Unit 5

Basic structures: relations and strings

-~

= Y | @ 8]
Computer Science 1002

Introduction to Logic for Computer Scientists

2020-12-01

a

Sets and strings  'iryr i

* How do we represent sets on a computer?

— We can list names of a set’s elements, but that would make
operations with sets less efficient: even to check if an element is in a
set, we’d need to scan through the whole list.

* Instead, when the universe is finite (and reasonably small), we
can represent a set by its characteristic string, stating whether
each element of the universe is in the set or not.

— but first, let us recall and define what is a string.

1
q ,’1""
Alphabet Strings Tl
* Afinite set of symbols is called an alphabet. « Astring (over an alphabet A) is a BEGUEREE (list) of symbols from A
— English alphabet contains 26 letters (ignoring case): {a, .., z} — Usually with repetition; order matters.
—{0,1} is the binary alphabet. This is the most popular alphabet in * We will talk about 1, 2", 3 and so on symbol in a given string.
computer science. — “mun” is a string over English alphabet (lowercase). 2" symbol in “mun”
— An alphabet containing only one letter, for example {a}, is called a is “u”.
unary alphabet. * English words are strings over English alphabet.
— “1002” is a string over the alphabet of digits {0,1,2}.
— A natural number is a string over the alphabet of digits
{0,1,2,3,4,5,6,7,8,9}
3

Finite strings, binary strings ‘i ﬂ‘”fﬂf

* A finite string of length n is a string containing n symbols
— The length of a string s is denoted |s|
* The same notation as cardinality of a set (number of elements in a set): |A|
— |mun|=3. |1002]|=4.
— There is an empty (null) string with the length 0

* Some books, including our textbook, denote the empty string by a Greek letter
“lambda” A, others by the Greek letter “epsilon” €.

* A binary string is a finite string over the alphabet {0,1}
— 0011011, 1111, A, 0 are binary strings
« with lengths 7,4,0,1 respectively.

n

Characteristic string of a set 'r"-ﬁﬁa-,-ﬂ‘"‘n

* Let U be a universe. List its elements in some order
— It does not matter which order, as long as it is fixed and you know
which element is 1%, which is 2"d and so on.
— For example, in U = {a, b, ¢, d, e} we can arbitrarily call a the first
element, b second, ¢ third, d fourth and e fifth.

A characteristic string of a set A € U is a binary string s of
length |U| which for every position i in s has a 1 iff the it"
element of Uis in A, and 0 iff the it" element of U is not in A.
— Let U={a,b,c,d,e}, in this order. Then

« the characteristic string of a set A={a,c,d} is 10110, since 1%, 3" and 4" elements
of UareinA.

 The characteristic string of @ is 00000. The characteristic string of U is 11111.




2020-12-01

Set operations with characteristic strings

— Complement: flip all Os to 1s, and all 1s to Os.

¢ Characteristic strings make it easy to do set o?erations
— Union: put 1 if at least one of the strings has 1 in that position

— Intersection: put 0 if at least one of the strings has 0 in that position
e Let U={a,b,c,d,e}, A={a,c,d}, B={a,b}.

— Then the characteristic string for A is 10110, for B is 11000.

— The characteristic string of A is 01001, corresponding to {b,e}

— The characteristic string of A U B is 11110, corresponding to set {a,b,c,d}

— The characteristic string of A N B is 10000, encoding the set {a}.

Sets and strings are different types!

¢ Though strings can be used to represent sets

— with respect to a given finite universe and a given order of
elements in it

and sets are different types!

— The main operation on a set is to check whether a given
elementisinaset:a € S.

« There are no duplicates, and no intrinsic order of elements.
— The main operation on a - is to see what symbol is in a
specific position i.

is a special type of a , where at every
position the sequence is an element of the alphabet.

| 8

For sets Sy, S, define (ordered) pairs of elements

(x1, x3) as a sequence of length 2 where the first element
x; € S; and second element x, € S,

Pairs, triples, tuples

— Notation (x4, x,), with round brackets () indicates that it is an
, ordered with distinguishable first and second elements.
* E.g. (1,2) or (5,5); here (1,2) # (2,1)

— as opposed to curly brackets for sets: {1,2} = {2,1}
* So {1,2} and - mean different things!

