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Unit 4
Proofs

Proofs 

• What is a theorem? 

– Lemma, claim, etc

• What is a proof? 

– Where do we start?

– Where do we stop? 

– What steps do we take?

– How much detail is needed?

Theories and theorems

• Theory:  axioms + everything derived from them using rules of inference
– Euclidean geometry,  set theory,  theory of reals, theory of integers, Boolean 

algebra… 

– In verification: theory of arrays.

• Theorem: a true statement in a theory 
– Proved from axioms (usually, from already proven theorems) 

• A statement can be a theorem in one theory and false in another! 
– Between any two different numbers there is another number. 

• A theorem for real numbers. False for integers! 

Axioms of geometry: Euclid’s postulates

I. Through 2 points a line segment can be 
drawn 

II. A line segment can be  extended to a 
straight line indefinitely 

III. Given a line segment, a circle can be 
drawn with it as a radius and one 
endpoint as a centre

IV. All right angles are congruent

V. Parallel postulate

Axioms of propositional logic 

• For any logic formulas A, B, C, 

– like in arithmetic (with ∨ as +, ∧ as *)

𝐴 ∨ 𝐵 ≡ 𝐵 ∨ 𝐴 𝐴 ∧ 𝐵 ≡ 𝐵 ∧ 𝐴

𝐴 ∨ 𝐵 ∨ 𝐶 ≡ 𝐴 ∨ 𝐵 ∨ 𝐶 𝐴 ∧ 𝐵 ∧ 𝐶 ≡ 𝐴 ∧ 𝐵 ∧ 𝐶

𝐴 ∨ 𝐵 ∧ 𝐶 ≡ 𝐴 ∧ 𝐶 ∨ 𝐵 ∧ 𝐶

– And unlike arithmetic 𝐴 ∧ 𝐵 ∨ 𝐶 ≡ 𝐴 ∨ 𝐶 ∧ (𝐵 ∨ 𝐶)

• Properties of 𝑇𝑅𝑈𝐸 and 𝐹𝐴𝐿𝑆𝐸
𝑇𝑅𝑈𝐸 ∨ 𝐴 ≡ 𝑇𝑅𝑈𝐸. 𝑇𝑅𝑈𝐸 ∧ 𝐴 ≡ 𝐴

𝐹𝐴𝐿𝑆𝐸 ∨ 𝐴 ≡ 𝐴. 𝐹𝐴𝐿𝑆𝐸 ∧ 𝐴 ≡ 𝐹𝐴𝐿𝑆𝐸

𝐴 ∨ ¬𝐴 ≡ 𝑇𝑅𝑈𝐸 𝐴 ∧ ¬𝐴 ≡ 𝐹𝐴𝐿𝑆𝐸

Commutativity  
Associativity

Distributivity (2)

• Double negation:  ¬¬𝐴 ≡ 𝐴

• De Morgan’s laws:  
¬ A ∨ 𝐵 ≡ ¬𝐴 ∧ ¬𝐵
¬ A ∧ 𝐵 ≡ ¬𝐴 ∨ ¬𝐵

Proofs in real life 

• You will pretty much never see a proof 
with all the rules and axioms spelled out!  

– If you are reading a proof, if you are not sure 
why a certain step is valid, work it out from 
what you know. 

– If you are writing a proof,  put enough details 
to make it clear why each step is valid. 

• But here we will start by identifying the 
logic behind proofs. 
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Proofs 

• What is a theorem? 

– Lemma, claim, etc

• What is a proof? 

– Where do we start?

– Where do we stop? 

– What steps do we take?

– How much detail is needed?

Constructive proofs

• To prove an existential 
statement ∃𝑥 𝐹 𝑥 , find a 
witness for x and show that 
it works. 

– This proof is 
constructive, because we 
constructed an x which 
makes the formula 
𝐸𝑣𝑒𝑛 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑥)
true. 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚: ∃𝑥 ∈ ℕ 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑥)
Proof: 

Let x=2. 
Even(2) is true.  
Prime(2)  is true.   
Therefore, 𝐸𝑣𝑒𝑛 2 ∧ 𝑃𝑟𝑖𝑚𝑒(2) holds.
We found a witness for ∃𝑥
Done.

Counterexamples

• To disprove  a statement, enough to give a 
counterexample:  a scenario where it is false 

–To disprove that  𝐴 → 𝐵 ≡ 𝐵 → 𝐴

• Take 𝐴 = 𝑡𝑟𝑢𝑒, 𝐵 = 𝑓𝑎𝑙𝑠𝑒,

• Then  𝐴 → 𝐵 is false, but B → 𝐴 is true.

• Hidden universal quantifier: for all truth assignments

• Disproving a statement is the same as proving its negation. 

– To disprove ∀𝑥 𝐹 𝑥 , give a constructive proof for ∃𝑥 ¬𝐹(𝑥)

All birds can fly 

• Statement: “For any predicate 𝑃(𝑥, 𝑦) on any domain S,                            
if ∀𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 𝑃 𝑥, 𝑦 , then ∃𝑦 ∈ 𝑆 ∀𝑥 ∈ 𝑆 𝑃 𝑥, 𝑦 “

• Let’s disprove it by constructing a counterexample! 
– Let 𝑆 = 0,1 and let interpretation of P on S be: 

• P(0,0),  P(1,1)  are true, and P(0,1), P(1,0) are false.   (So P(x,y) is 𝑥 = 𝑦) 

– Then ∀𝑥 ∃ 𝑦 𝑃 𝑥, 𝑦 is true, but ∃𝑦 ∀𝑥 𝑃 𝑥, 𝑦 is false.

• Because 𝑃 0,0 ∨ 𝑃 0,1 ∧ 𝑃 1,0 ∨ 𝑃 1,1 is true, 

• But (𝑃 0,0 ∧ 𝑃(1,0)) ∨ (𝑃 0,1 ∧ 𝑃(1,1)) is false. 

