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Stereotypes puzzle

• Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a 
student she was deeply concerned with issues of discrimination and social justice and also
participated in anti-pipeline demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most 
likely.  Susan is: 

1. a kindergarten teacher
2. works in a bookstore and takes yoga classes
3. an active feminist
4. a psychiatric social worker
5. a member of an outdoors club
6. a bank teller
7. an insurance salesperson
8. a bank teller and an active feminist

• Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she 
was deeply concerned with issues of discrimination and social justice and also participated in anti-
pipeline demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely.  
Susan is: 

1. a kindergarden teacher
2. works in a bookstore and takes yoga classes
3. an active feminist
4. a psychiatric social worker
5. a member of an outdoors club
6. a bank teller
7. an insurance salesperson
8. a bank teller and an active feminist

Bank tellers Feminists

Stereotypes puzzle Scenarios and sets

• Want to reason about more general scenarios

• Rather than just true/false, vary over objects:

– even numbers, integers, primes

– people that are and are not bank tellers,  

– pairs of animals in the same ecosystem...

• Want  multiple properties of these objects:

– an even number that is divisible by 4 and > 10, 

– a person that is also a bank teller...  

Sets

• A set is a collection of objects.
– The order of elements does not matter.  
– There are no duplicates. 

– 𝑆1={1, 2, 3}, 
– 𝑆2 = {Cathy, Alaa,  Keiko, Daniela}    

• Can define a set of all elements satisfying some condition: 
– {x | such that x   ... } is called set builder notation

– 𝑆3 = 𝑥 𝑥 is an even number }
– PEOPLE = {x | x is a person living on Earth now}
– BANKTELLERS = { x | x is a person who is a bank teller} 
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Special sets

• Notation for some special sets:

– Empty set  ∅ (set with no elements in it)

– Natural numbers ℕ = 1, 2, 3, …

• Sometimes start with 0. 

– Integers ℤ = … − 2, −1, 0, 1, 2, …

– Rational numbers ℚ =
𝑚

𝑛
𝑚, 𝑛 integers, 𝑛 ≠ 0}

– Real numbers ℝ

– Binary strings 0,1 ∗

• Notation  𝑎 ∈ 𝑆 (“a in S”) means that an element 𝑎 belongs to the 
set S, and 𝑎 ∉ 𝑆 states that 𝑎 is not in S
– Susan ∈ PEOPLE. Susan ∉ BANKTELLERS   

– 0.5 ∈ ℝ. 0.5 ∉ ℤ

• Also, can write 𝑥 ∈ 𝑆 for a variable x (in particular in set builder 
notation)
– BANKTELLERS = {  𝑥 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 | x is a bank teller} 

– EVEN = 𝑥 ∈ ℤ 𝑥 is divisible by 2 }

Bank 
tellers

Set elements

Feminists

PEOPLE

• When all elements of a set 𝑆1 are also elements of a set 𝑆2, we say that 
𝑆1 is a subset of 𝑆2 , written 𝑆1 ⊆ 𝑆2
– BANKTELLERS ⊆ PEOPLE 

– 𝐸𝑉𝐸𝑁 ⊆ ℤ
– ℕ ⊆ 𝑥 ∈ ℤ 𝑥 ≥ 1 }

• 𝑆1 = 𝑆2 when 𝑆1 ⊆ 𝑆2 and 𝑆2 ⊆ 𝑆1
– ℕ = 𝑥 ∈ ℤ 𝑥 ≥ 1 }

• 𝑆1 is a proper subset of a 𝑆2, written 𝑆1 ⊂ 𝑆2 when 𝑆1 ⊆ 𝑆2 , but 𝑆1 ≠ 𝑆2
– BANKTELLERS ⊂ PEOPLE,  𝐸𝑉𝐸𝑁 ⊂ ℤ.   