10

Pairs, triples, tuples

« Can generalize pairs to ordered sequences of any (fixed) length: triples,
quadruples, generally tuples of elements from sets Sy, S5, ... S,
— A tuple with n elements is called an n-tuple. A triple is a 3-tuple.
* (2,3,2,1,3) is a 5-tuple, where all 5 positions are elements of {1,2,3}.

0 - are similar to - in that they are both ordered _

— In strings, elements come from a (fairly small) alphabet, each is commonly one
symbol, and they are written one after another without spaces or brackets.
* We often look at a bunch of strings of different length together.

— In tuples, as in general sequences, elements are listed in round brackets () and
separated by commas.

* We often look at tuples of specific length together (eg a bunch of pairs).
— In both cases, we often ask what element is in the position i.

Cartesian products

Cartesian product of A and B is a set of all (ordered) pairs of elements with the first
element from A, and the second element from B:

—AxB={(x,y)lx€e ANy € B}

- A={123}, B={a,b}
- AxB ={1,a),(1,b),(2,a),(2,b),3,a),(3,b)}
—BxB ={(a,a),(ab),(ba),(bb)}

Order of pairs does not matter, order within pairs does: A X B # B X A.

— The name “Cartesian” is the same as in Cartesian coordinate system: every point is
described by a pair of numbers in 2d (triple of numbers in 3d).

Number of elements in A X Bis |A x B| = |A| - |B|
— Here, |A| is the cardinality of A (number of elements in A)

11

12



2020-12-01

Cartesian products

 Can define the Cartesian product for any number of sets:
—Ay X Ay X o X A = {(o1, %, . X)) X1 € Ay oo xp € Ar)
—A=1{1,23}, B={a,b},C = {34}
—-AxXxBxC={1,a3),1,a4), (1,b,3),(1,b,4),
(2,a,3),(2,a,4), (2,b,3),(2,b,4),
(3,a,3),(3,a,4), (3,b,3),(3,b,4)}
—|AxBxC|=IA|l-|B|-|C|

13

— LESSTHAN = {(x, ¥)| x and y are real numbers such that x < y}
* S0(1,2) € LESSTHAN, but (2,1) € LESSTHAN
* LESSTHAN C R X R
— LIKES = {(x, y) | person x likes person y}
— PARENT ={(x, ) | person x is a parent of person y}
— REGISTRATIONS = {(name, cour, sem)| student name takes course cour
in semester sem}
« If Wei Lee takes COMP1002 in Fall 2020, then
(Wei Lee, COMP1002, Fall 2020) € REGISTRATIONS

14
M Relations Relational databases
4 a | B c
* Aset of tuples of elements (that is, a subset of a Cartesian product) . ) 1 Manrigue Mata-Montero EN-2033
is called a relation. In particular, a set of pairs of elements is called PROFDATA = {(firstname, lastname, of fice)} = 2 |sharene |Bungay ER-6032
a binary relation. 3 |Antonina Kolokolova ER-6033

COURSEDATA = {(course,days, time,room, instructor)} =
| A B | ¢ | o | E |

1 COMP1000 MWF  11:00-11:50 EN-1054 Mata-Montero

2 COMP1001 MWF 12:00-12:50 EN-2040 Bungay

3 COMP1002 MTR 13:00-13:50 EN-2007 Kolokolova

In the language of databases, each tuple in a relation is called a record. Each position in the
tuple called a field. And the relation itself is called a table.

* Records are rows in the table, and fields are columns.

* (Sharene, Bungay,ER-6032) is a record. “Office” is a field. PROFDATA is a table.

* Usually, a database consists of several tables.

15

16

m[o]

Predicates vs. sets

* Predicates and sets are two sides of the same coin
— For each set S there is a predicate which is true exactly on elements of S
— For each predicate P there is a set S of values of x on which P is true.

fsets 000 |predicatep

Predicates vs relations

Relation R Predicate P

17

18




2020-12-01

19

Database queries

Predicate logic gives us a way to query relational databases!
— Using predicates for database relations.
* Then build a query as a formula.
— Input of the query:
« Can be nothing (if no free variables)
* Or specific values for its free variables.
— Output of the query:
* Either true/false

« Or a set of elements (values of its free variables) satisfying the query.