– Our counterexample consists of 𝑑𝑜𝑚𝑎𝑖𝑛𝑠 for 𝑥 and 𝑦 (they don’t have to be 
equal), and an interpretation of the predicate 𝑃(𝑥, 𝑦) over these domains. 

Counterexamples Proving universal statements

• To prove that something of the form ∀𝑥 𝐹 𝑥 is true:

–Make sure it holds in every scenario (method of exhaustion)

• For all values  of A and B,  ¬𝐵 → ¬𝐴 ≡ 𝐴 → 𝐵, by truth table.  

–But there can be too many scenarios! 

• For any integer, there is a larger integer which is a prime. 

• For any two reals, there is a real between them. 

– In the next several lectures, we will  study how to use axioms 
and rules of inference to be able to prove such statements.
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Vacuous puzzle 

• Let 𝑆 = 𝑥 ∈ ℕ 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛 ∧ 𝑥 𝑖𝑠 𝑜𝑑𝑑}

• Prove or disprove:  

∀𝑥 ∈ 𝑆, 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑑𝑒 𝑥2

Vacuous puzzle

• Let 𝑆 = 𝑥 ∈ ℕ 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛 ∧ 𝑥 𝑖𝑠 𝑜𝑑𝑑}

• Prove or disprove:  

∀𝑥 ∈ 𝑆, 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑑𝑒 𝑥2

Vacuous puzzle

• Let 𝑆 = 𝑥 ∈ ℕ 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛} ∩ 𝑥 ∈ ℕ 𝑥 𝑖𝑠 𝑜𝑑𝑑}
– But there are no natural numbers that are both even and odd!  So  S = ∅

• Prove or disprove:   ∀𝑥 ∈ 𝑆, 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑑𝑒 𝑥2

– Let P(x)= “𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑑𝑒 𝑥2” 
– To disprove, can give a counterexample

• Find an element in S such that P(x) is false… But there is nothing in S! 

– Another way: Since S is defined as a subset of natural numbers,  can read          
∀𝑥 ∈ 𝑆 𝑃 𝑥 as ∀𝑥 ∈ ℕ 𝑥 ∈ 𝑆 → 𝑃 𝑥 .

• Since   “𝑥 ∈ 𝑆" is always false,  𝑥 ∈ 𝑆 → 𝑃 𝑥 is true for every 𝑥 ∈ ℕ

• Call a statement ∀𝑥 ∈ ∅ 𝑃 𝑥 vacuously true.

Inference rules with 
quantifiers 

• Instantiation: taking a specific instance  
(value) of a variable

– Can be just giving this variable a name 

– 𝐸𝑣𝑒𝑛(2),  𝐸𝑣𝑒𝑛(𝑘)

• Generalization: replacing a value    
with a quantified variable 

– Have 𝐸𝑣𝑒𝑛(2)

– Get ∃𝑥 𝐸𝑣𝑒𝑛(𝑥)

𝐹 𝑎 is true for some 𝑎 ∈ 𝑆
------------------------------------
Therefore,  ∃𝑥 ∈ 𝑆 𝐹 𝑥

Existential generalization

𝐸𝑣𝑒𝑛 2
------------------------------------
Therefore,  ∃𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛(𝑥)

Penguins do not fly
------------------------------------
∴ ∃𝑥 ∈ 𝐵𝐼𝑅𝐷𝑆 ¬𝐹𝑙𝑦 𝑥

𝐿𝑜𝑣𝑒𝑠(𝐽𝑎𝑛𝑒, 𝐽𝑖𝑚)
------------------------------------
∴ ∃𝑥 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 𝐿𝑜𝑣𝑒𝑠 𝑥, 𝐽𝑖𝑚

∃𝑥 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 𝐿𝑜𝑣𝑒𝑠 𝑥, 𝐽𝑖𝑚
------------------------------------
∴ ∃𝑦 ∃𝑥 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦)
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Existential instantiation

• If ∃ 𝑥 ∈ 𝑆 𝐹 𝑥 is true, then you can give that element of 𝑆
for which 𝐹 𝑥 is true a name, as long as that name has not 
been used elsewhere. 
– “Let n be an even number. Then n=2k for some k”. 

• ∀𝑥 ∈ ℕ 𝐸𝑣𝑒𝑛 𝑥 → ∃ 𝑦 ∈ ℕ 𝑥 = 2 ∗ 𝑦

– Important to have a new name every time the rule is applied! 
• “Let n and m be two even numbers.  Then n=2k and m=2k” is wrong! 

• ∀𝑥1, 𝑥2 ∈ ℕ 𝐸𝑣𝑒𝑛 𝑥1 ∧ 𝐸𝑣𝑒𝑛 𝑥2 →
∃ 𝑦1, 𝑦2 ∈ ℕ 𝑥1 = 2 ∗ 𝑦1 ∧ 𝑥2 = 2 ∗ 𝑦2

• “Let n and m be two even numbers.  Then n=2k and m=2ℓ”

Universal instantiation

• In general, if ∀ 𝑥 ∈ 𝑆 𝐹 𝑥 is true for some formula 𝐹 𝑥 , if 
you take any specific element 𝑎 ∈ 𝑆, then 𝐹 𝑎 must be true. 

– This is called the universal instantiation rule.

• ∀𝑥 ∈ ℕ 𝑥 > −1

• ∴ 5 > −1

• In proofs, most often take 𝑎 to be an arbitrary element of 𝑆

– This just gives that element a name! 

– And allows us to say things like “𝑎 ≥ 0 or 𝑎 < 0“, and consider these 
cases separately.  

Universal generalization

• Let 𝑎 be an arbitrary element of 𝑆

• If you prove 𝐹 𝑎 without any assumptions about 𝑎 other than 
𝑎 ∈ 𝑆, then ∀𝑥 ∈ 𝑆, 𝐹 𝑥

– This is called universal generalization.

