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Unit 5
Basic structures: relations and strings

Sets and strings

• How do we represent sets on a computer? 
– We can list names of a set’s elements, but that would make 

operations with sets less efficient: even to check if an element is in a 
set, we’d need to scan through the whole list. 

• Instead, when the universe is finite (and reasonably small), we 
can represent a set by its characteristic string, stating whether 
each element of the universe is in the set or not.
– but first, let us recall and define what is a string. 

Alphabet

• A finite set of symbols is called an  alphabet.

– English alphabet contains 26 letters (ignoring case): {a, .., z}

– {0,1} is the binary alphabet. This is the most popular alphabet in 
computer science. 

– An alphabet containing only one letter, for example {a}, is called a 
𝑢𝑛𝑎𝑟𝑦 alphabet. 

Strings 

• A string (over an alphabet A) is a sequence (list) of symbols from A

– Usually with repetition; order matters. 

• We will talk about 1st, 2nd, 3rd and so on symbol in a given string.  

– “mun” is a string over English alphabet (lowercase).  2nd symbol in “mun” 
is “u”. 

• English words are strings over English alphabet. 

– “1002” is a string over the alphabet of digits {0,1,2}. 

– A natural number is a string over the alphabet of digits 
{0,1,2,3,4,5,6,7,8,9}

Finite strings, binary strings 

• A finite string of length 𝑛 is a string containing 𝑛 symbols 
– The length of a string s  is denoted |s|

• The same notation as cardinality of a set (number of elements in a set): |A|

– |mun|=3.  |1002|=4. 
– There is an empty (null) string with the length 0  

• Some books, including our textbook,  denote the empty string by a Greek letter 
“lambda” 𝜆, others by the Greek letter “epsilon” 𝜖.

• A binary string is a finite string over the alphabet {0,1} 
– 0011011,  1111, 𝜆, 0  are binary strings 

• with lengths 7,4,0,1 respectively. 

Characteristic string of a set 

• Let U be a universe. List its elements in some order 
– It does not matter which order, as long as it is fixed and you know 

which element is 1st, which is 2nd and so on.
– For example, in 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} we can arbitrarily call 𝑎 the first 

element, 𝑏 second, 𝑐 third, 𝑑 fourth and 𝑒 fifth. 

• A characteristic string of a set 𝐴 ⊆ 𝑈 is a binary string 𝑠 of 
length |U| which for every position 𝑖 in 𝑠 has a 1 iff the 𝑖𝑡ℎ

element of U is in A, and 0 iff the 𝑖𝑡ℎ element of U  is not in A. 
– Let U={a,b,c,d,e}, in this order. Then 

• the characteristic string of a set A={a,c,d} is  10110, since 1st, 3rd and 4th elements 
of U are in A.  

• The characteristic string of ∅ is 00000.  The characteristic string of U is 11111. 
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Set operations with characteristic strings

• Characteristic strings make  it easy to do set operations 

– Complement:  flip all 0s to 1s, and all 1s to 0s. 

– Union: put 1 if at least one of the strings has 1 in that position. 

– Intersection: put 0 if at least one of the strings has 0 in that position. 

• Let U={a,b,c,d,e}, A={a,c,d}, B= {a,b}.  

– Then the characteristic string for A is 10110, for B is 11000. 

– The characteristic string of ҧ𝐴 is  01001, corresponding to {b,e}

– The  characteristic string of 𝐴 ∪ 𝐵 is 11110, corresponding to set {a,b,c,d}  

– The characteristic string of 𝐴 ∩ 𝐵 is  10000, encoding the set {a}. 

U         

𝐴 ∪ 𝐵

U         

𝐴 ∩ 𝐵

U         
A

Sets and strings are different types!

• Though strings can be used to represent sets 
– with respect to a given finite universe and a given order of 

elements in it 

strings and sets are different types! 
– The main operation on a set is to check whether a given 

element is in a set: 𝑎 ∈ 𝑆.
• There are no duplicates, and no intrinsic order of elements. 

– The main operation on a string is to see what symbol is in a 
specific position 𝑖.

• A string is a special type of a sequence, where at every 
position the sequence is an element of the alphabet. 

Pairs, triples, tuples

• For sets 𝑆1, 𝑆2 define (ordered)  pairs of elements  
(𝑥1, 𝑥2) as a sequence of length 2 where the first element 
𝑥1 ∈ 𝑆1 and second element 𝑥2 ∈ 𝑆2

– Notation 𝑥1 , 𝑥2 , with round brackets () indicates that it is an
sequence, ordered with distinguishable first and second elements. 