20

Database queries

A B c
1 Manrique Mata-Montero EN-2033
PROFDATA = {(firstname, lastname, of fice)} = Sham:e Bungay ERo6032

3 Antonina Kolokolova ER-6033
COURSEDATA = {(course, days, time,room, instructor)} =

A B © D E
1 COMP1000 MWF 11:00-11:50 EN-1054
2 COMP1001 MWF 12:00-12:50 EN-2040
3 COMP1002 MTR 13:00-13:50 EN-2007

Mata-Montero
Bungay
Kolokolova

How can we query such databases?

Querying databases i

PROFDATA COURSEDATA
A B c A B c [ e
1 Manrique Mata-Montero EN-2033 1 | COMP1000 MWF 11:00-11:50 EN-1054 Mata-Montera
2 Sharene Bungay ER-G032 2 comP1001 MWF 12:00-12:50 EN-2040 Bungay
2 Antonina Kolokolova  ER-6033 2 comP1002 MTR

13:00-13:50 EN-2007 Kolokolova
* Suppose we want to find out if someone called Manrique is
teaching COMP1001.

— First, define predicates corresponding to the relations:
* ProfData(firstname, lastname, of fice)
« CourseData(course, days, time,room, instructor)

— Now, let’s write a formula using these predicates which would be true if
and only if Manrique is teaching COMP1001.

PROFDATA COURSEDATA PROFDATA COURSEDATA
A B c A ) c D e A B c A ) c D e
1 |Manrique Mata-Montero EN-2033 1 COMP1000 MWF 11:00-11:50 EN-1054 Mata-Monterq) 1 |Manrique Mata-Montero EN-2033 1 COMP1000 MWF 11:00-11:50 EN-1054 Mata-Monterq)
2 |Sharene Bungay ER-6032 2 COmMP1001 MWF 12:00-12:50 EN-2040 Bungay 2 |Sharene Bungay ER-6032 2 COmMP1001 MWF 12:00-12:50 EN-2040 Bungay
3 |Antonina Kolokolova  ER-6033 2 comP1002 MTR 13:00-13:50 EN-2007 Kolokolova 3 |Antonina Kolokolova  ER-6033 2 comP1002 MTR

We want to find out if Manrique is teaching COMP1001.
— Ask: is there somebody with the same last name teaching COMP1001?
* Try 3 In ProfData(Manrique, In,) A CourseData(COMP1001,1n)
— Error! ProfData takes 3 inputs, and CourseData takes 5!
* Try 3 In ProfData(Manrique,In,?) A CourseData(COMP1001,?,?,?,In)
— Almost there, but the database does not like our question marks...
— How do we fill them if we don’t know their values? Use 3 again

3In 30 3d 3t 3r ProfData(Manrique, In, 0) A CourseData(COMP1001,d,t,r, In)

In SQL, a popular database language,

— Putting a condition which records to select (such as ProfData(Manrique,...) ) is called a selection
— the operation of the kind 3x P(x) A Q(x) is called a join

— Adding extra existential quantifiers for “don’t care” fields is called a projection

13:00-13:50 EN-2007 Kolokolova

We want to find out if Manrique is teaching COMP1001.
3 In 3o 3d 3t 3r ProfData(Manrique, In, 0) A CourseData(COMP1001,d, t, r,In)

Now let’s make it more general: given person’s name x and course
name Yy, is person x teaching course y?

3 In 30 3d 3t 3r ProfData(x,In,0) A CourseData(y,d, t,r,In)
— Here, x and y are free variables.

23

24




2020-12-01

comp1a02 MTR
P Now let’s make it more general:
person x teaching course y?