• For an arbitrary 𝑘 ∈ ℤ,   𝐸𝑣𝑒𝑛 𝑘 ∨ 𝑂𝑑𝑑 𝑘

• Therefore,  ∀𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)

• Theorem:  

For any propositional formulas A,B, ¬𝐵 → ¬𝐴 ≡ 𝐴 → 𝐵

• Proof: let’s use axioms and definitions of logic to prove it. 
• Let A and B be arbitrary           universal instantiation

propositional formulas

• ¬𝐵 → ¬𝐴 ≡ ¬¬𝐵 ∨ ¬𝐴 by definition of 𝐹 → 𝐺

• ≡ 𝐵 ∨ ¬ 𝐴 by  the  double negation axiom  ¬¬𝐹 ≡ 𝐹

• ≡ ¬𝐴 ∨ 𝐵 by  the axiom  𝐹 ∨ 𝐺 ≡ 𝐺 ∨ 𝐹

• ≡ 𝐴 → 𝐵 by definition of 𝐹 → 𝐺

• Therefore, for any formulas A, B 𝑏𝑦 universal generalization

¬𝐵 → ¬𝐴 ≡ 𝐴 → 𝐵

Rules of inference in 
predicate logic  

• Combine universal and 
existential instantiations  and 
generalizations with the rules 
of inference from 
propositional logic. 

–Modus ponens and friends, 

–Resolution and friends, etc.. 
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Universal Modus Ponens

• All men are mortal
• Socrates is a man
• Therefore, Socrates is mortal 

• All cats like fish
• Molly likes fish
• Therefore, Molly is a cat

• ∀𝑥 𝐶𝑎𝑡 𝑥 → 𝑙𝑖𝑘𝑒_𝑓𝑖𝑠ℎ 𝑥

• 𝑙𝑖𝑘𝑒_𝑓𝑖𝑠ℎ 𝑀𝑜𝑙𝑙𝑦
_________________________
∴ Cat(Molly) X

Mortal

Men

Like fish

cats

∀𝑥 𝑀𝑎𝑛 𝑥 → 𝑀𝑜𝑟𝑡𝑎𝑙 𝑥
𝑀𝑎𝑛 𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠 → 𝑀𝑜𝑟𝑡𝑎𝑙(𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠)
Man(Socrates) 
--------------------------------------
∴𝑀𝑜𝑟𝑡𝑎𝑙(𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠)

Universal Modus Ponens

• ∀𝑥, 𝑃 𝑥 → 𝑄 𝑥

• 𝑃 𝑎
• -------------------------

• 𝑄 𝑎

• All men are mortal (∀𝑥, 𝑀𝑎𝑛 𝑥 → 𝑀𝑜𝑟𝑡𝑎𝑙 𝑥 )
• Socrates is a man    (𝑀𝑎𝑛 𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠 )
• Therefore, Socrates is mortal  (𝑀𝑜𝑟𝑡𝑎𝑙(𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠)

• All integers are either odd or even 
• 2 is an integer 
• Therefore, 2 is either odd or even.

Drop leaves

Trees

Q

P

• All trees drop leaves 
• Pine does not drop leaves
• Therefore, pine is not a tree

Other inference rules

• Combining universal instantiation and generalization with 
tautologies, get other types of arguments:

• (This particular rule is called “transitivity”)

For any x, if 𝑥 > 3 , then 𝑥 > 2

For any x, if  𝑥 > 2, then 𝑥 ≠ 1

________________ 
∴ For any x, if 𝑥 > 3 , then 𝑥 ≠ 1

𝑝 → 𝑞
q → 𝑟

_____ 
∴ 𝑝 → 𝑟

• ∀𝑥 𝑃 𝑥 → 𝑄 𝑥

• ∀𝑥 𝑄 𝑥 → 𝑅 𝑥

________________ 
∴ ∀𝑥 𝑃 𝑥 → 𝑅 𝑥

Types of proofs 

• We are not studying these proofs for 
the sake of proving these theorems.

– We are using them as examples of 
underlying proof types. 

– When reading proofs, note where 
universal and existential instantiation/ 
generalization are used.

– And what logic is used to derive each step.  

Proof example

• Theorem:  
For any propositional formulas A,B,    ¬𝐵 → ¬𝐴 ≡ 𝐴 → 𝐵

• Proof: 
• Let  𝐴 and 𝐵 be arbitrary propositional formulas      universal instantiation

• ¬𝐵 → ¬𝐴 ≡ ¬¬𝐵 ∨ ¬𝐴 by definition of 𝐹 → 𝐺

• ≡ 𝐵 ∨ ¬ 𝐴 by  the  double negation axiom  ¬¬𝐹 ≡ 𝐹

• ≡ ¬𝐴 ∨ 𝐵 by  the axiom  𝐹 ∨ 𝐺 ≡ 𝐺 ∨ 𝐹

• ≡ 𝐴 → 𝐵 by definition of 𝐹 → 𝐺

• And, therefore, for any formulas A, B , ¬𝐵 → ¬𝐴 ≡ 𝐴 → 𝐵

universal generalization
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Direct proof

• Direct proof of ∀𝑥 ∈ 𝑆 𝐹 𝑥 : show directly that 𝐹 𝑥 holds 
for an arbitrary n ∈ S , then use universal generalization. 

– Universal instantiation: “let n be an arbitrary element of  𝑆” 

– Show that 𝐹(𝑛) is true from axioms, definitions, previous theorems… 

– Finally use universal generalization to conclude that  ∀𝑥 𝐹 𝑥 is true. 

□ (Done).

Direct proof

• Direct proof of ∀𝑥 ∈ 𝑆 𝐹 𝑥 : show directly that 𝐹 𝑥 holds for an 
arbitrary n ∈ S , then use universal generalization. 