Bank 
tellers

Subsets and equality 

Feminists

PEOPLE

Venn diagrams

• Circles are sets 
– BANKTELLERS, FEMINISTS, DOGS, MAMMALS, BIRDS, EVEN

• Square is the universe
– PEOPLE, ANIMALS,ℝ

• Dots are elements
– Susan,0.5

• A circle for one set inside another means subset
– DOGS ⊆MAMMALS  

• Circles not overlapping indicates there are no       
common elements (they are disjoint) 
– MAMMALS is disjoint from BIRDS 

PEOPLE

BANK
TELLERS

FEMINISTS

MAMMALS

ANIMALS

DOGS  

BIRDSHow can we do logic with sets?

Predicates

• A predicate 𝑃(𝑥) is a “proposition with a variable”. Here, 𝑥 is a 
variable that can take values from a set 𝐷 called the domain or 
universe of 𝑃 𝑥 .
– Variable names are usually 𝑥, 𝑦, 𝑧, or words like 𝑛𝑎𝑚𝑒, usually lowercase.  

– Predicate names are usually P(), 𝑄 , and capitalized words:
• 𝑃 𝑦 , 𝑄 𝑧 , 𝑃 𝑛𝑎𝑚𝑒 , Even(x) 

• Examples:  Feminist(x),  Bankteller(person), P(y). 
– In the first two cases, D is PEOPLE. 

– 𝑥 ∈ 𝑆 is also a predicate for a specific 𝑆 with the variable 𝑥
• Here, D is the universe to which elements of S belong. 
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Instantiation of predicates

• When 𝑥 in 𝑃 𝑥 is replaced with a specific element of D (instantiated), the 
predicate  becomes a proposition. 
– Even(3),  Feminist(Susan)

• After instantiation, the predicate gets a specific truth value true or false. 
– Even(3) is false.   Feminist(Susan)  is true.   

• 𝑃 𝑥 may be true for some values of 𝑥 ∈ 𝐷, and false for other.   
– 𝐸𝑣𝑒𝑛(𝑥) is true for even numbers 𝑥 ∈ ℤ, but false for odd integers.

– 𝐹𝑒𝑚𝑖𝑛𝑖𝑠𝑡(𝑦) is true for some 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸, and false for others...

– Here, domain of 𝑥 is ℤ, and domain of 𝑦 is 𝑃𝐸𝑂𝑃𝐿𝐸
• 𝐸𝑣𝑒𝑛(𝑦) is not defined for 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸, only for elements of ℤ.

Predicates vs. sets 

• Predicates and sets are two sides of the same coin

– For each set S there is a predicate which is true exactly on elements of S 

– For each predicate P there is a set S of values of 𝑥 on which P is true. 

• To write formulas, need something that is true/false: predicates! 

Set S Predicate P

A collection of elements Becomes true/false on a given element

SP = 𝑥 𝑃 𝑥 is true}  𝑃𝑆 𝑥 ≡ "𝑥 ∈ 𝑆“

Predicate logic

• We can make formulas out of predicates the same way as we did 
for propositions, but now our formulas have free variables:  

– 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑇ℎ𝑟𝑒𝑒(𝑥) → ¬𝑃𝑟𝑖𝑚𝑒 𝑥

– 𝐹𝑒𝑚𝑖𝑛𝑖𝑠𝑡 𝑥 ∧ 𝐵𝑎𝑛𝑘𝑡𝑒𝑙𝑙𝑒𝑟 𝑥

– Now scenarios can correspond to values of x.  

• The first formula is false for x=2 since 𝐸𝑣𝑒𝑛 2 = 𝑡𝑟𝑢𝑒, but ¬𝑃𝑟𝑖𝑚𝑒 2 = 𝑓𝑎𝑙𝑠𝑒.

• This is called predicate logic (or first-order logic), as opposed to 
propositional logic we did so far.

• Union

– 𝐴 ∪ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
– The coloured part in the top picture. 