3 In 30 3d 3t 3r ProfData(x,In,0) A CourseData(y,d, t,r, In)
— Here, x and y are free variables.

Now let’s write a query that check that everybody teaches something.
vx 3y 3 In 3o 3d 3t Ir ProfData(x, In,0) A CourseData(y,d,t,r,In)

25

13:00-13:50 EN-2007 Kolokolova

given person’s name x and course name Y, is

Finally, let’s return a relation containing all pairs (x,y) such that x teaches y
— TEACHES = { (x,y) | 3 In 30 3d 3t 3r ProfData(x,In,0) A CourseData(y,d,t,r,In)}

PROFDATA COURSEDATA
A B c A [} c [} E
1 |Manrigue Mata-Montero EN-2033 1 COMP1000 MWF 11:00-11:50 EN-1054 Mata-Monterd|
2 |sharene Bungay ER-6032 2 COMP1001 MWF -12:50 EN-2040 Bungay
3 |Antonina Kolokolova ER-5033 3

et i o
ik 443

26

st=m% Building sets from sets (and other stuff).
oty e

« A bunch of tuples is a set called a relation.

— A set of all possible tuples of elements of given sets is a Cartesian product

* A bunch of strings is just a set of strings.

— The set of all binary strings has a special notation: {0,1}*
« Star stands for “repeat elements of the set {0,1} zero or more times”.

— In general, a set of all strings over an alphabet A is denoted A* (A star).
* You will see the reason for this notation in COMP 1003.

* What is a bunch of sets? And a set of all sets?

27

L

Power sets

* A power set of a set A, denoted 2(A4), is a set elements of
which are all subsets of A.

— Think of sets as boxes of elements.
— Asubset of a set A is a box with elements of A
* maybe some, maybe all, maybe none

— Then 2(A) is a box containing all possible boxes
corresponding to subsets of A

— When you open the box 2(A4), you don’t see chocolates
(elements of A), you see boxes.

- A={1,2}, 2(4) = {9,{1},{2},{(1,2}}

If A has n elements, then 2(4) has 2™ elements

Power set 2(A)

L

28

Power sets

* A power set of a set A, denoted 2(4), is a set elements of
which are all subsets of A.
- A={1,2}, 2(4) = {0,{1},{2},{(1,2}}
-A=0, P4 ={0}.

* They are not the same! There is nothing in A, but there is one
element, an empty box, in 2(A)

- 4={a,{1,b}}, P4 = {9, {a}, {1, b} {a {1, b}}}.

* Here, A contains two elements, a and {1, b}. It is irrelevant
for the power set that the second element is a set (a box), it
treats it just like any other element.

* That’s why we need an extra pair of parentheses in the third
element of 2(4), {{1, b}}. This tells us that the 3" element of
2

A), is a set (box) containing a single element: {1, b}, just
like {a} is a set with a single element a.

Power set 2(A)

29

Type checking: power set and cartesian product

* Power set is a set, elements of which are themselves sets.
— If A has n elements, then 2(A) has 2" elements, each of which is a set
— Empty set @ is an element of 2(A) for any A.
* Because forevery 4,0 € A

* Cartesian product of two sets is a set of- of elements
— Of k sets, (ordered) l-of elements.

— Remember that (a, b) and {a, b} mean very different things!

« If a program expects a pair and you give it a set, you get an ERROR!
—Powerset: {@, {},{}{}} (214 setsinside)
— Cartesian product: {(,), (), (), () } (14| - 8] [B&i inside)

30



2020-12-01

g

el Binary relations

* A special type of relation, with many interesting properties, is a
binary relation € A X A for some set A
— that is, a relation among elements of the same set, where every
element can be in the 1%t as well as 2" position of a pair.
—A=(1,2},
s AxA ={(11),0(1,2),21,22)}
* R={(1,1), (2,2)} ={ (xy) |x,y € {1,2} A x=y}}
* R={(1,1),(1,2),(2,2)} = (xy) |x,y € {1,2} Ax < y}.
— A=PEOPLE
« COUPLES ={(x,y) | Loves(x,y)}
« PARENTS ={(x,y) | Parent(x,y)}

31 32

5%

Graphs of binary relations

« A (directed) graph (digraph) of a binary relation R € A X A is a diagram consisting of

— |A| points, with a point (often drawn as a circle with a label, called a vertex or a
node) for each element of A

— An arrow (called an edge, an arc or a link) from point x to point y for each (x,y) € R
* We draw a loop with an arrow for each x € A such that (x,x) € R

. LetA={1,2,3}

A I A

) [3)

R={(1,1),(1,2),(22), (3,1)} R={(12),(1,3),3D} R=AxA R={Q,1}

This is a different notion of a graph than plotting a function on plane!