• When 𝐹 𝑥 is of the form 𝐺 𝑥 → 𝐻(𝑥),  assume 𝐺(𝑛) is true, and 
from that (and axioms, etc) derive 𝐻(𝑛). That proves 𝐺 𝑛 → 𝐻 𝑛
– Notice: we are skipping a step here! Here it is:  

• Let 𝑛 be an arbitrary element of S. 

• If 𝐺 𝑛 is false, done (since 𝑓𝑎𝑙𝑠𝑒 → 𝐻(𝑛) is true, so 𝐹(𝑛) is true for this 𝑛)

• Otherwise let 𝑛 be such that 𝐺(𝑛) holds 

– But since when  𝐺(𝑛) is false 𝐹(𝑥) holds for a trivial reason, it is more 
common to see just  “Let 𝑛 be arbitrary element of S such that 𝐺(𝑛) holds.”  

□ (Done).

Definitions

Informally, a definition is a sentence giving a 
name to an object with some properties. 

– Introducing a shorthand for a formula 

– 𝑛 is even if and only if it is divisible by 2

– 𝑛 is even iff ∃𝑘 ∈ ℤ 𝑛 = 2𝑘

You will see a lot of definitions in your computer 
science career! 

– And will be asked to implement those things

Samosa: 
a triangular savory pastry 
fried in ghee or oil, containing 
spiced vegetables or meat.

Source: Oxford dictionary

Theorem:  Sum of two even integers is even.  
∀𝑥, 𝑦 ∈ ℤ 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝐸𝑣𝑒𝑛 𝑦 → 𝐸𝑣𝑒𝑛 𝑥 + 𝑦 .

• Proof:  

– Suppose m and n are arbitrary even integers.       

– Then ∃𝑘 ∈ ℤ, 𝑛 = 2𝑘 and ∃𝑙 ∈ ℤ,𝑚 = 2𝑙.

– 𝑚 + 𝑛 = 2𝑘 + 2𝑙 = 2(𝑘 + 𝑙)

– m+ n = 2 𝑘 + 𝑙 , so 𝑚 + 𝑛 is even    

– Since m and n were arbitrary, we have shown
∀𝑥, 𝑦 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝐸𝑣𝑒𝑛 𝑦 → 𝐸𝑣𝑒𝑛 𝑥 + 𝑦 .

Definition (of even integers):  
An integer n is even iff ∃𝑘 ∈ ℤ, 𝑛 = 2 ⋅ 𝑘.

□ (Done).

Theorem:  Sum of two even integers is even.  
∀𝑥, 𝑦 ∈ ℤ 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝐸𝑣𝑒𝑛 𝑦 → 𝐸𝑣𝑒𝑛 𝑥 + 𝑦 .

• Proof:  

– Suppose m and n are arbitrary even integers.       

– Then ∃𝑘 ∈ ℤ, 𝑛 = 2𝑘 and ∃𝑙 ∈ ℤ,𝑚 = 2𝑙.

– 𝑚 + 𝑛 = 2𝑘 + 2𝑙 = 2(𝑘 + 𝑙)

– m+ n = 2 𝑘 + 𝑙 , so 𝑚 + 𝑛 is even    

– Since m and n were arbitrary, we have shown
∀𝑥, 𝑦 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝐸𝑣𝑒𝑛 𝑦 → 𝐸𝑣𝑒𝑛 𝑥 + 𝑦 .

Definition (of even integers):  
An integer n is even iff ∃𝑘 ∈ ℤ, 𝑛 = 2 ⋅ 𝑘.

□ (Done).

By universal instantiation. 

By definition: note different variables.

By existential instantiation, substitution
and axioms of theory of integers (algebra). 

By definition (other direction of iff) and 
existential generalization  
By universal generalization

Puzzle: Caesar cipher

• The Roman dictator Julius Caesar encrypted his personal 
correspondence using the following code. 
– Number letters of the alphabet:  A=0, B=1,… Z=25. 

– To encode a message, replace every letter by a letter three positions 
before that (wrapping around at the beginning of the alphabet). 
• For example, F would be replaced by C, and A by X 

• Suppose he sent the following message. 
– QEB QOBXPROB FP RKABO QEB CIXD

• What does it say? 
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Puzzle: Caesar cipher

• The Roman dictator Julius Caesar encrypted his personal 
correspondence using the following code. 
– Number letters of the alphabet:  A=0, B=1,… Z=25. 

– To encode a message, replace every letter by a letter three positions 
before that (wrapping around at the beginning of the alphabet). 
• For example, F would be replaced by C, and A by X 

• Suppose he sent the following message. 
– QEB QOBXPROB FP RKABO QEB CIXD

• What does it say? 

Modular arithmetic

• Quotient-remainder theorem: for any integer n and a positive integer d,  there 
exist unique integers q (quotient) and r (reminder) such that: 𝑛 = 𝑑𝑞 + 𝑟 and 
0 ≤ 𝑟 < 𝑑
– 16 = 3*5+1,  11 = 2*4+3…  

• Definition: 𝑛 ≡ 𝑚 (𝑚𝑜𝑑 𝑑), pronounced “n is congruent to m mod d”,   means 
that n and m have the same remainder when divided by d. That is, 𝑛 = 𝑑𝑞1 + 𝑟
and 𝑚 = 𝑑𝑞2 + 𝑟, for the same r.  
– In some programming languages, there is an operator mod, so you might see  “n mod d”, 

which would return r .  
• In Python, it is n % d.   
• 𝑛 ≡ 𝑚 𝑚𝑜𝑑 𝑑 and 𝑚 = 𝑛 𝑚𝑜𝑑 𝑑 are not the same: 
• 10 ≡ 16 mod 3 , is true,  but 16 𝑚𝑜𝑑 3 = 10 is false (16 𝑚𝑜𝑑 3 = 1)

– Operator  div,  “n div d” is sometimes used to compute q. 
• In  Python, integer division  (or //) does it. 

