
2020-12-01

1

Unit 5
Basic structures: relations and strings

Sets and strings

• How do we represent sets on a computer?
– We can list names of a set’s elements, but that would make

operations with sets less efficient: even to check if an element is in a
set, we’d need to scan through the whole list.

• Instead, when the universe is finite (and reasonably small), we
can represent a set by its characteristic string, stating whether
each element of the universe is in the set or not.
– but first, let us recall and define what is a string.

Alphabet

• A finite set of symbols is called an alphabet.

– English alphabet contains 26 letters (ignoring case): {a, .., z}

– {0,1} is the binary alphabet. This is the most popular alphabet in
computer science.

– An alphabet containing only one letter, for example {a}, is called a
𝑢𝑛𝑎𝑟𝑦 alphabet.

Strings

• A string (over an alphabet A) is a sequence (list) of symbols from A

– Usually with repetition; order matters.

• We will talk about 1st, 2nd, 3rd and so on symbol in a given string.

– “mun” is a string over English alphabet (lowercase). 2nd symbol in “mun”
is “u”.

• English words are strings over English alphabet.

– “1002” is a string over the alphabet of digits {0,1,2}.

– A natural number is a string over the alphabet of digits
{0,1,2,3,4,5,6,7,8,9}

Finite strings, binary strings

• A finite string of length 𝑛 is a string containing 𝑛 symbols
– The length of a string s is denoted |s|

• The same notation as cardinality of a set (number of elements in a set): |A|

– |mun|=3. |1002|=4.
– There is an empty (null) string with the length 0

• Some books, including our textbook, denote the empty string by a Greek letter
“lambda” 𝜆, others by the Greek letter “epsilon” 𝜖.

• A binary string is a finite string over the alphabet {0,1}
– 0011011, 1111, 𝜆, 0 are binary strings

• with lengths 7,4,0,1 respectively.

Characteristic string of a set

• Let U be a universe. List its elements in some order
– It does not matter which order, as long as it is fixed and you know

which element is 1st, which is 2nd and so on.
– For example, in 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} we can arbitrarily call 𝑎 the first

element, 𝑏 second, 𝑐 third, 𝑑 fourth and 𝑒 fifth.

• A characteristic string of a set 𝐴 ⊆ 𝑈 is a binary string 𝑠 of
length |U| which for every position 𝑖 in 𝑠 has a 1 iff the 𝑖𝑡ℎ

element of U is in A, and 0 iff the 𝑖𝑡ℎ element of U is not in A.
– Let U={a,b,c,d,e}, in this order. Then

• the characteristic string of a set A={a,c,d} is 10110, since 1st, 3rd and 4th elements
of U are in A.

• The characteristic string of ∅ is 00000. The characteristic string of U is 11111.

1 2

3 4

5 6

2020-12-01

2

Set operations with characteristic strings

• Characteristic strings make it easy to do set operations

– Complement: flip all 0s to 1s, and all 1s to 0s.

– Union: put 1 if at least one of the strings has 1 in that position.

– Intersection: put 0 if at least one of the strings has 0 in that position.

• Let U={a,b,c,d,e}, A={a,c,d}, B= {a,b}.

– Then the characteristic string for A is 10110, for B is 11000.

– The characteristic string of ҧ𝐴 is 01001, corresponding to {b,e}

– The characteristic string of 𝐴 ∪ 𝐵 is 11110, corresponding to set {a,b,c,d}

– The characteristic string of 𝐴 ∩ 𝐵 is 10000, encoding the set {a}.

U

𝐴 ∪ 𝐵

U

𝐴 ∩ 𝐵

U
A

Sets and strings are different types!

• Though strings can be used to represent sets
– with respect to a given finite universe and a given order of

elements in it

strings and sets are different types!
– The main operation on a set is to check whether a given

element is in a set: 𝑎 ∈ 𝑆.
• There are no duplicates, and no intrinsic order of elements.

– The main operation on a string is to see what symbol is in a
specific position 𝑖.

• A string is a special type of a sequence, where at every
position the sequence is an element of the alphabet.

Pairs, triples, tuples

• For sets 𝑆1, 𝑆2 define (ordered) pairs of elements
(𝑥1, 𝑥2) as a sequence of length 2 where the first element
𝑥1 ∈ 𝑆1 and second element 𝑥2 ∈ 𝑆2

– Notation 𝑥1 , 𝑥2 , with round brackets () indicates that it is an
sequence, ordered with distinguishable first and second elements.

• E.g. 1,2 or (5,5); here 1,2 ≠ (2,1)

– as opposed to curly brackets for sets: {1,2} = {2,1}

• So {1,2} and (1,2) mean different things!