33 34

. . Anti-reflexive relations
Reflexive relations

* Abinary relation R € A X A is anti-reflexive if Vx € A, =R (x, x)
* Graph of R has no loops.
. E.g A={1,2}, Ry = {(1,2)}
—butnot Ry ={(1,1), (2,2), (1,2)} (reflexive)
Re ={(1,2)} —nor R; ={(1,1), (1,2)} (neither)
« For A = Z,not R, = {(x,y)|x =y}
—Nor Ry ={(x,y)|x = ymod 3}
* But R; = {(x,y)| x < y} is anti-reflexive.
—Soare Ry ={(x,y) €EZXZ|x+ 1=y}
—And PARENT = {(x,y) € PEOPLE x PEOPLE |x is a parent of y}
— A relation R can be neither reflexive nor anti-reflexive.

* Abinary relation R S A X A is reflexive if
Vx € A, R(x,x)

—Every x is related to itself.

~ * On a graph, every vertex has a loop

oo —Eg AL, R = ((11), (22), (12) N
Y _onA=7 R, = {(x,y)|x = y} is reflexive

—Butnot R; = {(x,y)| x < y}

o*—0

-/

Y D
ya

)
[/

R,

35 36



2020-12-01

Symmetric relations Anti-symmetric relations
¢ Abinary relation R € A X A is symmetric iff @ * Abinary relation R € A X A is anti-symmetric iff vx,y e

vx,y €4, (x,y) ER o (y,x) ER Re 7, HEDERAGD)CR-aSY
—For every arrow in a graph (except Ioops) Other e ° For every arrow, there is no arrow thle other waly. Loops OK.

goes the opposite way ,,,;‘RB . * Ry, {1?3, Rs, Rg, R7, PARENT are anti-symmetric.
—R; and R5 from previous slides are not symmetric. oad” " Rs s not. . . )

Ry is i Ry * R, is both symmetric and anti-symmetric.

’ . . by 0 ve * Ry ={(1,2),(1,3),(3,1)} is neither symmetric
—Rg ={(1,2),(2,1), (1,1)} is symmetric % W nor anti-symmetric.
—A=7, R, ={(x,y)|x = y mod 3 }is symmetric.
Ry
37 38

Transitive relations

* Abinary relation R € A X A is transitive if
vx,y,z€ A, (x,y) ERA(y,z) ER> (x,2) ER o e
— In the graph of R, if there is a way to get from x to z by \/
following a sequence of edges (arrows), then there is a
way to get from x to z in one step. R ={(1,2),(3,1),(3,2)}
— Ry, Ry, R3, Ry are all transitive.
—Rs ={(x,y)|x,y EZAx + 1=y} is not transitive. ¢—e
— PARENT ={(x, y)|x,y € PEOPLE A x is a parent of y} \1
is not transitive either. R=1{12),3D}

39 40

Extending relations to have desired properties

Sometimes a relation we have does not quite .
give us what we want: I
— A PARENT relation is not reflexive, not transitive —

we have to come up with all sorts of new formulas
for grandparent/great-grandparent.. l H " E l !

Often, we start with a relation which is not reflexive

— Or not symmetric, or not transitive

But we’d really prefer if it were reflexive (symmetric, transitive)!
In this case, we change our relation to get a relation with the

— Maybe what we want is an ANCESTOR relation: property we want.
« It is transitive and reflexive, behaves nicely... — We always want to keep all the original edges: never lose information.
* Though it requires more space to store than PARENT ... H a I ! — And we want to make as few changes as possible.

Is there a way to compute ANCESTOR from If R is a relation, then its transitive, reflexive or symmetric closure is

PARENT when we need it? l the smallest transitive, reflexive or symmetric relation, respectively,
¢ And how to do this in general? containing R.