Calendars as modular arithmetic

• Wednesdays are  

day = 4 (mod 7) 

• Wednesdays are  

day = 3 (mod 7) 

Calendars vs mod 

• Orange stickers are  

number  = 3 (mod 8) 

• Wednesdays are  

day = 3 (mod 7) 

Modular arithmetic in computer science

• Example:  day of the week. 

– Feb 1st and Feb 15th are both on Wednesday: 1 ≡ 15 (𝑚𝑜𝑑 7)

• Hash:  distribute random data evenly among memory locations 

– Often take h(k) = k mod p for some prime p. 

• Cryptography: 

– Parity checks in credit cards, codes, ISBNs, etc. 

• Look at combination of digits mod 10 to check if a credit card number is valid.

• Google Luhn formula for details. 

– Public key crypto, RSA…. 
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• Theorem: for all integers n,m and d, where 𝑑 > 0, if 𝑛 ≡ 𝑚 𝑚𝑜𝑑 𝑑
then there exists an integer k such that n= 𝑚 + 𝑘𝑑

– ∀𝑥, 𝑦, 𝑧 (𝑧 > 0 ∧ 𝑥 ≡ 𝑦 𝑚𝑜𝑑 𝑧 ) → ∃𝑢 𝑥 = 𝑦 + 𝑢𝑧

• Proof:  
– Let n, m, d be arbitrary integers such that 𝑑 > 0 and 𝑛 ≡ 𝑚 𝑚𝑜𝑑 𝑑

• Universal instantiation and assuming the premise

– Then there are integers 𝑞1, 𝑞2, 𝑟 with 0 ≤ 𝑟 < 𝑑 such that 𝑛 = 𝑑𝑞1 + 𝑟 and  
𝑚 = 𝑑𝑞2 + 𝑟.
• By existential instantiation of quotient-remainder theorem and definition of congruence. 

– Now,  n−𝑚 = 𝑑𝑞1 + 𝑟 − 𝑑𝑞2 + 𝑟 = 𝑑 𝑞1 − 𝑞2
• Substitution and algebra.

– Set k = 𝑞1 − 𝑞2.  For this k, 𝑛 = 𝑚 + 𝑘𝑑. Therefore, ∃𝑢 𝑛 = 𝑚 + 𝑢𝑑
• By existential generalization

– Since n, m, d were arbitrary integers with  𝑑 > 0 and 𝑛 ≡ 𝑚 𝑚𝑜𝑑 𝑑 ,

∀𝑥, 𝑦, 𝑧 (𝑧 > 0 ∧ 𝑥 ≡ 𝑦 𝑚𝑜𝑑 𝑧 ) → ∃𝑢 𝑥 = 𝑦 + 𝑢𝑧
• By universal generalization. □ (Done).

Direct proof

• To prove ∀𝑥 ∈ 𝑆 𝐹 𝑥 : show directly that 𝐹 𝑥 holds for an 
arbitrary n ∈ S , then use universal generalization. 
– Universal instantiation: for arbitrary 𝑛 ∈ 𝑆

– Show 𝐹(𝑛) using axioms,  definitions, etc… 

– Universal generalization.  

• If 𝐹 𝑥 is of the form 𝐺 𝑥 → 𝐻 𝑥
– Universal instantiation + assume 𝐺(𝑛) is true. 

• If 𝐺 𝑛 is false, 𝐺 𝑛 → 𝐻 𝑛 true no matter what 𝐻(𝑛) is: vacuous proof

– Derive 𝐻(𝑛) from 𝐺(𝑛) using axioms, definitions, etc. 

– Universal generalization. 

□ (Done).

Tricks to make proofs easier

• Idea:  to prove ∀𝑥 ∈ 𝑆 𝐹 𝑥 , replace 𝐹 𝑥 with an equivalent 
formula that is easier to prove. 

• Proof by contraposition:

– to prove ∀𝑥 ∈ 𝑆 𝐺 𝑥 → 𝐻 𝑥 , prove ∀𝑥 ∈ 𝑆 ¬𝐻 𝑥 → ¬𝐺(𝑥)

• Proof by contradiction: 

– No matter what 𝐹(𝑥) is, 𝐹 𝑥 ≡ 𝑇𝑅𝑈𝐸 → 𝐹 𝑥 ≡ ¬𝐹 𝑥 → 𝐹𝐴𝐿𝑆𝐸

– So to prove ∀𝑥 ∈ 𝑆 𝐹 𝑥 , prove ∀𝑥 ∈ 𝑆 ¬𝐹 𝑥 → 𝐹𝐴𝐿𝑆𝐸

Tricks to make proofs easier

• Proof by cases:

– When 𝐹(𝑥) is of the form  𝐺1 𝑥 ∨ 𝐺2 𝑥 → 𝐻 𝑥 , prove 

∀𝑥 𝐹(𝑥) by proving ∀𝑥 ∈ 𝑆 𝐺1 𝑥 → 𝐻 𝑥 ∧ 𝐺2 𝑥 → 𝐻 𝑥

– Since   𝐹 𝑥 ≡ 𝑇𝑅𝑈𝐸 → 𝐹 𝑥 ,  can choose formulas 𝐺1 𝑥 , 𝐺2(𝑥)
so that  ∀𝑥 ∈ 𝑆 (𝐺1 𝑥 ∨ 𝐺2 𝑥 ) is true, 

• Then prove ∀𝑥 ∈ 𝑆 𝐺1 𝑥 → 𝐹 𝑥 ∧ 𝐺2 𝑥 → 𝐹 𝑥 instead of proving 

∀𝑥 ∈ 𝑆 𝐹 𝑥 directly. 

– These generalize to as many cases (as many 𝐺𝑖(𝑥) in  this OR) as 
you need. 
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Proof by contraposition 

– To prove ∀𝑥 ∈ 𝑆 (𝐺 𝑥 → 𝐻(𝑥)), prove its contrapositive 
∀𝑥 ∈ 𝑆 (¬𝐻 𝑥 → ¬𝐺(𝑥))

• Universal instantiation: “let n be an arbitrary element of S” 

• Suppose that ¬𝐻(𝑛) is true. 