Pairs, triples, tuples

• Can generalize pairs to ordered sequences of any (fixed) length: triples,
quadruples, generally tuples of elements from sets 𝑆1, 𝑆2, … 𝑆𝑛

– A tuple with 𝑛 elements is called an 𝑛-tuple. A triple is a 3-tuple.
• (2,3,2,1,3) is a 5-tuple, where all 5 positions are elements of {1,2,3}.

• Tuples are similar to strings in that they are both ordered sequences.
– In strings, elements come from a (fairly small) alphabet, each is commonly one

symbol, and they are written one after another without spaces or brackets.
• We often look at a bunch of strings of different length together.

– In tuples, as in general sequences, elements are listed in round brackets () and
separated by commas.
• We often look at tuples of specific length together (eg a bunch of pairs).

– In both cases, we often ask what element is in the position 𝑖.

Cartesian products

• Cartesian product of A and B is a set of all (ordered) pairs of elements with the first
element from A, and the second element from B:
– A x B = 𝑥, 𝑦 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}

– 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏}

– 𝐴 × 𝐵 = { 1, 𝑎 , 1, 𝑏 , 2, 𝑎 , 2, 𝑏 , 3, 𝑎 , 3, 𝑏 }

– 𝐵 × 𝐵 = { 𝑎, 𝑎. , 𝑎, 𝑏 , 𝑏, 𝑎 , 𝑏, 𝑏 }

• Order of pairs does not matter, order within pairs does: 𝐴 × 𝐵 ≠ 𝐵 × 𝐴 .
– The name “Cartesian” is the same as in Cartesian coordinate system: every point is

described by a pair of numbers in 2d (triple of numbers in 3d).

• Number of elements in 𝐴 × 𝐵 is |𝐴 × 𝐵| = 𝐴 ⋅ |𝐵|
– Here, |A| is the cardinality of A (number of elements in A)

1 2 3

a (1,a) (2,a) (3,a)

b (1,b) (2,b) (3,b)

7 8

9 10

11 12

2020-12-01

3

Cartesian products

• Can define the Cartesian product for any number of sets:

–𝐴1 × 𝐴2 × ⋯ × 𝐴𝑘 = 𝑥1, 𝑥2, … 𝑥𝑘) 𝑥1 ∈ 𝐴1 … 𝑥𝑘 ∈ 𝐴𝑘

–𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏}, 𝐶 = {3,4}

–𝐴 × 𝐵 × 𝐶 = { 1, 𝑎, 3 , 1, 𝑎, 4 , 1, 𝑏, 3 , 1, 𝑏, 4 ,

2, 𝑎, 3 , 2, 𝑎, 4 , 2, 𝑏, 3 , 2, 𝑏, 4 ,

3, 𝑎, 3 , 3, 𝑎, 4 , 3, 𝑏, 3 , 3, 𝑏, 4 }

– |𝐴 × 𝐵 × 𝐶 | = 𝐴 ⋅ 𝐵 ⋅ |𝐶|

Relations

• A set of tuples of elements (that is, a subset of a Cartesian product)
is called a relation. In particular, a set of pairs of elements is called
a binary relation.
– LESSTHAN = 𝑥, 𝑦 𝑥 and y are real numbers such that 𝑥 < 𝑦}

• So 1,2 ∈ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁, but 2,1 ∉ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁

• LESSTHAN ⊆ ℝ × ℝ

– LIKES = {(𝑥, 𝑦) | person 𝑥 likes person 𝑦}

– PARENT ={(𝑥, 𝑦) | person 𝑥 is a parent of person 𝑦}

– REGISTRATIONS = 𝑛𝑎𝑚𝑒, 𝑐𝑜𝑢𝑟, 𝑠𝑒𝑚 student 𝑛𝑎𝑚𝑒 takes course 𝑐𝑜𝑢𝑟
in semester 𝑠𝑒𝑚}
• If Wei Lee takes COMP1002 in Fall 2020, then

(Wei Lee, COMP1002, Fall 2020) ∈ 𝑅𝐸𝐺𝐼𝑆𝑇𝑅𝐴𝑇𝐼𝑂𝑁𝑆

Relational databases

PROFDATA = {(𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒, 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒, 𝑜𝑓𝑓𝑖𝑐𝑒)} =

COURSEDATA = {(𝑐𝑜𝑢𝑟𝑠𝑒, 𝑑𝑎𝑦𝑠, 𝑡𝑖𝑚𝑒, 𝑟𝑜𝑜𝑚, 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)} =

In the language of databases, each tuple in a relation is called a record. Each position in the
tuple called a field. And the relation itself is called a table.
• Records are rows in the table, and fields are columns.
• (Sharene, Bungay,ER-6032) is a record. “Office” is a field. PROFDATA is a table.
• Usually, a database consists of several tables.