41 42



2020-12-01

A reflexive closure of a relation A symmetric closure of a relation 2%

LetR < {1,2,3} x {1,2,3}, R={(1,1), (1,2), (2,2), (3,1)}
To compute a reflexive closure of R, we just need to add all missing self-loops.

LetR < {1,2,3} x {1,2,3}, R={(1,1), (1,2), (2,2), (2,2), (3,1)}
To compute a symmetric closure of R, check every pair (x,y) € R for which

— In this case, there is only one: (3,3) x #y. If (y,x) € R, then add (y, x) to the symmetric closure of R.

— This will give us the smallest possible reflexive relation containing R. — Inthis case, (1,2) and (2,1) are both in R, but (1,3) & R even though (3,1) € R,
* So to compute a reflexive closure of a given relation, add all missing pairs so we add (1,3) to the symmetric closure of R.

(x,x), and nothing else. — We don’t need to bother with (2,3), (3,2) since neither is in R.
+ Another example: a reflexive closure of Ry = {(x, )| x < ¥} is {(x, ¥)| x < ¥} — This will give us the smallest possible symmetric relation containing R.

Example: a symmetric closure of Rz = {(x,y)| x < y}is {(x,y)| x # y}

# 2 é ) ‘Q é> R = {(1,1),(1,2),(2,1),(22), (3,1)}
(3,3);\80 \3

) R ={(1,1),(1,2),(22),(3,1)} Reflexive closure of R: Symmetric closure of R:
- (00D, C2, 61 (D, (2, (12, 2DE2), 6,1}

43 44

U
Transitive closure: routes from flights A transitive closure of a relation ;

* Atransitive closure of a relation R is the smallest transitive
O 5 . » B : relation that contains R.
4 D > — Add edge (x, z) whenever (x,y) € R, (y,z) € R,but (x,z) ¢ R
i e == > — Keep doing it again and again, until the resulting relation is transitive
z * Not enough to just go through edges once.

L g * There are faster ways you will learn in your algorithms course.

e &

* If you are trying to get to Boston from Gander, you would be more interested in a : = 09 6 c&»@@w
sequence of flights that would get you there than whether there is a direct flight.

* You need a transitive closure of the FLIGHT relation. @ @ @

45 46

Paths in graphs Combining closures
* Apathinagraph G from a vertex x to a vertex y is a * To compute a closure that is both, for example, reflexive and
sequence (Vg, V1), (V1,V3), ..., (Wi _1, Vi) of edges 77 transitive, compute one first and then the other of the result.

of G, where vy = x and v, = y.

— If no vertex repeats, it is called a simple path.

— Number of edges k is the length of the path.

—If x =y, itis called a cycle.

A pair (x,y), where x # y, is in the transitive
closure of a relation R iff there is a path from x to y
in the graph of R.

—If (x,y) isin R, itis also in its transitive closure even if
x=y.

— The order does not matter.

Sl pEl For example, let R = {(x,y)| x + 1 = y}, for x,y € Z.
from 6 to 2 — Transitive closure of R is {(xx, ¥)| x < y}

— Reflexive closure of Ris {(x,y)[x+1=yVx =y}

— Symmetric closure of Ris{(x,y)Ix +1=yVvy+1=x}
— Reflexive transitive closure of R is R is {(x, y)| x < y}

— Symmetric transitive closure of Ris {(x, y)| x # y}

— Reflexive, symmetric, transitive closure of Ris Z X Z

Cycle4to 4

47 48



2020-12-01

Transitive closure and limitations of predicate logic

* One reason why computing transitive closures is so useful for
databases is that it lets us circumvent a limitation of predicate logic:
— We can write a formula saying that there is a path from x to y of length k

* Grandparent(x,y) says that there is a path of length 2 in the graph of PARENT

— However, we need to use k — 1 new variables for a path of length k.

* There is no way to write a finite-length formula of predicate (first-
order) logic saying that there is some path, of any length, from x to y.
— Without going to second-order logic, which is beyond the scope of this course.

50

Equivalence relation Equivalence classes

¢ Abinary relation R € A X A is an equivalence if R is reflexive, An equivalence relation partitions A into
symmetric and transitive. equivalence classes:

«Eg A={12}, R ={(1,1),(2,2)}orR=Ax A D D

* Not Ry ={(1,1), (2,2), (1,2)}nor Ry = {(x, )| x <y} — Union of all equivalence classes is A.