– 𝐴 ∪ 𝐵 = 1,2,3,4

• Symmetric difference

– 𝐴 Δ 𝐵 = 𝐴 − 𝐵 ∪ (𝐵 − 𝐴)
– The yellow and blue parts of the top 

picture.

– AΔ𝐵 = 1,4

• Let A and B be sets with predicates 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵
– Such as A={1,2,3} and B={ 2,3,4} 

• Intersection 𝐴 ∩ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
– The green part of top picture

– 𝐴 ∩ 𝐵 = {2,3}

• Difference 𝐴 − 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∧ ¬(𝑥 ∈ 𝐵)}
– The yellow part in the top picture. 

– A − 𝐵 = 1

• Complement 𝐴 = 𝑥 ∈ 𝑈 ¬(𝑥 ∈ 𝐴)}
– The blue part on the Venn diagram

– If universe U = ℕ, 𝐴 = 𝑥 ∈ ℕ 𝑥 ∉ 1,2,3 }

U         

U         

Set operations as formulas
A B

U         

𝐴 ∪ 𝐵

A U         

U         

A-B

𝐴Δ𝐵

U         

𝐴 ∩ 𝐵

Predicates with several variables

• Sometimes, want a predicate that depends on more than one variable
– 𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛(𝑥, 𝑦), for 𝑥, 𝑦 ∈ ℝ, is true if and only if  𝑥 < 𝑦

• Alternatively, can just write 𝑥 < 𝑦 to mean  𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 𝑥, 𝑦

– 𝐷𝑖𝑣𝑖𝑑𝑒𝑠 𝑥, 𝑦 , for 𝑥, 𝑦 ∈ ℤ, is true if and only if 𝑥 is a divisor of 𝑦
• 𝐷𝑖𝑣𝑖𝑑𝑒𝑠 3,6 is true. 𝐷𝑖𝑣𝑖𝑑𝑒𝑠 12,4 is false. 

• A predicate 𝑃(x1, … , 𝑥𝑛) is a “proposition with variables”, where values of the 
variables 𝑥1, … , 𝑥𝑛 come from some sets 𝑆1, … , 𝑆𝑛, called  their domains or universes.
– Sometimes the domains of its variables are the same, other times different. 
– Order of variables matters. 

• For any specific tuple of elements (instantiation of 𝑥1, … , 𝑥𝑛), a  predicate 
𝑃(x1, … , 𝑥𝑛) is either true or false. 
– For any pair of numbers, x < y can be either true or false: 

• LessThan(1,2), that is 1 < 2 is true, whereas  LessThan(2,1)  is false

Predicates: arity

• A predicate on one variable  is called “unary”, on two “binary”, on three variables 
“ternary”
– in general a predicate on  𝑛 variables is called 𝑛-ary predicate. 
– Number of variables a predicate takes as input is called its 𝑎𝑟𝑖𝑡𝑦. 

• Parent(x,y) is true when the person 𝑥 is a parent of the person 𝑦
– 𝑃𝑎𝑟𝑒𝑛𝑡(King George VI, Queen  Elizabeth II) is true 
– This is a binary predicate

• Ternary predicates examples: 
– 𝑆𝑢𝑚(𝑥, 𝑦, 𝑧) which is true when 𝑥 + 𝑦 = 𝑧.
– 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑥, 𝑦, 𝑧) which is true when y≤ 𝑥 and x ≤ 𝑧

• For both of them, can take the domain to be ℝ

– 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑛𝑎𝑚𝑒, 𝑐𝑜𝑢𝑟, 𝑠𝑒𝑚) which is true when 𝑛𝑎𝑚𝑒 is the name of a student who takes the 
course 𝑐𝑜𝑢𝑟 in semester 𝑠𝑒𝑚.
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Quantifiers

• A formula of predicate logic can 
be evaluated when the values of 
all variables are known. 

– Alternatively, we might want 
the formula to hold no matter 
what the values are.