• E.g. 1,2 or (5,5); here 1,2 ≠ (2,1)

– as opposed to curly brackets for sets:   {1,2} = {2,1}

• So {1,2} and (1,2) mean different things! 

Pairs, triples, tuples

• Can  generalize pairs to ordered sequences of any (fixed) length:  triples, 
quadruples,  generally tuples of  elements from sets 𝑆1, 𝑆2, … 𝑆𝑛

– A tuple with 𝑛 elements is called an 𝑛-tuple. A triple is a 3-tuple.
• (2,3,2,1,3) is a 5-tuple, where all 5 positions are elements of  {1,2,3}. 

• Tuples are similar to strings in that they are both ordered sequences. 
– In strings, elements come from a (fairly small) alphabet, each is commonly one 

symbol, and they are written one after another without spaces or brackets.
• We often look at a bunch of strings of different length together. 

– In tuples, as in general sequences, elements are listed in round brackets () and 
separated by commas. 
• We often look at tuples of specific length together (eg a bunch of pairs). 

– In both cases, we often ask what element is in the position 𝑖.

Cartesian products

• Cartesian product of  A and B is a set of all (ordered) pairs of elements with the first 
element from A, and the second element from B:  
– A x B = 𝑥, 𝑦 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}

– 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏}

– 𝐴 × 𝐵 = { 1, 𝑎 , 1, 𝑏 , 2, 𝑎 , 2, 𝑏 , 3, 𝑎 , 3, 𝑏 }

– 𝐵 × 𝐵 = { 𝑎, 𝑎. , 𝑎, 𝑏 , 𝑏, 𝑎 , 𝑏, 𝑏 }

• Order of pairs does not matter, order within pairs does: 𝐴 × 𝐵 ≠ 𝐵 × 𝐴 .
– The name “Cartesian” is the same as in Cartesian coordinate system: every point is 

described by a pair of numbers in 2d (triple of numbers in 3d). 

• Number of elements in 𝐴 × 𝐵 is |𝐴 × 𝐵| = 𝐴 ⋅ |𝐵|
– Here, |A| is the cardinality  of A (number of elements in A)

1 2 3

a (1,a) (2,a) (3,a)

b (1,b) (2,b) (3,b)
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Cartesian products

• Can define the Cartesian product for any number of sets:  

–𝐴1 × 𝐴2 × ⋯ × 𝐴𝑘 = 𝑥1, 𝑥2, … 𝑥𝑘) 𝑥1 ∈ 𝐴1 … 𝑥𝑘 ∈ 𝐴𝑘

–𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏}, 𝐶 = {3,4}

–𝐴 × 𝐵 × 𝐶 = { 1, 𝑎, 3 , 1, 𝑎, 4 , 1, 𝑏, 3 , 1, 𝑏, 4 ,

2, 𝑎, 3 , 2, 𝑎, 4 , 2, 𝑏, 3 , 2, 𝑏, 4 ,

3, 𝑎, 3 , 3, 𝑎, 4 , 3, 𝑏, 3 , 3, 𝑏, 4 }

– |𝐴 × 𝐵 × 𝐶 | = 𝐴 ⋅ 𝐵 ⋅ |𝐶|

Relations

• A set of tuples of elements (that is, a subset of a Cartesian product) 
is called a relation.  In particular, a  set of pairs of elements is called 
a binary relation.  
– LESSTHAN = 𝑥, 𝑦 𝑥 and y are real numbers such that 𝑥 < 𝑦}

• So 1,2 ∈ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁, but 2,1 ∉ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁

• LESSTHAN ⊆ ℝ × ℝ

– LIKES = {(𝑥, 𝑦) | person 𝑥 likes person 𝑦}

– PARENT ={(𝑥, 𝑦) | person 𝑥 is a parent of person 𝑦}

– REGISTRATIONS = 𝑛𝑎𝑚𝑒, 𝑐𝑜𝑢𝑟, 𝑠𝑒𝑚 student 𝑛𝑎𝑚𝑒 takes course 𝑐𝑜𝑢𝑟
in semester 𝑠𝑒𝑚}
• If Wei Lee takes COMP1002  in Fall 2020, then 

(Wei Lee, COMP1002, Fall 2020) ∈ 𝑅𝐸𝐺𝐼𝑆𝑇𝑅𝐴𝑇𝐼𝑂𝑁𝑆

Relational databases

PROFDATA   = {(𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒, 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒, 𝑜𝑓𝑓𝑖𝑐𝑒)} = 

COURSEDATA  = {(𝑐𝑜𝑢𝑟𝑠𝑒, 𝑑𝑎𝑦𝑠, 𝑡𝑖𝑚𝑒, 𝑟𝑜𝑜𝑚, 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)} =  

In the language of databases, each tuple in a relation is called a record.  Each position in the 
tuple called a field.  And  the relation itself is called a table.
• Records are rows in the table, and fields are columns. 
• (Sharene, Bungay,ER-6032) is a record. “Office” is a field.  PROFDATA is a table. 
• Usually, a database consists of several tables. 