Predicates vs. sets

• Predicates and sets are two sides of the same coin

– For each set S there is a predicate which is true exactly on elements of S

– For each predicate P there is a set S of values of 𝑥 on which P is true.

Set S Predicate P

A collection of elements Becomes true/false on a given element

SP = 𝑥 𝑃 𝑥 is true} 𝑃𝑆 𝑥 ≡ "𝑥 ∈ 𝑆“

Predicates vs relations

Relation R Predicate P

A set (collection) of pairs (generally, n-
tuples) of elements

True/false on a given pair (tuple) of elements

RP = (𝑥, 𝑦) 𝑃 𝑥, 𝑦 is true}

𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁 =
𝑥, 𝑦 (𝑥 ∈ ℝ) ∧ (𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦)}

= 𝑥, 𝑦 𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 𝑥, 𝑦 is true }

3,5 ∈ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁
3,2 ∉ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁

𝑃𝑅 𝑥, 𝑦 ≡ "(𝑥, 𝑦) ∈ 𝑅“

𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 𝑥, 𝑦 ≡
(𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦

≡ 𝑥, 𝑦 ∈ 𝐿𝐸𝑆𝑆𝑇𝐻𝐴𝑁

𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 3,5 is true
𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 3,2 is false

13 14

15 16

17 18

2020-12-01

4

Database queries

• Predicate logic gives us a way to query relational databases!

– Using predicates for database relations.

• Then build a query as a formula.

– Input of the query:

• Can be nothing (if no free variables)

• Or specific values for its free variables.

– Output of the query:

• Either true/false

• Or a set of elements (values of its free variables) satisfying the query.

Database queries

PROFDATA = {(𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒, 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒, 𝑜𝑓𝑓𝑖𝑐𝑒)} =

COURSEDATA = {(𝑐𝑜𝑢𝑟𝑠𝑒, 𝑑𝑎𝑦𝑠, 𝑡𝑖𝑚𝑒, 𝑟𝑜𝑜𝑚, 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)} =

How can we query such databases?

Querying databases
PROFDATA COURSEDATA

• Suppose we want to find out if someone called Manrique is
teaching COMP1001.

– First, define predicates corresponding to the relations:

• 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎(𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒, 𝑙𝑎𝑠𝑡𝑛𝑎𝑚𝑒, 𝑜𝑓𝑓𝑖𝑐𝑒)

• 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝑐𝑜𝑢𝑟𝑠𝑒, 𝑑𝑎𝑦𝑠, 𝑡𝑖𝑚𝑒, 𝑟𝑜𝑜𝑚, 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)

– Now, let’s write a formula using these predicates which would be true if
and only if Manrique is teaching COMP1001.

PROFDATA COURSEDATA

• We want to find out if Manrique is teaching COMP1001.
– Ask: is there somebody with the same last name teaching COMP1001?

• Try ∃ 𝑙𝑛 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝑀𝑎𝑛𝑟𝑖𝑞𝑢𝑒, 𝑙𝑛, ∧ CourseData COMP1001, ln
– Error! ProfData takes 3 inputs, and CourseData takes 5!

• Try ∃ 𝑙𝑛 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝑀𝑎𝑛𝑟𝑖𝑞𝑢𝑒, 𝑙𝑛, ? ∧ CourseData(COMP1001, ? , ? , ? , ln)
– Almost there, but the database does not like our question marks…
– How do we fill them if we don’t know their values? Use ∃ again

∃ 𝒍𝒏 ∃𝒐 ∃𝒅 ∃𝒕 ∃𝒓 𝑷𝒓𝒐𝒇𝑫𝒂𝒕𝒂 𝑴𝒂𝒏𝒓𝒊𝒒𝒖𝒆, 𝒍𝒏, 𝒐 ∧ 𝐂𝐨𝐮𝐫𝐬𝐞𝐃𝐚𝐭𝐚(𝐂𝐎𝐌𝐏𝟏𝟎𝟎𝟏, 𝐝, 𝐭, 𝐫, 𝐥𝐧)

• In SQL, a popular database language,
– Putting a condition which records to select (such as ProfData(Manrique,…)) is called a selection
– the operation of the kind ∃x P x ∧ 𝑄(𝑥) is called a join
– Adding extra existential quantifiers for “don’t care” fields is called a projection

PROFDATA COURSEDATA

• We want to find out if Manrique is teaching COMP1001.
∃ 𝒍𝒏 ∃𝒐 ∃𝒅 ∃𝒕 ∃𝒓 𝑷𝒓𝒐𝒇𝑫𝒂𝒕𝒂 𝑴𝒂𝒏𝒓𝒊𝒒𝒖𝒆, 𝒍𝒏, 𝒐 ∧ 𝐂𝐨𝐮𝐫𝐬𝐞𝐃𝐚𝐭𝐚(𝐂𝐎𝐌𝐏𝟏𝟎𝟎𝟏, 𝐝, 𝐭, 𝐫, 𝐥𝐧)

• Now let’s make it more general: given person’s name 𝑥 and course
name 𝑦, is person 𝑥 teaching course 𝑦?

∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)

– Here, 𝑥 and 𝑦 are free variables.

19 20

21 22

23 24

2020-12-01

5

PROFDATA COURSEDATA

• Now let’s make it more general: given person’s name 𝑥 and course name 𝑦, is
person 𝑥 teaching course 𝑦?

∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)

– Here, 𝑥 and 𝑦 are free variables.

• Now let’s write a query that check that everybody teaches something.
∀𝒙 ∃𝒚 ∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)

• Finally, let’s return a relation containing all pairs (𝑥, 𝑦) such that 𝑥 teaches 𝑦

– TEACHES = 𝑥, 𝑦 ∃ 𝑙𝑛 ∃𝑜 ∃𝑑 ∃𝑡 ∃𝑟 𝑃𝑟𝑜𝑓𝐷𝑎𝑡𝑎 𝒙, 𝑙𝑛, 𝑜 ∧ 𝐶𝑜𝑢𝑟𝑠𝑒𝐷𝑎𝑡𝑎(𝐲, d, t, r, 𝑙𝑛)}

Building sets from sets (and other stuff).

• A bunch of tuples is a set called a relation.
– A set of all possible tuples of elements of given sets is a Cartesian product

• A bunch of strings is just a set of strings.
– The set of all binary strings has a special notation: 0,1 ∗

• Star stands for “repeat elements of the set {0,1} zero or more times”.

– In general, a set of all strings over an alphabet A is denoted 𝐴∗ (A star).
• You will see the reason for this notation in COMP 1003.

• What is a bunch of sets? And a set of all sets?
Power set P 𝐴

Power sets

• A power set of a set A, denoted P 𝐴 , is a set elements of
which are all subsets of A.
– Think of sets as boxes of elements.
– A subset of a set A is a box with elements of A

• maybe some, maybe all, maybe none

– Then P 𝐴 is a box containing all possible boxes
corresponding to subsets of 𝐴

– When you open the box P 𝐴 , you don’t see chocolates
(elements of A), you see boxes.

– A={1,2}, P 𝐴 = ∅, 1 , 2 , 1,2

• If 𝐴 has 𝑛 elements, then P 𝐴 has 2𝑛 elements

Set A

Power set P 𝐴

Power sets

• A power set of a set A, denoted P 𝐴 , is a set elements of
which are all subsets of A.
– A={1,2}, P 𝐴 = ∅, 1 , 2 , 1,2
– 𝐴 = ∅, P 𝐴 = ∅ .

• They are not the same! There is nothing in A, but there is one
element, an empty box, in P 𝐴

– 𝐴 = 𝑎, 1, 𝑏 , P 𝐴 = ∅, 𝑎 , 1, 𝑏 , {𝑎, 1, 𝑏 } .
• Here, 𝐴 contains two elements, 𝑎 and {1, 𝑏}. It is irrelevant

for the power set that the second element is a set (a box), it
treats it just like any other element.

• That’s why we need an extra pair of parentheses in the third
element of P 𝐴 , 1, 𝑏 . This tells us that the 3rd element of
P 𝐴 , is a set (box) containing a single element: 1, 𝑏 , just
like {𝑎} is a set with a single element 𝑎.

Set A

Type checking: power set and cartesian product

• Power set is a set, elements of which are themselves sets.
– If 𝐴 has 𝑛 elements, then P 𝐴 has 2𝑛 elements, each of which is a set
– Empty set ∅ is an element of P 𝐴 for any 𝐴.

• Because for every 𝐴, ∅ ⊆ 𝐴

• Cartesian product of two sets is a set of pairs of elements
– Of 𝑘 sets, (ordered) 𝑘-tuples of elements.
– Remember that (𝑎, 𝑏) and {𝑎, 𝑏} mean very different things!

• If a program expects a pair and you give it a set, you get an ERROR!

– Power set: ∅, , , (2|𝐴| sets inside)
– Cartesian product: { , , , , , , , } (𝐴 ⋅ |𝐵| pairs inside)

25 26

27 28

29 30

2020-12-01

6

Binary relations

• A special type of relation, with many interesting properties, is a
binary relation ⊆ 𝐴 × 𝐴 for some set 𝐴

– that is, a relation among elements of the same set, where every
element can be in the 1st as well as 2nd position of a pair.