– Or wonder if there is any 
value that makes it true 

Universal quantifier

• ∀𝑥 ∈ 𝑆 𝐹 𝑥

(pronounced “forall”)

is true when

for all possible values  𝑥 can take in  𝑆

the formula 𝐹(𝑥) is true. 

• If there is a quantifier over a variable, such variable is not 
free anymore. 

• If there are no free variables, the whole formula evaluates 
to either true or false.

Quantifiers: universal (∀)

• Theorems often look like this:  “For all x  the following is true”, 
and then a formula with x as a free variable. 
– For all 𝑥 ∈ ℤ 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑆𝑖𝑥 𝑥 → 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑇ℎ𝑟𝑒𝑒(𝑥)
– For all 𝑛 ∈ ℕ if 𝑛 > 4, then 2𝑛 > 𝑛2

• We write this  in predicate logic using the universal quantifier ∀

– ∀𝑥 ∈ ℤ 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑆𝑖𝑥 𝑥 → 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑇ℎ𝑟𝑒𝑒(𝑥)

– ∀𝑛 ∈ ℕ 𝑛 > 4 → 2𝑛 > 𝑛2

Some textbooks put a comma after the quantifier, some period, others nothing.
Some insist that the formula must be in parentheses if it is more  than one predicate.    
• When in doubt, use parentheses. 

Examples with universal quantifier

• “Every bird can fly” 

– Domain 𝐵𝐼𝑅𝐷

– Predicate 𝐶𝑎𝑛𝐹𝑙𝑦(𝑥)

– ∀𝑥 ∈ 𝐵𝐼𝑅𝐷 𝐶𝑎𝑛𝐹𝑙𝑦(𝑥)

• Not true:  penguins 

• “I work each day of the week!  “

– Domain  DAYS = {Mon, Tue, Wed, Thu, Fri, Sat, Sun} 

– Predicate Work(x), where 𝑥 ∈ 𝐷𝐴𝑌𝑆

– ∀𝑥 ∈ 𝐷𝐴𝑌𝑆 𝑊𝑜𝑟𝑘 𝑥

“Any two people are related” 
Domain 𝑃𝐸𝑂𝑃𝐿𝐸
Predicate  Related 𝑥, 𝑦
∀𝑥 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 ∀ 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑥, 𝑦

Can shorten this as 
∀𝑥, 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑥, 𝑦

Examples with universal quantifier

• “Every  integer is either even or odd.” 
– Domain ℤ

– Predicates 𝐸𝑣𝑒𝑛(𝑥) and 𝑂𝑑𝑑(𝑥)

– ∀𝑥 ∈ ℤ 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑 𝑥
• This is true: every integer is  even or odd.

• “Adding 1 to any odd integer results in 
an even number” 

– ∀𝑥 ∈ ℤ 𝑂𝑑𝑑 𝑥 → 𝐸𝑣𝑒𝑛 𝑥 + 1
• This is also true.  

• “Every odd integer is prime” 
– Domain ℤ
– Predicates Prime(𝑥) and 𝑂𝑑𝑑(𝑥)

– ∀𝑥 ∈ ℤ 𝑂𝑑𝑑 𝑥 → 𝑃𝑟𝑖𝑚𝑒 𝑥
• False:   for example 9 is odd but not prime.

• “For every two numbers one is less than 
the other” 
– Domain ℝ
– Predicate LessThan(𝑥, 𝑦)

• Can just write it as  𝑥 < 𝑦

– ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ 𝑥 < 𝑦 ∨ 𝑦 < 𝑥
• False:  x and y may take the same value
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Universal quantifier and truth

• For every formula F of predicate logic with a free variable x,  we can 
write  ∀𝑥 ∈ 𝑆 𝐹 𝑥
– Where 𝐹 𝑎 can have quantifiers, too. 
– We call a sentence of the form ∀𝑥 ∈ 𝑆 𝐹 𝑥 a universal statement

• The formula “∀𝑥 ∈ 𝑆 𝐹 𝑥 " is true iff 𝐹 𝑎 is true for every 𝑎 ∈ 𝑆.
– That is, if 𝑎1, 𝑎2, … , 𝑎𝑛, … is a list of all elements of S,  then 
"∀𝑥 ∈ 𝑆 𝐹 𝑥 " is true iff "𝐹 𝑎1 ∧ 𝐹 𝑎2 ∧ ⋯ ∧ 𝐹 𝑎𝑛 ∧ ⋯”   is true.  