• Derive that ¬𝐺(𝑛) is true. 

• Conclude that ¬𝐻 𝑛 → ¬𝐺(𝑛) is true. 

• Now use universal generalization to conclude that  ∀𝑥 𝐹 𝑥 is true. 

□ (Done).

• Theorem:  If a square of an integer is even, that integer is even.    

– ∀𝑥 ∈ ℤ 𝐸𝑣𝑒𝑛 𝑥2 → 𝐸𝑣𝑒𝑛(𝑥).

• Proof:  
– We will show that for all 𝑥 the contrapositive of 𝐹(𝑥) holds:  

∀𝑥 ∈ ℤ ¬𝐸𝑣𝑒𝑛 𝑥 → ¬𝐸𝑣𝑒𝑛 𝑥2 .

– By the lemma, this is equivalent to ∀𝑥 ∈ ℤ 𝑂𝑑𝑑 𝑥 → 𝑂𝑑𝑑 𝑥2

– Let n be an arbitrary odd integer. By definition, 𝑛 = 2𝑘 + 1 for some integer k. 

– Then 𝑛2 = 2𝑘 + 1 2 = 4𝑘2 + 4𝑘 + 1 = 2 2𝑘2 + 2𝑘 + 1

– So 𝑛2 = 2𝑚 + 1 for m= 2𝑘2 + 2𝑘, thus 𝑛2 is odd by definition.  

– By universal generalization, get ∀𝑥 ∈ ℤ 𝑂𝑑𝑑 𝑥 → 𝑂𝑑𝑑 𝑥2

– By the lemma, this is equivalent to ∀𝑥 ∈ ℤ ¬𝐸𝑣𝑒𝑛 𝑥 → ¬𝐸𝑣𝑒𝑛 𝑥2

– Since the formula under ∀𝑥 is a contrapositive of the original 𝐹(𝑥), done.  

□ (Done).

Definition:  An integer n is odd iff ∃𝑘 ∈ ℤ, 𝑛 = 2 ⋅ 𝑘 + 1.

Lemma:  Every integer is odd iff it is not even. 

• Theorem (PigeonHolePrinciple):  For any n, if there are n+1 pigeons 
and n holes, then if every pigeon sits in some hole, then there is a 
hole with at least two pigeons.  

• Proof:  
– Suppose n is an arbitrary integer. 

– We show the contrapositive:  if every hole has at most one pigeon, then 
some pigeon is not sitting in any hole. 

– If every hole has at most one pigeon, then there are at most 1 ∗ 𝑛 = 𝑛
pigeons sitting in holes.   

– Then there is  (𝑛 + 1) − 𝑛 = 1 pigeon that is not sitting in a hole, proving 
the contrapositive.  

– Therefore, if every pigeon sits in a hole, and there are more than n 
pigeons, then two pigeons sit in the same hole. 

– By universal generalization, done. 

□ (Done).

Square root of 2

• What is the length of a diagonal of a square with side 1? 

– By Pythagoras’ theorem,  12 + 12 = 2, so it would have to be √2.   

• Is it at least possible to represent √2 as a ratio of two 
integers?... 

– Pythagoras and others tried…

Rational and irrational numbers

• The numbers that are representable as a 
ratio of two integers are rational numbers. 
Set of all rational numbers is  ℚ.

• Numbers that are not rational are 
irrational. 

• Rational and irrational numbers together 
form the set of all real numbers. 
– Any  sequence of digits, potentially infinite 

after a decimal point,  is a real number. Any 
point on a line.  

• Irrationality of 2 is a classic proof by 
contradiction. 

Pythagoras figured out that the diagonal of a 
square is not comparable to the sides, but did 
not think of it as a number.
• More like something weird. 

Irrational numbers started being treated as 
numbers in 9th century in the Middle East. 
• Starting with a Persian mathematician and 

astronomer Abu-Abdullah Muhammad ibn 
Īsa Māhānī (Al-Mahani). 
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Proof by contradiction 

– To prove ∀𝑥 𝐹(𝑥), prove  ∀𝑥 ¬𝐹 𝑥 → 𝐹𝐴𝐿𝑆𝐸

• Universal instantiation: “let n be an arbitrary element of the domain 𝑆 of ∀𝑥 ” 

• Suppose that ¬𝐹(𝑛) is true. 

• Derive a contradiction. 

• Conclude that 𝐹(𝑛) is true. 

• By universal generalization,   ∀𝑥 𝐹 𝑥 is true. 

□ (Done).

Definition of rational

• We need a slightly more precise definition of rational numbers 
for our proof that 2 is irrational. 

• Definition (of rational and irrational numbers):  
– A real number 𝑟 is rational iff ∃𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0 ∧ gcd 𝑚, 𝑛 = 1 ∧
𝑟 =

𝑚

𝑛
.

• Reminder:  greatest common divisor gcd(m,n) is the largest integer which 
divides both m and n. When 𝑑 = 1, m and n are relatively prime. 

• Any fraction can be simplified until the numerator and denominator are 
relatively prime, so it is not a restriction

– A real number which is not rational is called irrational. 

• Definition (of rational and irrational numbers):  
– A real number 𝑟 is rational iff

∃𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0 ∧ gcd 𝑚, 𝑛 = 1 ∧ 𝑟 =
𝑚

𝑛
.

• Definition (of greatest common divisor):
– A positive integer 𝑑 is the greatest common divisor of integers 𝑚 and 𝑛

if 𝑛 is divisible by 𝑑, and 𝑚 is divisible by 𝑑, and for any 𝑐 if both 𝑛 and 
𝑚 are divisible by 𝑐 then  𝑑 ≥ 𝑐.