Predicates vs. sets 

• Predicates and sets are two sides of the same coin

– For each set S there is a predicate which is true exactly on elements of S 

– For each predicate P there is a set S of values of 𝑥 on which P is true. 

Set S Predicate P

A collection of elements Becomes true/false on a given element

SP = 𝑥 𝑃 𝑥 is true}  𝑃𝑆 𝑥 ≡ "𝑥 ∈ 𝑆“

Predicates vs relations

Relation R Predicate P

A set (collection)  of pairs ( generally, n-
tuples) of elements

True/false on a given pair (tuple) of elements 

RP = (𝑥, 𝑦) 𝑃 𝑥, 𝑦 is true}  

𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁 =
𝑥, 𝑦 (𝑥 ∈ ℝ) ∧ (𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦)}

= 𝑥, 𝑦 𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 𝑥, 𝑦 is true }

3,5 ∈ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁
3,2 ∉ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁

𝑃𝑅 𝑥, 𝑦 ≡ "(𝑥, 𝑦) ∈ 𝑅“

𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 𝑥, 𝑦 ≡
(𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦

≡ 𝑥, 𝑦 ∈ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁

𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 3,5 is true
𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 3,2 is false
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Database queries

• Predicate logic gives us a way to query relational databases! 

– Using predicates for database relations. 

• Then build a query as a formula. 

– Input of the query: 

• Can be nothing (if no free variables) 

• Or specific values for its free  variables. 

– Output of the query:  

• Either true/false 

• Or a set of elements (values of its free variables) satisfying the query.  

Database queries 

PROFDATA   = {(𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒, 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒, 𝑜𝑓𝑓𝑖𝑐𝑒)} = 

COURSEDATA  = {(𝑐𝑜𝑢𝑟𝑠𝑒, 𝑑𝑎𝑦𝑠, 𝑡𝑖𝑚𝑒, 𝑟𝑜𝑜𝑚, 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)} =  

How can we query such databases? 

Querying databases
PROFDATA COURSEDATA

• Suppose we want to find out if someone called Manrique is 
teaching COMP1001. 

– First, define predicates corresponding to the relations: 

• 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎(𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒, 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒, 𝑜𝑓𝑓𝑖𝑐𝑒)

• 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝑐𝑜𝑢𝑟𝑠𝑒, 𝑑𝑎𝑦𝑠, 𝑡𝑖𝑚𝑒, 𝑟𝑜𝑜𝑚, 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)

– Now, let’s write a formula using these predicates which would be true if 
and only if Manrique is teaching COMP1001. 

PROFDATA COURSEDATA

• We want to find out if Manrique is teaching COMP1001. 
– Ask: is there somebody with the same last name teaching COMP1001?

• Try ∃ 𝑙𝑛 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝑀𝑎𝑛𝑟𝑖𝑞𝑢𝑒, 𝑙𝑛, ∧ CourseData COMP1001, ln
– Error! ProfData takes 3 inputs, and CourseData takes 5!

• Try ∃ 𝑙𝑛 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝑀𝑎𝑛𝑟𝑖𝑞𝑢𝑒, 𝑙𝑛, ? ∧ CourseData(COMP1001, ? , ? , ? , ln)
– Almost there, but the database does not like our question marks…  
– How do we fill them if we don’t know their values? Use ∃ again

∃ 𝒍𝒏 ∃𝒐 ∃𝒅 ∃𝒕 ∃𝒓 𝑷𝒓𝒐𝒇𝑫𝒂𝒕𝒂 𝑴𝒂𝒏𝒓𝒊𝒒𝒖𝒆, 𝒍𝒏, 𝒐 ∧ 𝐂𝐨𝐮𝐫𝐬𝐞𝐃𝐚𝐭𝐚(𝐂𝐎𝐌𝐏𝟏𝟎𝟎𝟏, 𝐝, 𝐭, 𝐫, 𝐥𝐧)

• In SQL, a popular database language, 
– Putting  a condition which records to select (such as ProfData(Manrique,…) ) is called a selection 
– the operation of the kind ∃x P x ∧ 𝑄(𝑥) is called a join 
– Adding extra existential quantifiers  for “don’t care” fields is called a projection 

PROFDATA COURSEDATA

• We want to find out if Manrique is teaching COMP1001. 
∃ 𝒍𝒏 ∃𝒐 ∃𝒅 ∃𝒕 ∃𝒓 𝑷𝒓𝒐𝒇𝑫𝒂𝒕𝒂 𝑴𝒂𝒏𝒓𝒊𝒒𝒖𝒆, 𝒍𝒏, 𝒐 ∧ 𝐂𝐨𝐮𝐫𝐬𝐞𝐃𝐚𝐭𝐚(𝐂𝐎𝐌𝐏𝟏𝟎𝟎𝟏, 𝐝, 𝐭, 𝐫, 𝐥𝐧)

• Now let’s make it more general:  given person’s name 𝑥 and course 
name 𝑦, is person 𝑥 teaching course 𝑦?

∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)

– Here, 𝑥 and 𝑦 are free variables.  

19 20
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PROFDATA COURSEDATA

• Now let’s make it more general:  given person’s name 𝑥 and course name 𝑦, is 
person 𝑥 teaching course 𝑦?

∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)

– Here, 𝑥 and 𝑦 are free variables.  

• Now let’s write a query that check that everybody teaches something. 
∀𝒙 ∃𝒚 ∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)

• Finally, let’s return a relation containing all pairs (𝑥, 𝑦) such that 𝑥 teaches 𝑦

– TEACHES = 𝑥, 𝑦 ∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)}

Building sets from sets (and other stuff).

• A bunch of tuples is a set called a relation. 
– A set of all possible tuples of elements of given sets is a Cartesian product

• A bunch of strings is just a set of strings. 
– The set of all binary strings has a special notation:   0,1 ∗

• Star stands for “repeat elements of the set {0,1}  zero or more times”. 

– In general, a set of all strings over an alphabet A is denoted 𝐴∗ (A star). 
• You will see the reason for this notation in COMP 1003. 

• What is a bunch of sets? And a set of all sets? 
Power set  P 𝐴

Power sets

• A power set of a set A, denoted P 𝐴 , is a set elements of 
which are all subsets of A.  
– Think of sets as boxes of elements. 
– A subset of a set A is a box with elements of A 

• maybe some, maybe all, maybe none

– Then  P 𝐴 is a box containing all possible boxes 
corresponding to subsets of 𝐴

– When you open the box P 𝐴 , you don’t see chocolates 
(elements of A), you see boxes. 

– A={1,2},   P 𝐴 = ∅, 1 , 2 , 1,2

• If 𝐴 has 𝑛 elements, then  P 𝐴 has 2𝑛 elements

Set A

Power set  P 𝐴

Power sets

• A power set of a set A, denoted P 𝐴 , is a set elements of 
which are all subsets of A. 
– A={1,2},   P 𝐴 = ∅, 1 , 2 , 1,2
– 𝐴 = ∅, P 𝐴 = ∅ .  

• They are not the same! There is nothing in A, but there is one 
element, an empty box, in P 𝐴

– 𝐴 = 𝑎, 1, 𝑏 , P 𝐴 = ∅, 𝑎 , 1, 𝑏 , {𝑎, 1, 𝑏 } .
• Here, 𝐴 contains two elements, 𝑎 and {1, 𝑏}. It is irrelevant 

for the power set that the second element is a set (a box), it 
treats it just like any other element.  

• That’s why we need an extra pair of parentheses in the third 
element of P 𝐴 , 1, 𝑏 . This tells us that the 3rd element of 
P 𝐴 , is a set (box) containing a single element:  1, 𝑏 , just 
like {𝑎} is a set with a single element 𝑎. 

Set A

Type checking: power set and cartesian product

• Power set is a set, elements of which are themselves sets.
– If 𝐴 has 𝑛 elements, then P 𝐴 has 2𝑛 elements, each of which is a set
– Empty set ∅ is an element of P 𝐴 for any 𝐴. 

• Because for every 𝐴, ∅ ⊆ 𝐴

• Cartesian product of two sets is a set of pairs of elements
– Of 𝑘 sets, (ordered) 𝑘-tuples of elements. 
– Remember that (𝑎, 𝑏) and {𝑎, 𝑏} mean very different things! 

• If a program expects a pair and you give it a set,  you get an ERROR!

– Power set:  ∅, , , (2|𝐴| sets inside)
– Cartesian product:   { , , , , , , , } ( 𝐴 ⋅ |𝐵| pairs inside) 

25 26
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Binary relations

• A special type of relation, with many interesting properties, is a 
binary relation ⊆ 𝐴 × 𝐴 for some set 𝐴

– that is, a relation among elements of the same set, where every 
element can be in the 1st as well as 2nd position of a pair.  