• To evaluate a universally quantified formula ∀𝑥 ∈ 𝑆 𝐹 𝑥 , check that 
for each 𝑎 ∈ 𝑆, 𝐹(𝑎) is true. 

Evaluating universally quantified formulas        

• Take the domain  𝐷 = 0,1,2 , predicates   𝑥 ≤ 𝑦 and 𝑥 ≥ 𝑦
– "∀𝑥 ∈ 0,1,2 𝑥 ≥ 0" is true  for all instantiations of 𝑥 ≥ 0:

𝑥 ≥ 0 true for  0, and 1, and  2 substituted for x in the formula.

– So 0 ≥ 0 is true, and 1 ≥ 0 is true, and  2 ≥ 0 is also true. 

– That is, when  0 ≥ 0 ∧ 1 ≥ 0 ∧ 2 ≥ 0 is true. 
• Which happens to be the case. 

– "∀𝑥 ∈ 0,1,2 𝑥 ≥ 0 ∧ 𝑥 ≤ 2" is true when 
• 0 ≥ 0 ∧ 0 ≤ 2 ∧ 1 ≥ 0 ∧ 1 ≤ 2 ∧ (2 ≥ 0 ∧ 2 ≤ 2) is true. 

Evaluating universally quantified formulas        

• Take the domain  𝐷 = 0,1,2 , predicates   𝑥 ≤ 𝑦 and 𝑥 ≥ 𝑦
– Let’s evaluate  ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦
– Now we have two variables, so let’s do it one quantifier at a time. 
– First, let’s try all values for 𝑥 then AND the resulting formulas together: 

∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦 ≡ (∀𝑦 ∈ 𝐷 0 ≤ 𝑦) ∧ (∀𝑦 ∈ 𝐷 1 ≤ 𝑦) ∧(∀𝑦 ∈ 𝐷 2 ≤ 𝑦)

– Now, for each formula in parentheses, try all values of 𝑦:
∀𝑦 ∈ 𝐷 0 ≤ 𝑦 ≡ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2 true 
∀𝑦 ∈ 𝐷 1 ≤ 𝑦 ≡ 1 ≤ 0 ∧ 1 ≤ 1 ∧ 1 ≤ 2 false 
∀𝑦 ∈ 𝐷 2 ≤ 𝑦 ≡ 2 ≤ 0 ∧ 2 ≤ 1 ∧ 2 ≤ 2 false

– Finally, putting it all together, ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦 becomes 
0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2 ∧ 1 ≤ 0 ∧ 1 ≤ 1 ∧ 1 ≤ 2 ∧ ( 2 ≤ 0 ∧ 2 ≤ 1 ∧ 2 ≤ 2 ) 

– Now we see that ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦 is false

• Evaluating predicates with infinite domains is harder, need proofs.

Quantifiers and conditionals

• Which of these are true? How can we write them as formulas? 

– All squares are white. All white shapes are squares

– All circles are blue. All blue shapes are circles. 
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Quantifiers and conditionals

• Which of these are true? How can we write them as formulas? 

– All squares are white. All white shapes are squares

– All circles are blue. All blue shapes are circles. 

– They all have the structure ∀𝑥 ∈ 𝑆, 𝑃 𝑥 → 𝑄 𝑥

Quantifiers and conditionals

• Which of these are true? How can we write them as formulas? 

– All squares are white. All white shapes are squares

– All circles are blue. All blue shapes are circles. 