Oon At =1l ) s anequtolece ~Ry: 7= {x[x = 0mod 3} U (x| x = 1mod 3}U

- {x |x = 2 mod 3}

—Reflexive: Vx € Z, x = x mod 3
— Symmetric: Vx,y € Z, x = ymod 3 - y = x mod 3
—Transitive: Vx,y,z €Z, x =ymod3A y=z mod3 - x =z mod 3

— Intersection of any two equivalence classes is @

— R = A X A gives rise to a single equivalence class.

R ={(1,1),(2,2)} on A={1,2}to two equivalence
classes.

51 52

Order Total and partial order

* Abinary relation R € A X A is an order if R is reflexive, anti-symmetric * Risatotal order if Vx,y € A R(x,y) V R(y,x) (any two elements
and transitive. of A are related.) L
—Eg. Ry ={(x,y)|x,y € ZAx < y}. Sois alphabetical order of Englis — R, = {(x,y)|x,y € ZAx < y} is a total order
—Butnot R, = {(x,y)|x,y EZAx <y}

— So is alphabetical order of English words.
* not reflexive, so not an order.
— SUBSETS = {(A,B) | A,B are sets A A € B }is an order.

h words.

Total order

¢ Otherwise, R is a partial order.

+ Reflexive: VA, AC A O 0D D — SUBSETS = {(A,B) | A,B are sets A A € B } is a partial order.

* Anti-symmetric: VA, B ASBABSA—>A=B a " & * Not total: if A={1,2} and B ={1,3}, then neither AS B norB € A

« Transitive: VA,B,C ASBABSC—>ACC T — DIVISORS is a partial order.
— DIVISORS ={(xy)| x,y E NAx,y >2 A3z€N y =z - x} isan order. « 5 and 7 do not divide each other. e &
— PARENT is not an order. But ANCESTOR would be, if defined so that each person — ANCESTOR is a partial order S~ A

is an ancestor of themselves. B " Partial order
* Two people don’t necessarily have to be related.

53 54



2020-12-01

Minimal and maximal

¢ An order may have minimal and maximal elements

(maybe multiple)

—x € Aisminimal inRifVy €A y # x - =R(y,x)
+ and maximal if Vy € Ay # x = =R (x,y) P 2

— If there is only one minimal element, we call it a minimum - e
* Unique maximal element is a maximum. -

—In Ry, 1is a minimum, 3 is a maximum

—In Ry, 1isa minimum, and both 2 and 3 are maximal

— @ is minimal in SUBSETS (its unique minimum); universe is

maximal (its unique maximum).

— All primes are minimal in DIVISORS, and there are no maximal Riy
elements.

55 56

Drawing orders: diagrams Hasse diagram

« Agraph of an order relation has a lot
of edges! It has all loops, and every

* A Hasse diagram is a way to draw a (partial or total)

order without drawing loops or edges that have to ? Hasse
time (a,b) € R and (b, c) € R, we be there by transitivity or reflexivity. o diagram
have (a,c) € R — draw minimal elements on the bottom, then go up “i ofR
* When we know that a relation is an — don’t draw arrowheads (assume arrows go upwards).
order, can we draw it simpler?

{1,2,3}

—R={ (x,y) € {1,2,3} x {1,2,3}| x < y} ]
* On the Hasse diagram of R, only draw edges (1,2) and (2,3), as (1{2?} = (253)

all the rest follow by reflexivity and transitivity. 1 is the minimal {1} {i) {3}
(bottom), 3 maximal (top). |

— Can you figure out in which order you
can take courses from this diagram?

4
Hasse diagram of
SUBSETS on {1,2,3}

57 58

Puzzle: coins

* A not-too-far-away country recently got rid of a penny coin,
and now everything needs to be rounded to the nearest
multiple of 5 cents...

— Suppose that instead of just dropping the penny, they would
introduce a 3 cent coin.
« Like British three pence.

— What is the largest amount that cannot be paid by using only existing
coins (5, 10, 25) and a 3c coin?

59

10



