- We can write a formula saying that there is a path from x to y of length k - Grandparent (x, y) says that there is a path of length 2 in the graph of PARENT - However, we need to use $k-1$ new variables for a path of length k .
- There is no way to write a finite-length formula of predicate (firstorder) logic saying that there is some path, of any length, from x to y.
- Without going to second-order logic, which is beyond the scope of this course.

49

Equivalence relation

- A binary relation $R \subseteq A \times A$ is an equivalence if R is reflexive, symmetric and transitive.
- E.g. $\mathrm{A}=\{1,2\}, R=\{(1,1),(2,2)\}$ or $R=A \times A$
- $\operatorname{Not} R_{1}=\{(1,1),(2,2),(1,2)\} \operatorname{nor} R_{3}=\{(x, y) \mid x<y\}$
- On $\mathrm{A}=\mathbb{Z}, R_{2}=\{(x, y) \mid x=y\}$ is an equivalence

- So is $R_{4}=\{(x, y) \mid x \equiv y \bmod 3\}$
- Reflexive: $\forall x \in \mathbb{Z}, x \equiv x \bmod 3$
-Symmetric: $\forall x, y \in \mathbb{Z}, x \equiv y \bmod 3 \rightarrow y \equiv x \bmod 3$
- Transitive: $\forall x, y, z \in \mathbb{Z}, x \equiv y \bmod 3 \wedge y \equiv z \bmod 3 \rightarrow x \equiv z \bmod 3$

51

Equivalence classes

- An equivalence relation partitions A into equivalence classes:
- Intersection of any two equivalence classes is \emptyset
- Union of all equivalence classes is A .
$-R_{4}: \mathbb{Z}=\{x \mid x \equiv 0 \bmod 3\} \cup\{\mathrm{x} \mid \mathrm{x} \equiv 1 \bmod 3\} \cup$
 $\{x \mid x \equiv 2 \bmod 3\}$
$-R=A \times A$ gives rise to a single equivalence class. $R=\{(1,1),(2,2)\}$ on $A=\{1,2\}$ to two equivalence classes.

52

Order

- A binary relation $R \subseteq A \times A$ is an order if R is reflexive, anti-symmetric and transitive.
- E.g. $R_{1}=\{(x, y) \mid x, y \in \mathbb{Z} \wedge x \leq y\}$. So is alphabetical order of English words.
- But not $R_{2}=\{(x, y) \mid x, y \in \mathbb{Z} \wedge x<y\}$
- not reflexive, so not an order.
- SUBSETS $=\{(A, B) \mid A, B$ are sets $\wedge A \subseteq B\}$ is an order.
- Reflexive: $\forall A, A \subseteq A$
- Anti-symmetric: $\forall A, B A \subseteq B \wedge B \subseteq A \rightarrow A=B$
- Transitive: $\forall A, B, C \quad A \subseteq B \wedge B \subseteq C \rightarrow A \subseteq C$
- DIVISORS $=\{(x, y) \mid x, y \in \mathbb{N} \wedge x, y \geq 2 \wedge \exists z \in \mathbb{N} y=z \cdot x\}$ is an order.
- PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor of themselves.

Total and partial order

- R is a total order if $\forall x, y \in A R(x, y) \vee R(y, x)$ (any two elements of A are related.)
- $R_{1}=\{(x, y) \mid x, y \in \mathbb{Z} \wedge x \leq y\}$ is a total order
- So is alphabetical order of English words.

- Otherwise, R is a partial order.
- SUBSETS $=\{(A, B) \mid A, B$ are sets $\wedge A \subseteq B\}$ is a partial order.
- Not total: if $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{1,3\}$, then neither $A \subseteq B$ nor $B \subseteq A$
- DIVISORS is a partial order.
- 5 and 7 do not divide each other.
- ANCESTOR is a partial order

- Two people don't necessarily have to be related.

Partial order

Minimal and maximal

- An order may have minimal and maximal elements (maybe multiple)
$-x \in A$ is minimal in R if $\forall y \in A y \neq x \rightarrow \neg R(y, x)$
- and maximal if $\forall y \in A y \neq x \rightarrow \neg R(x, y)$
- If there is only one minimal element, we call it a minimum
- Unique maximal element is a maximum
$-\ln R_{10}, 1$ is a minimum, 3 is a maximum
- In $R_{11}, 1$ is a minimum, and both 2 and 3 are maximal
- \emptyset is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum).
- All primes are minimal in DIVISORS, and there are no maximal
 All primes
elements.

55

Drawing orders: diagrams

- A graph of an order relation has a lot of edges! It has all loops, and every time $(a, b) \in R$ and $(b, c) \in R$, we have $(a, c) \in R$
- When we know that a relation is an order, can we draw it simpler?
- Can you figure out in which order you can take courses from this diagram?

57

Hasse diagram

- A Hasse diagram is a way to draw a (partial or total) order without drawing loops or edges that have to be there by transitivity or reflexivity.
- draw minimal elements on the bottom, then go up
- don't draw arrowheads (assume arrows go upwards).
$-\mathrm{R}=\{(x, y) \in\{1,2,3\} \times\{1,2,3\} \mid x \leq y\}$
- On the Hasse diagram of R , only draw edges $(1,2)$ and $(2,3)$, as all the rest follow by reflexivity and transitivity. 1 is the minimal (bottom), 3 maximal (top).

58