– A={1,2},

• 𝐴 × 𝐴 = { 1,1. , 1,2 , 2,1 , 2,2 }

• R={(1,1), (2,2)} ={ (x,y) |𝑥, 𝑦 ∈ 1,2 ∧ x=y}}

• R={(1,1),(1,2),(2,2)} = (x,y) |𝑥, 𝑦 ∈ 1,2 ∧ 𝑥 ≤ 𝑦}.

– A=PEOPLE

• COUPLES ={(x,y) | Loves(x,y)}

• PARENTS ={(x,y) | Parent(x,y)}

Graphs of binary relations

• A (directed) graph (digraph) of a binary relation 𝑅 ⊆ 𝐴 × 𝐴 is a diagram consisting of
– |A| points, with a point (often drawn as a circle with a label, called a vertex or a

node) for each element of A
– An arrow (called an edge, an arc or a link) from point 𝑥 to point 𝑦 for each 𝑥, 𝑦 ∈ 𝑅

• We draw a loop with an arrow for each 𝑥 ∈ 𝐴 such that 𝑥, 𝑥 ∈ 𝑅

• Let A={1,2,3}

• This is a different notion of a graph than plotting a function on plane!

1 2

3

𝑅 = { 1,1 }𝑅 = { 1,1 , 1,2 , (2,2), (3,1)}

1 2

3

1 2

3

𝑅 = { 1,2 , 1,3 , 3,1 }

1 2

3

𝑅 = 𝐴 × 𝐴

Reflexive relations

• A binary relation 𝑅 ⊆ 𝐴 × 𝐴 is reflexive if
∀𝑥 ∈ 𝐴, 𝑅(𝑥, 𝑥)

– Every x is related to itself.

• On a graph, every vertex has a loop

– E.g. A={1,2}, 𝑅1 = { (1,1), (2,2), (1,2)}

– On A = ℤ, 𝑅2 = 𝑥, 𝑦 𝑥 = 𝑦} is reflexive

– But not 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦}

1 2

𝑅1

1 2

𝑅2

3 4

Anti-reflexive relations

• A binary relation 𝑅 ⊆ 𝐴 × 𝐴 is anti-reflexive if ∀𝑥 ∈ 𝐴, ¬𝑅 𝑥, 𝑥
• Graph of R has no loops.

• E.g. A={1,2}, 𝑅6 = {(1,2)}

– but not 𝑅1 = { (1,1), (2,2), (1,2)} (reflexive)

– nor 𝑅7 = {(1,1), (1,2)} (neither)

• For 𝐴 = ℤ, not 𝑅2 = 𝑥, 𝑦 𝑥 = 𝑦}

– Nor 𝑅4 = 𝑥, 𝑦 𝑥 ≡ 𝑦 𝑚𝑜𝑑 3 }

• But 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦} is anti-reflexive.

– So are 𝑅5 = 𝑥, 𝑦 ∈ ℤ × ℤ 𝑥 + 1 = 𝑦}

– And PARENT = 𝑥, 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 × 𝑃𝐸𝑂𝑃𝐿𝐸 𝑥 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑦}

– A relation R can be neither reflexive nor anti-reflexive.

1 2

𝑅6 ={(1,2)}

31 32

33 34

35 36

2020-12-01

7

Symmetric relations

• A binary relation 𝑅 ⊆ 𝐴 × 𝐴 is symmetric iff
∀𝑥, 𝑦 ∈ 𝐴, 𝑥, 𝑦 ∈ 𝑅 ↔ 𝑦, 𝑥 ∈ 𝑅

– For every arrow in a graph (except loops) another
goes the opposite way

–𝑅1 and 𝑅3 from previous slides are not symmetric.
𝑅2 is.

–𝑅8 = { 1,2 , 2,1 , 1,1 } is symmetric

–A = ℤ, 𝑅4 = 𝑥, 𝑦 𝑥 ≡ 𝑦 𝑚𝑜𝑑 3 } is symmetric.

1 2

𝑅8

Anti-symmetric relations

• A binary relation 𝑅 ⊆ 𝐴 × 𝐴 is anti-symmetric iff ∀𝑥, 𝑦 ∈

𝐴, 𝑥, 𝑦 ∈ 𝑅 ∧ 𝑦, 𝑥 ∈ 𝑅 → 𝑥 = 𝑦

• For every arrow, there is no arrow the other way. Loops OK.

• 𝑅1, 𝑅3, 𝑅5, 𝑅6, 𝑅7, 𝑃𝐴𝑅𝐸𝑁𝑇 are anti-symmetric.

• 𝑅4 is not.

• 𝑅2 is both symmetric and anti-symmetric.

• 𝑅9 = 1,2 , 1,3 , 3,1 is neither symmetric
nor anti-symmetric.