– They all have the structure ∀𝑥 ∈ 𝑆, 𝑃 𝑥 → 𝑄 𝑥

• All squares are white:  for all shapes, if it is a square, then it is white

– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆, 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥 → 𝑊ℎ𝑖𝑡𝑒 𝑥

• Different from “All  white objects are squares”: 

– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆, 𝑊ℎ𝑖𝑡𝑒 𝑥 → 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥

• When all elements of a set 𝑆1 are also elements of a set 𝑆2, we say 
that 𝑆1 is a subset of 𝑆2, written 𝑆1 ⊆ 𝑆2

– Treat 𝑥 ∈ 𝑆 as a predicate. Let 𝑈 be the universe. 

– 𝑆1 ⊆ 𝑆2 iff ∀𝑥 ∈ 𝑈 𝑥 ∈ 𝑆1 → 𝑥 ∈ 𝑆2

– 𝐸𝑉𝐸𝑁 ⊆ ℤ, ℕ ⊆ 𝑥 ∈ ℤ 𝑥 ≥ 1 }, DOGS ⊆ MAMMALS

• 𝑆1 = 𝑆2 when 𝑆1 ⊆ 𝑆2 and 𝑆2 ⊆ 𝑆1

– ∀𝑥 ∈ 𝑈 𝑥 ∈ 𝑆1 ↔ 𝑥 ∈ 𝑆2

– ℕ = 𝑥 ∈ ℤ 𝑥 ≥ 1 }

Subsets and implication 

MAMMALS

ANIMALS

DOGS  

Quantifiers and conditionals

• All squares are white.  
– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥 → 𝑊ℎ𝑖𝑡𝑒 𝑥 . False! 

• All white shapes are squares
– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝑊ℎ𝑖𝑡𝑒 𝑥 → 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥 True!

• All circles are blue. 

– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝐶𝑖𝑟𝑐𝑙𝑒 𝑥 → 𝐵𝑙𝑢𝑒 𝑥 .

• All blue shapes are circles. 
– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝐵𝑙𝑢𝑒 𝑥 → 𝐶𝑖𝑟𝑐𝑙𝑒 𝑥 .

• All lemurs live in the trees. 
– ∀𝑥 ∈ 𝐴𝑁𝐼𝑀𝐴𝐿𝑆 𝐿𝑒𝑚𝑢𝑟 𝑥 → 𝐿𝑖𝑣𝑒𝑠𝐼𝑛 𝑇𝑟𝑒𝑒𝑠 𝑥

• All animals living in the trees are lemurs. 

– ∀𝑥 ∈ 𝐴𝑁𝐼𝑀𝐴𝐿𝑆 𝐿𝑖𝑣𝑒𝑠𝐼𝑛 𝑇𝑟𝑒𝑒𝑠 𝑥 → 𝐿𝑒𝑚𝑢𝑟 𝑥

Quantifiers and conditionals

• Why don’t we write them as ∀𝑥 ∈ 𝑆𝑄𝑈𝐴𝑅𝐸𝑆 𝑊ℎ𝑖𝑡𝑒 𝑥 ?

– Sometimes we can, but the first form is easier to reason about. 

– Besides, the predicate 𝑊ℎ𝑖𝑡𝑒(𝑥) is more useful when defined for any 
shapes, rather than only squares! 

• More commonly, we use a shorthand called restricted 
quantifiers (or quantifiers with restricted domain): 

– ∀𝑥 ≥ 0 𝐸𝑣𝑒𝑛 𝑥 is a shorthand for ∀𝑥 (𝑥 ≥ 0 → 𝐸𝑣𝑒𝑛 𝑥 )

• Why do we write → rather than ∧ ?

• ∀𝑥 𝑥 ≥ 0 ∧ 𝐸𝑣𝑒𝑛 𝑥 is immediately false in ℤ since some integers are < 0.

