

- L II. III IV. V. V. V. V. V. V.
- or geometry. Euclid's postulates
 - I. Through 2 points a line segment can be drawn
 - II. A line segment can be extended to a straight line indefinitely
 - III. Given a line segment, a circle can be drawn with it as a radius and one endpoint as a centre
 - IV. All right angles are congruent
 - V. Parallel postulate

 Vacuous puzzle

 • Let $S = \{x \in \mathbb{N} \mid x \text{ is even } \land x \text{ is odd}\}$

 • Prove or disprove:

 $\forall x \in S, x \text{ does not divide } x^2$

• Therefore, $\forall x \in \mathbb{Z}$, $Even(x) \lor Odd(x)$

- Theorem: for all integers n,m and d, where d > 0, if $n \equiv m \pmod{d}$ then there exists an integer k such that n = m + kd $-\forall x, y, z \ (z > 0 \land x \equiv y \pmod{z}) \rightarrow \exists u \ x = y + uz$
- Proof:
 - Let n, m, d be arbitrary integers such that d > 0 and $n \equiv m \pmod{d}$. • Universal instantiation and assuming the premise
 - Then there are integers q_1, q_2, r with $0 \le r < d$ such that $n = dq_1 + r$ and $m = dq_2 + r$.
 - By existential instantiation of quotient-remainder theorem and definition of congruence. – Now, n $-m=(dq_1+r)-(dq_2+r)=d(q_1-q_2)$
 - Substitution and algebra.
 - Set $k = q_1 q_2$. For this k, n = m + kd. Therefore, $\exists u \ n = m + ud$ • By existential generalization
 - Since n, m, d were arbitrary integers with d > 0 and $n \equiv m \pmod{d}$, $\forall x, y, z \ (z > 0 \land x \equiv y \pmod{z}) \rightarrow \exists u \ x = y + uz$ • By universal generalization.

🗆 (Done).

Proof by contraposition

- − To prove $\forall x \in S$ (G(x) → H(x)), prove its contrapositive $\forall x \in S \ (\neg H(x) \rightarrow \neg G(x))$
 - Universal instantiation: "let n be an arbitrary element of S"
 - Suppose that ¬H(n) is true.
 - Derive that ¬*G*(*n*) is true.
 - Conclude that ¬H(n) → ¬G(n) is true.
 - Now use universal generalization to conclude that $\forall x F(x)$ is true.

49

Theorem: If a square of an integer is even, that integer is even. $- \forall x \in \mathbb{Z} \ Even(x^2) \rightarrow Even(x).$ Lemma: Every integer is odd iff it is not even. Definition: An integer n is odd iff $\exists k \in \mathbb{Z}, n = 2 \cdot k + 1$. • Proof: - We will show that for all x the contrapositive of F(x) holds: $\forall x \in \mathbb{Z} \neg Even(x) \rightarrow \neg Even(x^2)$. – By the lemma, this is equivalent to $\forall x \in \mathbb{Z} \ Odd(x) \rightarrow Odd(x^2)$ - Let n be an arbitrary odd integer. By definition, n = 2k + 1 for some integer k. - Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ - So $n^2 = 2m + 1$ for m= $2k^2 + 2k$, thus n^2 is odd by definition. – By universal generalization, get $\forall x \in \mathbb{Z} \ Odd(x) \rightarrow Odd(x^2)$ - By the lemma, this is equivalent to $\forall x \in \mathbb{Z} \neg Even(x) \rightarrow \neg Even(x^2)$ - Since the formula under $\forall x$ is a contrapositive of the original F(x), done.

50

- Theorem (PigeonHolePrinciple): For any n, if there are n+1 pigeons and n holes, then if every pigeon sits in some hole, then there is a hole with at least two pigeons. Proof:

□ (Done)

- Suppose n is an arbitrary integer. - We show the contrapositive: if every hole has at most one pigeon, then
- some pigeon is not sitting in any hole – If every hole has at most one pigeon, then there are at most 1 * n = npigeons sitting in holes.
- Then there is (n + 1) n = 1 pigeon that is not sitting in a hole, proving the contrapositive.

🗆 (Done)

- Therefore, if every pigeon sits in a hole, and there are more than n pigeons, then two pigeons sit in the same hole.
- By universal generalization, done.

51

Proof by contradiction

- To prove $\forall x \ F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
- Universal instantiation: "let n be an arbitrary element of the domain S of ∀x "
 Suppose that ¬F(n) is true.
- Derive a contradiction.
- Derive a contradiction.
 Considerate that E(w) is to
- Conclude that *F*(*n*) is true.
- By universal generalization, $\forall x F(x)$ is true.

55

56

□ (Done)

57

• Proof:

- Suppose, for the sake of contradiction, that $\sqrt{2}$ is rational. Then there exist relatively prime m, $n \in \mathbb{Z}$, $n \neq 0$ such that $\sqrt{2} = \frac{m}{n}$. (definition and existential instantiation)
- By algebra, squaring both sides we get $2 = \frac{m^2}{n^2}$.
- Thus m^2 is even (by definition), and by the theorem we just proved, then m is even. So m = 2k for some k. (definition and existential instantiation)
- $-2n^2 = 4k^2$, so $n^2 = 2k^2$, and by the same argument n is even.
- This contradicts our assumption that *m* and *n* are relatively prime. Therefore, such *m* and *n* cannot exist, and so $\sqrt{2}$ is not rational.

- If $\forall x \in S F(x)$ is $\forall x(G_1(x) \lor G_2(x)) \to H(x)$, prove $\forall x(G_1(x) \to H(x)) \land (G_2(x) \to H(x))$.
- Use the tautology $(p_1 \vee p_2) \wedge (p_1 \to q) \wedge (p_2 \to q) \to q$
- Proof structure:
 - Universal instantiation: "let n be an arbitrary element of \mathcal{S} "
 - Case 1: Prove $G_1(n) \rightarrow H(n)$
 - Case 2: Prove $G_2(n) \rightarrow H(n)$
 - Therefore, $(G_1(n) \lor G_2(n)) \to H(n)$,
- Now use universal generalization to conclude that $\forall x F(x)$ is true.
- This generalizes for any number of cases ≥ 2 .

 Theorem: An absolute value of a product of real numbers is equal to

 the product of their absolute values. $\forall x, y \in \mathbb{R} |xy| = |x| \cdot |y|$

 • Let's try to understand this definition:

 Definition (of absolute value): An absolute value of a real number r, denoted |r|, is equal to if r > 0, and to -r otherwise (that is, for r < 0).</td>

 c(Done).

Example: Goldbach's conjecture states that every even integer > 2 is a sum of two primes