– A={1,2},  

• 𝐴 × 𝐴 = { 1,1. , 1,2 , 2,1 , 2,2 }

• R={(1,1), (2,2)} ={ (x,y) |𝑥, 𝑦 ∈ 1,2 ∧ x=y}} 

• R={(1,1),(1,2),(2,2)} = (x,y) |𝑥, 𝑦 ∈ 1,2 ∧ 𝑥 ≤ 𝑦}.

– A=PEOPLE

• COUPLES ={(x,y) |  Loves(x,y)} 

• PARENTS ={(x,y) |  Parent(x,y)} 

Graphs of binary relations

• A (directed) graph (digraph) of a binary relation 𝑅 ⊆ 𝐴 × 𝐴 is a diagram consisting of 
– |A| points, with a point (often drawn as a circle with a label, called a vertex or a 

node) for each element of A
– An arrow (called an edge, an arc or a link) from point 𝑥 to point 𝑦 for each 𝑥, 𝑦 ∈ 𝑅

• We draw a loop with an arrow for each 𝑥 ∈ 𝐴 such that 𝑥, 𝑥 ∈ 𝑅

• Let A={1,2,3} 

• This is a different notion of a graph than plotting a function on plane! 

1 2

3

𝑅 = { 1,1 }𝑅 = { 1,1 , 1,2 , (2,2), (3,1)}

1 2

3

1 2

3

𝑅 = { 1,2 , 1,3 , 3,1 }

1 2

3

𝑅 = 𝐴 × 𝐴

Reflexive relations

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is reflexive if                 
∀𝑥 ∈ 𝐴, 𝑅(𝑥, 𝑥)

– Every x is related to itself. 

• On a graph, every vertex has a loop

– E.g. A={1,2}, 𝑅1 = { (1,1), (2,2), (1,2)}

– On  A = ℤ, 𝑅2 = 𝑥, 𝑦 𝑥 = 𝑦} is reflexive

– But not 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦}

1 2

𝑅1

1 2

𝑅2

3 4

Anti-reflexive relations

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is anti-reflexive if ∀𝑥 ∈ 𝐴, ¬𝑅 𝑥, 𝑥
• Graph of R has no loops. 

• E.g. A={1,2}, 𝑅6 = {(1,2)}

– but not  𝑅1 = { (1,1), (2,2), (1,2)} (reflexive)

– nor  𝑅7 = {(1,1), (1,2)} (neither) 

• For 𝐴 = ℤ, not 𝑅2 = 𝑥, 𝑦 𝑥 = 𝑦}

– Nor  𝑅4 = 𝑥, 𝑦 𝑥 ≡ 𝑦 𝑚𝑜𝑑 3 }

• But 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦} is anti-reflexive. 

– So are 𝑅5 = 𝑥, 𝑦 ∈ ℤ × ℤ 𝑥 + 1 = 𝑦}

– And PARENT = 𝑥, 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 × 𝑃𝐸𝑂𝑃𝐿𝐸 𝑥 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑦}

– A relation R can be neither reflexive nor anti-reflexive.  

1 2

𝑅6 ={(1,2)}

31 32

33 34
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Symmetric relations

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is symmetric iff
∀𝑥, 𝑦 ∈ 𝐴, 𝑥, 𝑦 ∈ 𝑅 ↔ 𝑦, 𝑥 ∈ 𝑅

– For every arrow in a graph (except loops) another 
goes the opposite way

–𝑅1 and 𝑅3 from previous slides are not symmetric. 
𝑅2 is.  

–𝑅8 = { 1,2 , 2,1 , 1,1 } is symmetric

–A = ℤ, 𝑅4 = 𝑥, 𝑦 𝑥 ≡ 𝑦 𝑚𝑜𝑑 3 } is symmetric. 

1 2

𝑅8

Anti-symmetric relations

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is anti-symmetric iff ∀𝑥, 𝑦 ∈

𝐴, 𝑥, 𝑦 ∈ 𝑅 ∧ 𝑦, 𝑥 ∈ 𝑅 → 𝑥 = 𝑦

• For every arrow, there is no arrow the other way. Loops OK. 

• 𝑅1, 𝑅3, 𝑅5, 𝑅6, 𝑅7, 𝑃𝐴𝑅𝐸𝑁𝑇 are anti-symmetric.

• 𝑅4 is not. 

• 𝑅2 is both symmetric and anti-symmetric. 

• 𝑅9 = 1,2 , 1,3 , 3,1 is neither symmetric                         
nor anti-symmetric. 

