

- Some books, including our textbook, denote the empty string by a Greek letter "lambda" λ, others by the Greek letter "epsilon" ε.
- A binary string is a finite string over the alphabet {0,1} - 0011011, 1111, λ , 0 are binary strings with lengths 7,4,0,1 respectively.

- Let U={a,b,c,d,e}, in this order. Then the characteristic string of a set A={a,c,d} is 10110, since 1st, 3rd and 4th elements of U are in A.
 - The characteristic string of Ø is 00000. The characteristic string of U is 11111.

Set operations with characteristic strings

- Characteristic strings make it easy to do set operations
 - Complement: flip all 0s to 1s, and all 1s to 0s.
 - Union: put 1 if at least one of the strings has 1 in that position.
 Intersection: put 0 if at least one of the strings has 0 in that position.
- Let U={a,b,c,d,e}, A={a,c,d}, B= {a,b}.
 - Then the characteristic string for A is 10110, for B is 11000.
 - The characteristic string of \overline{A} is 01001, corresponding to {b,e}
 - The characteristic string of $A \cup B$ is 11110, corresponding to set {a,b,c,d}
 - The characteristic string of $A \cap B$ is 10000, encoding the set {a}.
- 7

Cartesian products

• Can define the Cartesian product for any number of sets: $-A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots x_k) | x_1 \in A_1 \dots x_k \in A_k\}$ $-A = \{1, 2, 3\}, B = \{a, b\}, C = \{3, 4\}$ $-A \times B \times C = \{(1, a, 3), (1, a, 4), (1, b, 3), (1, b, 4), (2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (3, a, 3), (3, a, 4), (3, b, 3), (3, b, 4)\}$ $-|A \times B \times C| = |A| \cdot |B| \cdot |C|$

13

14

• (Sharene, Bungay, ER-6032) is a record. "Office" is a field. PROFDATA is a table.

Usually, a database consists of several tables.

 PROFDATA
 COURSEDATA

 1
 Manrique Mata-Montero
 Exercise

 2
 Sharene Bungay
 ER-0033
 1

 2
 Sharene Bungay
 ER-0033
 2
 COMP1001

 3
 Antoninal Kolokolova
 ER-0033
 2
 COMP1001

 3
 Antoninal Kolokolova
 ER-0033
 2
 COMP1001

 4
 We want to find out if Manrique (and Comp1001)
 MRR
 13:00-13:50
 EN-2007

 4
 We want to find out if Manrique is teaching COMP1001.
 Ask is there somebody with the same last name teaching COMP1001?

 4
 NT 97 In ProfData(Marrique, In, 2) A CourseData(COMP1001, 1, 1)
 Errorl ProfData Marrique, In, 2) A CourseData(COMP1001, 7, 7, 1, 1)

 Almost there, but the database does not like our question marks...
 How do we fill them if we don't know their values? Use 3 again

 3
 In 30 3d 3t 3r ProfData(Marrique, In, 0) A CourseData(COMP1001, 4, t, r, In)
 In SQL, a popular database language,

 Putting a condition which records to select (such as ProfData(Marrique,)) is called a selection

 the operation of the kind 3x P(x) A Q(x) is called a jorigettion

 Adding extra seistential quantifiers for "don't care" fields is called a projection
 </t

PROFDATA					COURSEDATA					
	А	в	С		A	В	C	D	E	
1	Manrique	Mata-Montero	EN-2033	1	COMP1000	MWF	11:00-11:50	EN-1054	Mata-Montero	
2	Sharene	Bungay	ER-6032	2	COMP1001	MWF	12:00-12:50	EN-2040	Bungay	
з	Antonina	Kolokolova	ER-6033	3	COMP1002	MTR	13:00-13:50	EN-2007	Kolokolova	
 We want to find out if Manrique is teaching COMP1001. ∃ ln ∃o ∃d ∃t ∃r ProfData(Manrique, ln, o) ∧ CourseData(COMP1001, d, t, r, ln) Now let's make it more general: given person's name x and course name y, is person x teaching course y? ∃ ln ∃o ∃d ∃t ∃r ProfData(x, ln, o) ∧ CourseData(y, d, t, r, ln) Here, x and y are free variables. 										

- Symmetric transitive closure of R is $\{(x, y) | x \neq y\}$
- Reflexive, symmetric, transitive closure of R is $\mathbb{Z} \times \mathbb{Z}$

Transitive closure and limitations of predicate logic One reason why computing transitive closures is so useful for databases is that it lets us circumvent a limitation of predicate logic: We can write a formula saying that there is a path from x to y of length k Grandparent(x, y) says that there is a path of length 2 in the graph of PARENT However, we need to use k - 1 new variables for a path of length k. There is no way to write a finite-length formula of predicate (first-order) logic saying that there is some path, of any length, from x to y. Without going to second-order logic, which is beyond the scope of this course.