1 2

𝑅8

𝑅1

1 2

1 2

3

𝑅9

Transitive relations

• A binary relation 𝑅 ⊆ 𝐴 × 𝐴 is transitive if

∀𝑥, 𝑦, 𝑧 ∈ 𝐴, 𝑥, 𝑦 ∈ 𝑅 ∧ 𝑦, 𝑧 ∈ 𝑅 → 𝑥, 𝑧 ∈ 𝑅

– In the graph of R, if there is a way to get from x to z by
following a sequence of edges (arrows), then there is a
way to get from x to z in one step.

– 𝑅1, 𝑅2, 𝑅3, 𝑅4 are all transitive.

– 𝑅5 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 + 1 = 𝑦} is not transitive.

– PARENT = 𝑥, 𝑦 𝑥, 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 ∧ 𝑥 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑦}
is not transitive either.

1 2

3

1 2

3

𝑅 = { 1,2 , 3,1 , 3,2 }

𝑅 = { 1,2 , 3,1 }

• Sometimes a relation we have does not quite
give us what we want:
– A 𝑃𝐴𝑅𝐸𝑁𝑇 relation is not reflexive, not transitive –

we have to come up with all sorts of new formulas
for grandparent/great-grandparent..

– Maybe what we want is an ANCESTOR relation:
• It is transitive and reflexive, behaves nicely…
• Though it requires more space to store than 𝑃𝐴𝑅𝐸𝑁𝑇…

• Is there a way to compute 𝐴𝑁𝐶𝐸𝑆𝑇𝑂𝑅 from
𝑃𝐴𝑅𝐸𝑁𝑇 when we need it?

• And how to do this in general?

Extending relations to have desired properties

• Often, we start with a relation which is not reflexive
– Or not symmetric, or not transitive

• But we’d really prefer if it were reflexive (symmetric, transitive)!
• In this case, we change our relation to get a relation with the

property we want.
– We always want to keep all the original edges: never lose information.
– And we want to make as few changes as possible.

• If 𝑅 is a relation, then its transitive, reflexive or symmetric closure is
the smallest transitive, reflexive or symmetric relation, respectively,
containing R.

37 38

39 40

41 42

2020-12-01

8

A reflexive closure of a relation

• Let 𝑅 ⊆ 1,2,3 × 1,2,3 , R={(1,1), (1,2), (2,2), (3,1)}

• To compute a reflexive closure of 𝑅, we just need to add all missing self-loops.
– In this case, there is only one: (3,3)

– This will give us the smallest possible reflexive relation containing 𝑅.

• So to compute a reflexive closure of a given relation, add all missing pairs
(𝑥, 𝑥), and nothing else.

• Another example: a reflexive closure of 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦} is 𝑥, 𝑦 𝑥 ≤ 𝑦}

𝑅 = { 1,1 , 1,2 , (2,2), (3,1)}

1 2

3

Reflexive closure of R:
{ 1,1 , 1,2 , (2,2), (3,1), (3,3)}

1 2

3

A symmetric closure of a relation

• Let 𝑅 ⊆ 1,2,3 × 1,2,3 , R={(1,1), (1,2), (2,1), (2,2), (3,1)}

• To compute a symmetric closure of R, check every pair 𝑥, 𝑦 ∈ 𝑅 for which
𝑥 ≠ 𝑦. If 𝑦, 𝑥 ∉ 𝑅, then add (𝑦, 𝑥) to the symmetric closure of 𝑅.
– In this case, 1,2 and 2,1 are both in 𝑅, but 1,3 ∉ 𝑅 even though 3,1 ∈ 𝑅,

so we add (1,3) to the symmetric closure of R.

– We don’t need to bother with (2,3), (3,2) since neither is in R.

– This will give us the smallest possible symmetric relation containing 𝑅.

• Example: a symmetric closure of R3 = 𝑥, 𝑦 𝑥 < 𝑦} is 𝑥, 𝑦 𝑥 ≠ 𝑦}

𝑅 = { 1,1 , 1,2 , 2,1 , (2,2), (3,1)}1 2

3
Symmetric closure of R:
{ 1,1 , 1,2 , (1,3), 2,1 (2,2), (3,1) }

1 2

3

Transitive closure: routes from flights

• If you are trying to get to Boston from Gander, you would be more interested in a
sequence of flights that would get you there than whether there is a direct flight.

• You need a transitive closure of the FLIGHT relation.

A transitive closure of a relation

• A transitive closure of a relation 𝑅 is the smallest transitive
relation that contains 𝑅.

– Add edge (𝑥, 𝑧) whenever 𝑥, 𝑦 ∈ 𝑅, 𝑦, 𝑧 ∈ 𝑅, but 𝑥, 𝑧 ∉ 𝑅

– Keep doing it again and again, until the resulting relation is transitive

• Not enough to just go through edges once.