1 2

𝑅8

𝑅1

1 2

1 2

3

𝑅9

Transitive relations

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is  transitive if

∀𝑥, 𝑦, 𝑧 ∈ 𝐴, 𝑥, 𝑦 ∈ 𝑅 ∧ 𝑦, 𝑧 ∈ 𝑅 → 𝑥, 𝑧 ∈ 𝑅

– In the graph of R, if there is a way to get from x to z by 
following a sequence of edges (arrows), then there is a 
way to get from x to z in one step. 

– 𝑅1, 𝑅2, 𝑅3, 𝑅4 are all transitive. 

– 𝑅5 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 + 1 = 𝑦} is not transitive. 

– PARENT = 𝑥, 𝑦 𝑥, 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 ∧ 𝑥 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑦}
is not transitive either.

1 2

3

1 2

3

𝑅 = { 1,2 , 3,1 , 3,2 }

𝑅 = { 1,2 , 3,1 }

• Sometimes a relation we have does not quite 
give us what we want:
– A 𝑃𝐴𝑅𝐸𝑁𝑇 relation is not reflexive, not transitive –

we have to come up with all sorts of new formulas 
for grandparent/great-grandparent.. 

– Maybe what we want is an ANCESTOR relation: 
• It is transitive and reflexive, behaves nicely… 
• Though it requires more space to store than 𝑃𝐴𝑅𝐸𝑁𝑇…

• Is there a way to compute 𝐴𝑁𝐶𝐸𝑆𝑇𝑂𝑅 from 
𝑃𝐴𝑅𝐸𝑁𝑇 when we need it?  

• And how to do this in general? 

Extending relations to have desired properties

• Often, we start with a relation which is not reflexive 
– Or not symmetric, or not transitive 

• But we’d really prefer if it were reflexive (symmetric, transitive)!
• In this case, we change our relation to get a relation with the 

property we want. 
– We always want to keep all the original edges: never lose information. 
– And we want to make as few changes as possible. 

• If 𝑅 is a relation, then its transitive, reflexive or symmetric closure is 
the smallest transitive, reflexive or symmetric relation, respectively, 
containing R. 

37 38

39 40
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A reflexive closure of a relation

• Let 𝑅 ⊆ 1,2,3 × 1,2,3 , R={(1,1), (1,2), (2,2), (3,1)}

• To compute a reflexive closure of 𝑅, we just need to add all missing self-loops. 
– In this case, there is only one:  (3,3) 

– This will give us the smallest possible reflexive relation containing 𝑅. 

• So to compute a reflexive closure of a given relation, add all missing pairs 
(𝑥, 𝑥), and nothing else. 

• Another example: a reflexive closure of 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦} is 𝑥, 𝑦 𝑥 ≤ 𝑦}

𝑅 = { 1,1 , 1,2 , (2,2), (3,1)}

1 2

3

Reflexive closure of R: 
{ 1,1 , 1,2 , (2,2), (3,1), (3,3)}

1 2

3

A symmetric closure of a relation

• Let 𝑅 ⊆ 1,2,3 × 1,2,3 , R={(1,1), (1,2), (2,1), (2,2), (3,1)}

• To compute a symmetric closure of R, check  every pair 𝑥, 𝑦 ∈ 𝑅 for which 
𝑥 ≠ 𝑦. If 𝑦, 𝑥 ∉ 𝑅, then  add (𝑦, 𝑥) to the symmetric closure of 𝑅.
– In this case,  1,2 and 2,1 are both in 𝑅, but 1,3 ∉ 𝑅 even though 3,1 ∈ 𝑅,

so we add (1,3) to the symmetric closure of R. 

– We don’t need to bother with (2,3), (3,2) since neither is in R. 

– This will give us the smallest possible symmetric relation containing 𝑅. 

• Example: a symmetric closure of R3 = 𝑥, 𝑦 𝑥 < 𝑦} is 𝑥, 𝑦 𝑥 ≠ 𝑦}

𝑅 = { 1,1 , 1,2 , 2,1 , (2,2), (3,1)}1 2

3
Symmetric  closure of R: 
{ 1,1 , 1,2 , (1,3), 2,1 (2,2), (3,1) }

1 2

3

Transitive closure: routes from flights

• If you are trying to get to Boston from Gander, you would be more interested in a 
sequence of flights that would get you there than whether there is  a direct flight.

• You need a transitive closure of the FLIGHT relation.  

A transitive closure of a relation

• A transitive closure of a relation 𝑅 is the smallest transitive 
relation that contains 𝑅.

– Add edge (𝑥, 𝑧) whenever 𝑥, 𝑦 ∈ 𝑅, 𝑦, 𝑧 ∈ 𝑅, but 𝑥, 𝑧 ∉ 𝑅

– Keep doing it again and again, until the resulting relation is transitive

• Not enough to just go through edges once. 