𝑑 > 0 ∧ ∃𝑘1 ∃𝑘2 𝑛 = 𝑘1𝑑 ∧ 𝑚 = 𝑘2𝑑
∧ ∀𝑐 ∃𝑙1 ∃𝑙2 𝑛 = 𝑙1𝑐 ∧ 𝑚 = 𝑙2𝑐 → 𝑐 ≤ 𝑑

• Theorem:  Square root of 2 is irrational.  

Theorem:  Square root of 2 is irrational.  

• Proof:  
– Suppose, for the sake of contradiction, that 2 is rational. Then there exist 

relatively prime  m, n ∈ ℤ, 𝑛 ≠ 0 such that 2 =
𝑚

𝑛
. (definition and 

existential instantiation) 

– By algebra, squaring both sides we get 2 =
𝑚2

𝑛2
.

– Thus 𝑚2 is even (by definition), and by the theorem we just proved, then 
m is even. So 𝑚 = 2𝑘 for some k. (definition and existential instantiation)

– 2𝑛2 = 4 𝑘2, so 𝑛2 = 2𝑘2, and by the same argument n is even. 
– This contradicts our assumption that 𝑚 and 𝑛 are relatively prime.   

Therefore,  such 𝑚 and 𝑛 cannot exist, and so 2 is not rational.

Proof by cases

• If ∀𝑥 ∈ 𝑆 𝐹 𝑥 is  ∀𝑥(𝐺1 𝑥 ∨ 𝐺2 𝑥 ) → 𝐻(𝑥),   prove ∀𝑥 𝐺1 𝑥 → 𝐻 𝑥 ∧
(𝐺2 𝑥 → 𝐻 𝑥 ). 
• Use the tautology 𝑝1 ∨ 𝑝2 ∧ 𝑝1 → 𝑞 ∧ 𝑝2 → 𝑞 → 𝑞

• Proof structure: 

– Universal instantiation: “let n be an arbitrary element of 𝑆” 

– Case 1: Prove  𝐺1 𝑛 → 𝐻(𝑛)

– Case 2: Prove 𝐺2 𝑛 → 𝐻(𝑛)

– Therefore, (𝐺1 𝑛 ∨ 𝐺2 𝑛 ) → 𝐻(𝑛), 

– Now use universal generalization to conclude that  ∀𝑥 𝐹 𝑥 is true. 

• This generalizes for any number of cases  ≥ 2. 
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Theorem:  Sum of an integer with a consecutive integer is odd.   
∀𝑥 ∈ ℤ 𝑂𝑑𝑑(𝑥 + 𝑥 + 1 ).

• Proof:  
– Suppose n is an arbitrary integer. 

– Case 1:  n is even. 
• So n=2k for some k (by definition and existential instantiation).

• Its consecutive integer is n+1 = 2k+1.  Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1.  (axioms). 

• Let 𝑙 = 2𝑘. Then  4𝑘 + 1 = 2𝑙 + 1 is an odd number (by definition and existential generalization). 

• So in this case, n+(n+1) is odd. 

– Case 2: n is odd.  
• So n=2k+1 for some k (by definition and existential instantiation).

• Its consecutive integer is n+1 = 2k+2.  Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1.  (axioms). 

• Let 𝑙 = 2𝑘 + 1. Then  n+(n+1) = 2(2k+1)+1= 2𝑙 + 1,  which is an odd number (by definition and 
existential generalization). So in this case, n+(n+1) is also odd. 

– Since in both cases n+(n+1) is odd, it is odd without additional assumptions. 

– Therefore,  by universal generalization, get ∀𝑥 ∈ ℤ 𝑂𝑑𝑑(𝑥 + 𝑥 + 1 ).

• Definition (of odd integers):  
An integer n is odd iff ∃𝑘 ∈ ℤ, 𝑛 = 2 ⋅ 𝑘 + 1.

□ (Done).

Theorem:  An absolute value of a product of real numbers is equal to
the product of their absolute values. ∀𝑥, 𝑦 ∈ ℝ 𝑥𝑦 = 𝑥 ⋅ |𝑦|

• Let’s try to understand this definition:

□ (Done).

Definition (of absolute value):  
An absolute value of a  real 
number r,  denoted |r|, is 
equal to r if 𝑟 ≥ 0, and  to −𝑟
otherwise (that is, for 𝑟 < 0).

• Proof:  
– Let 𝑥 and 𝑦 be arbitrary real numbers. 
– Case 1:  Both 𝑥 ≥ 0 and 𝑦 ≥ 0

– Case 2: 𝑥 ≥ 0 and  𝑦 < 0

– Case 3:  𝑥 < 0 and 𝑦 ≥ 0

– Case 4: Both 𝑥 < 0 and 𝑦 < 0

– By universal generalization, ∀𝑥, 𝑦 ∈ ℝ 𝑥𝑦 = 𝑥 ⋅ |𝑦| □ (Done).

Definition (of absolute value):  
An absolute value of a  real 
number r,  denoted |r|, is 
equal to r if 𝑟 ≥ 0, and  to −𝑟
otherwise (that is, for 𝑟 < 0).

Theorem:  An absolute value of a product of real numbers is equal to
the product of their absolute values. ∀𝑥, 𝑦 ∈ ℝ 𝑥𝑦 = 𝑥 ⋅ |𝑦|

• Proof:  
– Let 𝑥 and 𝑦 be arbitrary real numbers. 
– Case 1:  Both 𝑥 ≥ 0 and 𝑦 ≥ 0

• By definition of the absolute value, 𝑥 = 𝑥 and 𝑦 = 𝑦.
• So 𝑥 ⋅ 𝑦 = 𝑥𝑦 = |𝑥𝑦|, since 𝑥𝑦 ≥ 0.