• There are faster ways you will learn in your algorithms course.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Paths in graphs

• A path in a graph 𝐺 from a vertex 𝑥 to a vertex 𝑦 is a
sequence (𝑣0 , 𝑣1), (𝑣1, 𝑣2), … , 𝑣𝑘−1, 𝑣𝑘 of edges
of 𝐺, where 𝑣0 = 𝑥 and 𝑣𝑘 = 𝑦.
– If no vertex repeats, it is called a simple path.

– Number of edges 𝑘 is the length of the path.

– If 𝑥 = 𝑦, it is called a cycle.

• A pair (𝑥, 𝑦), where 𝑥 ≠ 𝑦, is in the transitive
closure of a relation 𝑅 iff there is a path from 𝑥 to 𝑦
in the graph of 𝑅.
– If 𝑥, 𝑦 is in R, it is also in its transitive closure even if

𝑥 = 𝑦.

1 2

3
4 5

6

1 2

3
4 5

6

Simple path
from 6 to 2

Cycle 4 to 4

Combining closures

• To compute a closure that is both, for example, reflexive and
transitive, compute one first and then the other of the result.
– The order does not matter.

• For example, let 𝑅 = 𝑥, 𝑦 𝑥 + 1 = 𝑦}, for 𝑥, 𝑦 ∈ ℤ.
– Transitive closure of 𝑅 is 𝑥, 𝑦 𝑥 < 𝑦}

– Reflexive closure of 𝑅 is 𝑥, 𝑦 𝑥 + 1 = 𝑦 ∨ 𝑥 = 𝑦}

– Symmetric closure of 𝑅 is 𝑥, 𝑦 𝑥 + 1 = 𝑦 ∨ 𝑦 + 1 = 𝑥}

– Reflexive transitive closure of 𝑅 is 𝑅 is 𝑥, 𝑦 𝑥 ≤ 𝑦}

– Symmetric transitive closure of R is 𝑥, 𝑦 𝑥 ≠ 𝑦}

– Reflexive, symmetric, transitive closure of R is ℤ × ℤ

43 44

45 46

47 48

2020-12-01

9

Transitive closure and limitations of predicate logic

• One reason why computing transitive closures is so useful for
databases is that it lets us circumvent a limitation of predicate logic:

– We can write a formula saying that there is a path from 𝑥 to 𝑦 of length 𝑘

• 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 𝑥, 𝑦 says that there is a path of length 2 in the graph of PARENT

– However, we need to use 𝑘 − 1 new variables for a path of length k.

• There is no way to write a finite-length formula of predicate (first-
order) logic saying that there is some path, of any length, from 𝑥 to 𝑦.

– Without going to second-order logic, which is beyond the scope of this course.

Equivalence relation

• A binary relation 𝑅 ⊆ 𝐴 × 𝐴 is an equivalence if R is reflexive,
symmetric and transitive.

• E.g. A={1,2}, 𝑅 = 1,1 , 2,2 or 𝑅 = 𝐴 × 𝐴

• Not 𝑅1 = { (1,1), (2,2), (1,2)} nor 𝑅3 = 𝑥, 𝑦 𝑥 < 𝑦}

• On A = ℤ, 𝑅2 = 𝑥, 𝑦 𝑥 = 𝑦} is an equivalence

• So is 𝑅4 = 𝑥, 𝑦 𝑥 ≡ 𝑦 𝑚𝑜𝑑 3 }

– Reflexive: ∀𝑥 ∈ ℤ, 𝑥 ≡ 𝑥 𝑚𝑜𝑑 3

– Symmetric: ∀𝑥, 𝑦 ∈ ℤ, 𝑥 ≡ 𝑦 mod 3 → 𝑦 ≡ 𝑥 𝑚𝑜𝑑 3

– Transitive: ∀𝑥, 𝑦, 𝑧 ∈ ℤ, 𝑥 ≡ 𝑦 mod 3 ∧ 𝑦 ≡ 𝑧 𝑚𝑜𝑑 3 → 𝑥 ≡ 𝑧 𝑚𝑜𝑑 3

1 2

3 4

Equivalence classes

• An equivalence relation partitions A into
equivalence classes:

– Intersection of any two equivalence classes is ∅

– Union of all equivalence classes is A.

– 𝑅4: ℤ = 𝑥 𝑥 ≡ 0 𝑚𝑜𝑑 3} ∪ {x x ≡ 1 𝑚𝑜𝑑 3 ∪
𝑥 𝑥 ≡ 2 𝑚𝑜𝑑 3}

– 𝑅 = 𝐴 × 𝐴 gives rise to a single equivalence class.
𝑅 = 1,1 , 2,2 on A ={1,2} to two equivalence
classes.