• There are faster ways you will learn in your algorithms course. 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Paths in graphs 

• A path in a graph 𝐺 from a vertex 𝑥 to a vertex 𝑦 is a 
sequence (𝑣0 , 𝑣1), (𝑣1, 𝑣2), … , 𝑣𝑘−1, 𝑣𝑘 of edges 
of 𝐺, where 𝑣0 = 𝑥 and 𝑣𝑘 = 𝑦.   
– If no vertex repeats, it is called a simple path. 

– Number of edges 𝑘 is the length of the path. 

– If 𝑥 = 𝑦, it is called a cycle. 

• A pair (𝑥, 𝑦), where 𝑥 ≠ 𝑦, is in the transitive 
closure of a relation 𝑅 iff there is a path from 𝑥 to 𝑦
in the graph of 𝑅. 
– If 𝑥, 𝑦 is in R, it is also in its transitive closure even if 

𝑥 = 𝑦. 

1 2

3
4 5

6

1 2

3
4 5

6

Simple path 
from 6 to 2

Cycle 4 to 4

Combining closures

• To compute a closure that is both, for example, reflexive and 
transitive, compute one first and then the other of the result. 
– The order does not matter. 

• For example, let 𝑅 = 𝑥, 𝑦 𝑥 + 1 = 𝑦}, for 𝑥, 𝑦 ∈ ℤ. 
– Transitive closure of 𝑅 is 𝑥, 𝑦 𝑥 < 𝑦}

– Reflexive closure of 𝑅 is  𝑥, 𝑦 𝑥 + 1 = 𝑦 ∨ 𝑥 = 𝑦}

– Symmetric closure of 𝑅 is 𝑥, 𝑦 𝑥 + 1 = 𝑦 ∨ 𝑦 + 1 = 𝑥}

– Reflexive transitive closure of 𝑅 is 𝑅 is 𝑥, 𝑦 𝑥 ≤ 𝑦}

– Symmetric transitive closure of R is 𝑥, 𝑦 𝑥 ≠ 𝑦}

– Reflexive, symmetric, transitive closure of R is  ℤ × ℤ

43 44

45 46

47 48
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Transitive closure and limitations of predicate logic

• One reason why computing transitive closures is so useful for 
databases is that it lets us circumvent a limitation of predicate logic: 

– We can write a formula saying that there is a path from 𝑥 to 𝑦 of length 𝑘

• 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 𝑥, 𝑦 says that there is a path of length 2 in the graph of PARENT 

– However, we need to use 𝑘 − 1 new variables for a path of length k.

• There is no way to write a finite-length formula of predicate (first-
order) logic saying that there is some path, of any length, from 𝑥 to 𝑦.

– Without going to second-order logic, which is beyond the scope of this course. 

Equivalence relation

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is an equivalence if R is reflexive, 
symmetric and transitive. 

• E.g. A={1,2},  𝑅 = 1,1 , 2,2 or 𝑅 = 𝐴 × 𝐴

• Not 𝑅1 = { (1,1), (2,2), (1,2)} nor 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦}

• On  A = ℤ, 𝑅2 = 𝑥, 𝑦 𝑥 = 𝑦} is an equivalence

• So is 𝑅4 = 𝑥, 𝑦 𝑥 ≡ 𝑦 𝑚𝑜𝑑 3 }

– Reflexive:  ∀𝑥 ∈ ℤ, 𝑥 ≡ 𝑥 𝑚𝑜𝑑 3

– Symmetric: ∀𝑥, 𝑦 ∈ ℤ, 𝑥 ≡ 𝑦 mod 3 → 𝑦 ≡ 𝑥 𝑚𝑜𝑑 3

– Transitive:  ∀𝑥, 𝑦, 𝑧 ∈ ℤ, 𝑥 ≡ 𝑦 mod 3 ∧ 𝑦 ≡ 𝑧 𝑚𝑜𝑑 3 → 𝑥 ≡ 𝑧 𝑚𝑜𝑑 3

1 2

3 4

Equivalence classes

• An equivalence relation partitions A into 
equivalence classes:

– Intersection of any two equivalence classes is ∅

– Union of all equivalence classes is A.  

– 𝑅4: ℤ = 𝑥 𝑥 ≡ 0 𝑚𝑜𝑑 3} ∪ {x x ≡ 1 𝑚𝑜𝑑 3 ∪
𝑥 𝑥 ≡ 2 𝑚𝑜𝑑 3}

– 𝑅 = 𝐴 × 𝐴 gives rise to a single equivalence class. 
𝑅 = 1,1 , 2,2 on  A ={1,2} to  two equivalence 
classes. 