– Case 2: 𝑥 ≥ 0 and  𝑦 < 0
• Then 𝑥 = 𝑥, 𝑦 = −𝑦. So 𝑥 ⋅ 𝑦 = −𝑥𝑦 . 
• Since 𝑥𝑦 ≤ 0, 𝑥𝑦 = −𝑥𝑦 too.  So 𝑥 ⋅ 𝑦 = −𝑥𝑦 = |𝑥𝑦|

– Case 3:  𝑥 < 0 and 𝑦 ≥ 0
• Same as Case 2, interchanging 𝑥 and 𝑦

– Case 4: Both 𝑥 < 0 and 𝑦 < 0
• Since product of negative numbers is positive, 𝑥𝑦 = 𝑥𝑦.
• On the other hand, 𝑥 ⋅ 𝑦 = −𝑥 ⋅ −𝑦 = 𝑥𝑦. So 𝑥 ⋅ 𝑦 = 𝑥𝑦 = |𝑥𝑦|

– By universal generalization, ∀𝑥, 𝑦 ∈ ℝ 𝑥𝑦 = 𝑥 ⋅ |𝑦| □ (Done).

Definition (of absolute value):  
An absolute value of a  real 
number r,  denoted |r|, is 
equal to r if 𝑟 ≥ 0, and  to −𝑟
otherwise (that is, for 𝑟 < 0).

Theorem:  An absolute value of a product of real numbers is equal to
the product of their absolute values. ∀𝑥, 𝑦 ∈ ℝ 𝑥𝑦 = 𝑥 ⋅ |𝑦|

• Proof:  
– ….. 
– Case 2: 𝑥 ≥ 0 and  𝑦 < 0

• Then 𝑥 = 𝑥, 𝑦 = −𝑦. So 𝑥 ⋅ 𝑦 = −𝑥𝑦 . 
• Since 𝑥𝑦 < 0, 𝑥𝑦 = −𝑥𝑦 too.  So 𝑥 ⋅ 𝑦 = −𝑥𝑦 = |𝑥𝑦|

– Case 3:  𝑥 < 0 and 𝑦 ≥ 0
• Same as Case 2, interchanging 𝑥 and 𝑦

– …..

We did not need a separate proof for Case 3, since it was essentially identical to case 2, with roles of x and y 
exchanged.  

There, we could use the phrase “without loss of generality” (abbreviated “wlog”), and combine cases 2 and 
3:   “Case 2:  one of the numbers is nonnegative and the other negative. Without loss of generality, let x be 
nonnegative, y negative. “

This can be used when one case follows from another in very few simple  steps, or the proof is the same. 

Without loss of generality
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Summary: proof techniques

• Proving  an existential statement  ∃𝑥 ∈ 𝑆 𝐹(𝑥):
– If possible, give a constructive proof by constructing a witness

• When does not work, can try to prove  that ∀𝑥 ¬𝐹 𝑥 → 𝐹𝐴𝐿𝑆𝐸

• Proving a universal statement ∀𝑥 ∈ 𝑆 𝐹(𝑥):
– Start with universal instantiation: take an arbitrary 𝑛 ∈ 𝑆
– Use definitions, axioms, etc to prove 𝐹(𝑛)

• If 𝐹 𝑛 is 𝐺 𝑛 → 𝐻 𝑛 , assume 𝐺 𝑛 and derive 𝐻(𝑛)
• Use existential instantiation/generalization for ∃𝑥 in definitions

– Replacing 𝐹 𝑥 with an equivalent formula that’s easier to prove
• Before or after the universal instantiation. 
• Common tricks: proof by contraposition, by contradiction, by cases. 

– Finish with universal generalization. 

• We will see a few other methods, in particular, proof by 
induction.

Proofs for other types of statements

• “The following are equivalent”  ∀𝑥 ∈ 𝑆 𝐺 𝑥 ↔ 𝐻 𝑥

– prove  ∀𝑥 ∈ 𝑆 𝐺 𝑥 → 𝐻 𝑥 ∧ (𝐻 𝑥 → 𝐺(𝑥))

– When more than two formulas, can prove a chain of implications:

• To show that 𝐹 𝑛 , 𝐺 𝑛 ,𝐻 𝑛 ,… are equivalent, prove 𝐹 𝑛 → 𝐺 𝑛 ∧

(𝐺 𝑛 → 𝐻 𝑛 ) ∧ (𝐻 𝑛 → 𝐹 𝑛 ),   in whichever order is most convenient. 

• “There is a unique 𝑥"… ∃𝑥 𝐹 𝑥 ∧ ∀𝑦 ≠ 𝑥 ¬𝐹 𝑥

– Sometimes written ∃! 𝑥 𝐹(𝑥)

– Note a shorthand: ∀𝑦 ≠ 𝑥 ¬𝐹 𝑥 means ∀𝑦 (𝑦 ≠ 𝑥 → ¬𝐹 𝑥 )

Language of proofs:  
Theorems, lemmas, claims… 

• Theorem: usually a major result, often requiring a long proof. 

– Though technically  any  statement true in a theory is a theorem .

• Lemma: a technical statement used in a proof of a theorem

– Some lemmas are more famous than theorems they were designed to prove! 

• Claim/fact/observation:  An easily provable statement used in subsequent proofs. 

– Often stated without a proof. 

• Corollary:  A statement that easily follows from a theorem/lemma or their proofs. 

• Conjecture:  A statement that has not been proven, usually believed to be true

– Example:  Goldbach’s conjecture states that every even integer > 2 is a sum of two primes.

Proofs are an art! 

• As with art, to learn to do proofs look at examples
– See if an existing proof can be modified to prove what you need. 

• Can a proof that  √2 is irrational be changed into a proof that √3 is irrational?

• Often, the same statement can be proven many different ways. 
– There are no precise rules for when to use which trick – try whichever one 

you like, and if you cannot get it to work, try another.

– Often choose whichever way the proof is most beautiful.  

• And as with any art – the more you practice, the better you become!
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