1 2

3 4

Order

• A binary relation 𝑅 ⊆ 𝐴 × 𝐴 is an order if R is reflexive, anti-symmetric
and transitive.
– E.g. 𝑅1 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦}. So is alphabetical order of English words.

– But not 𝑅2 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦}
• not reflexive, so not an order.

– 𝑆𝑈𝐵𝑆𝐸𝑇𝑆 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 ∧ 𝐴 ⊆ 𝐵 } is an order.
• Reflexive: ∀𝐴, 𝐴 ⊆ 𝐴

• Anti-symmetric: ∀ 𝐴, 𝐵 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 → 𝐴 = 𝐵

• Transitive: ∀𝐴, 𝐵, 𝐶 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶

– 𝐷𝐼𝑉𝐼𝑆𝑂𝑅𝑆 = {(x,y)| 𝑥, 𝑦 ∈ ℕ ∧ 𝑥, 𝑦 ≥ 2 ∧ ∃𝑧 ∈ ℕ 𝑦 = 𝑧 ⋅ 𝑥} is an order.

– PARENT is not an order. But ANCESTOR would be, if defined so that each person
is an ancestor of themselves.

1 2

1 2

3

3

Total and partial order

• R is a total order if ∀𝑥, 𝑦 ∈ 𝐴 𝑅 𝑥, 𝑦 ∨ 𝑅(𝑦, 𝑥) (any two elements
of A are related.)
– 𝑅1 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦} is a total order

– So is alphabetical order of English words.

• Otherwise, R is a partial order.
– 𝑆𝑈𝐵𝑆𝐸𝑇𝑆 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 ∧ 𝐴 ⊆ 𝐵 } is a partial order.

• Not total: if A ={1,2} and B ={1,3}, then neither 𝐴 ⊆ 𝐵 nor 𝐵 ⊆ 𝐴

– 𝐷𝐼𝑉𝐼𝑆𝑂𝑅𝑆 is a partial order.
• 5 and 7 do not divide each other.

– ANCESTOR is a partial order
• Two people don’t necessarily have to be related.

1 2

1 2

3

3

Total order

Partial order

49 50

51 52

53 54

2020-12-01

10

Minimal and maximal

• An order may have minimal and maximal elements
(maybe multiple)
– 𝑥 ∈ 𝐴 is minimal in R if ∀𝑦 ∈ 𝐴 𝑦 ≠ 𝑥 → ¬𝑅(𝑦, 𝑥)

• and maximal if ∀𝑦 ∈ 𝐴 𝑦 ≠ 𝑥 → ¬𝑅 𝑥, 𝑦

– If there is only one minimal element, we call it a minimum
• Unique maximal element is a maximum.

– In 𝑅10, 1 is a minimum, 3 is a maximum
– In 𝑅11, 1 is a minimum, and both 2 and 3 are maximal
– ∅ is minimal in SUBSETS (its unique minimum); universe is

maximal (its unique maximum).
– All primes are minimal in DIVISORS, and there are no maximal

elements.

1 2

1 2

3

3

𝑅10

𝑅11

Drawing orders: diagrams

• A graph of an order relation has a lot
of edges! It has all loops, and every
time 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑅, we
have 𝑎, 𝑐 ∈ 𝑅

• When we know that a relation is an
order, can we draw it simpler?

– Can you figure out in which order you
can take courses from this diagram?

1001 1002

2001 2002 2003

2004 2005 2006

Hasse diagram

• A Hasse diagram is a way to draw a (partial or total)
order without drawing loops or edges that have to
be there by transitivity or reflexivity.

– draw minimal elements on the bottom, then go up

– don’t draw arrowheads (assume arrows go upwards).

– R={ 𝑥, 𝑦 ∈ 1,2,3 × 1,2,3 | 𝑥 ≤ 𝑦}

• On the Hasse diagram of R, only draw edges (1,2) and (2,3), as
all the rest follow by reflexivity and transitivity. 1 is the minimal
(bottom), 3 maximal (top).

1 2 3

1

2

3

R

Hasse
diagram
of R

∅

{1} {2}

{1,2}

{3}

{1,3} {2,3}

{1,2,3}

Hasse diagram of
SUBSETS on {1,2,3}

Puzzle: coins

• A not-too-far-away country recently got rid of a penny coin,
and now everything needs to be rounded to the nearest
multiple of 5 cents…

– Suppose that instead of just dropping the penny, they would
introduce a 3 cent coin.

• Like British three pence.

– What is the largest amount that cannot be paid by using only existing
coins (5, 10, 25) and a 3c coin?

55 56

57 58

59