1 2

3 4

Order

• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is an order if R is reflexive, anti-symmetric
and transitive. 
– E.g.  𝑅1 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦}.  So is alphabetical order of English words.  

– But not 𝑅2 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦}
• not reflexive, so not an order. 

– 𝑆𝑈𝐵𝑆𝐸𝑇𝑆 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 ∧ 𝐴 ⊆ 𝐵 } is an order. 
• Reflexive:  ∀𝐴, 𝐴 ⊆ 𝐴

• Anti-symmetric:  ∀ 𝐴, 𝐵 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 → 𝐴 = 𝐵

• Transitive:  ∀𝐴, 𝐵, 𝐶 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶

– 𝐷𝐼𝑉𝐼𝑆𝑂𝑅𝑆 = {(x,y)| 𝑥, 𝑦 ∈ ℕ ∧ 𝑥, 𝑦 ≥ 2 ∧ ∃𝑧 ∈ ℕ 𝑦 = 𝑧 ⋅ 𝑥} is an order.

– PARENT is not an order. But ANCESTOR would be, if defined so that each person 
is an ancestor of themselves. 

1 2

1 2

3

3

Total and partial order

• R is a total order if ∀𝑥, 𝑦 ∈ 𝐴 𝑅 𝑥, 𝑦 ∨ 𝑅(𝑦, 𝑥) (any two elements 
of A are related.) 
– 𝑅1 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦} is a total order 

– So is alphabetical order of English words.  

• Otherwise, R is a partial order. 
– 𝑆𝑈𝐵𝑆𝐸𝑇𝑆 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 ∧ 𝐴 ⊆ 𝐵 } is a partial order. 

• Not total:   if A ={1,2} and B ={1,3}, then neither 𝐴 ⊆ 𝐵 nor 𝐵 ⊆ 𝐴

– 𝐷𝐼𝑉𝐼𝑆𝑂𝑅𝑆 is a partial order.
• 5 and 7 do not divide each other. 

– ANCESTOR is a partial order
• Two people don’t necessarily have to be related.  

1 2

1 2

3

3

Total order 

Partial order 

49 50
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Minimal and maximal 

• An order may have minimal and maximal elements 
(maybe multiple)
– 𝑥 ∈ 𝐴 is minimal in R if ∀𝑦 ∈ 𝐴 𝑦 ≠ 𝑥 → ¬𝑅(𝑦, 𝑥)

• and maximal if ∀𝑦 ∈ 𝐴 𝑦 ≠ 𝑥 → ¬𝑅 𝑥, 𝑦

– If there is only one minimal element, we call it a minimum 
• Unique maximal element is a maximum. 

– In 𝑅10, 1 is a minimum, 3 is a maximum
– In 𝑅11, 1 is a minimum, and both 2 and 3 are maximal
– ∅ is minimal in SUBSETS (its unique minimum); universe is 

maximal (its unique maximum). 
– All primes are minimal in DIVISORS, and there are no maximal 

elements. 

1 2

1 2

3

3

𝑅10

𝑅11

Drawing orders: diagrams

• A graph of an order relation has a lot 
of edges! It has all loops, and every 
time 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑅, we 
have 𝑎, 𝑐 ∈ 𝑅

• When we know that a relation is an 
order,  can we draw it simpler? 

– Can you figure out in which order you 
can take courses from this diagram? 

1001 1002

2001 2002 2003

2004 2005 2006

Hasse diagram

• A Hasse diagram is a way to draw a (partial or total) 
order without drawing loops or edges that have to
be there by transitivity or reflexivity.  

– draw minimal elements on the bottom, then go up

– don’t draw arrowheads (assume arrows go upwards). 

– R={ 𝑥, 𝑦 ∈ 1,2,3 × 1,2,3 | 𝑥 ≤ 𝑦}

• On the Hasse diagram of R, only draw edges (1,2) and (2,3), as 
all the rest follow by reflexivity and transitivity.  1 is the minimal 
(bottom), 3 maximal (top).

1 2 3

1

2

3

R

Hasse
diagram
of R

∅

{1} {2}

{1,2}

{3}

{1,3} {2,3}

{1,2,3}

Hasse diagram of 
SUBSETS on {1,2,3} 

Puzzle:  coins 

• A not-too-far-away country recently got rid of a penny coin,  
and now everything needs to be rounded to the nearest 
multiple of 5 cents…  

– Suppose that instead of just dropping the penny, they would 
introduce a 3 cent coin.

• Like British three pence.   

– What is the largest amount that cannot be paid by using only existing 
coins (5, 10, 25) and a 3c coin? 

55 56

57 58

59