• Then you should say what you mean,’ the March Hare went on.
• `I do,’ Alice hastily replied; `at least–at least I mean what I say–that’s 

the same thing, you know.’
• `Not the same thing a bit!’ said the Hatter. `You might just as well say 

that “I see what I eat” is the same thing as “I eat what I see”!’
• `You might just as well say,’ added the March Hare, `that “I like what I 

get” is the same thing as “I get what I like”!’
• `You might just as well say,’ added the Dormouse, who seemed to be 

talking in his sleep, `that “I breathe when I sleep” is the same thing as 
“I sleep when I breathe”!’

“Alice’s Adventures  
in Wonderland”

by Lewis Carroll
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Formulas: computational view

• As you are building a formula, think like a computer scientist:

– What would a program (machine) that computes its value look like? 

– What are that program’s inputs and outputs 

– and what are their types? 

– When would this program output an error? 

• Think of operations in the formula computationally. 

Type checking

• A formula consists of pieces of different types
– Boolean: taking values true/false

• Predicates, formulas 

• Can use operations  ¬,∨,∧, →

– Elements
• Variables and fixed elements (constants) from the domain. 

• Occur as inputs to predicates and in quantifiers such as ∀𝑥 ∈ 𝑆

• Can use operations (functions) from the domain: 

– If elements are numbers, can use 𝑥 + 𝑦, 𝑥 ⋅ 𝑦, etc

– Sets of elements  
• Used for domains: only occurs in quantifiers such as  ∀𝑥 ∈ 𝑆

Type checking

• A formula consists of pieces of different types

– Boolean: taking values true/false

– Elements: e.g. numbers 

– Sets of elements  

• ∀𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑 𝑥

Type checking

• A formula consists of pieces of different types

– Boolean: taking values true/false

– Elements: e.g. numbers 

– Sets of elements  

• ∀𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑 𝑥

∨

• Propositional variables and formulas are of type Boolean

– that is, they take values in the set {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

– To evaluate a propositional variable, return its truth value.

• Now, treat connectives as machines with inputs and outputs. 

– They take Boolean inputs, and return Boolean outputs. 

Bool Bool

Bool

∨

∨

true false

true

∨

37 38
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∨

• To evaluate a propositional formula, go up its syntax tree:

– If the formula (node in the tree) is just one variable, return its value

– If a formula (node) is an operation, apply the respective “evaluation machine”:

• Machines for ∨,∧, →,↔ want two Boolean inputs

• Machine for ¬ wants one Boolean input

• Each machine outputs a single Boolean value.  

∨

∨

true false

true

∨

Bool

BoolBool

∨

• Propositional variables and formulas are of type Boolean

– that is, they take values in the set {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

• If 𝐹, 𝐺 are propositional formulas, then so are ¬𝐹, 𝐹 ∧ 𝐺, 𝐹 ∨ 𝐺, 𝐹 → 𝐺

– So, operations ∨,∧, →,↔ need to have Boolean type on both sides

• And ¬ has to have a Boolean type following it. 

– The result of all of these operations is also of Boolean type.  

∨

p ¬𝑞 ∧ 𝑟

𝑝 ∨ (¬𝑞 ∧ 𝑟)
Bool

BoolBool

Predicate logic formulas

• A predicate logic formula consists of different types

– Boolean: taking values true/false

– Elements: e.g. numbers 

– Sets of elements  

• We still can use ∨,∧, →,↔, ¬ machines, both for 
constructing and for evaluating formulas 

– As formulas are of type Boolean

• Also need machines for predicates and quantifiers. 

Computational view of predicates

• Predicate machines take elements as inputs and return Boolean

– Different inputs may be elements from different sets

– The number of inputs depends on a predicate

Boolean

Set

Element
𝑃 ≤

4 2 

falseBool

ElementElement

– Predicate machines take a list of variables or actual elements of their 
domain of type element as inputs and return a formula of the form

• 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑒𝑙𝑒𝑚1, 𝑒𝑙𝑒𝑚2, . . , )

– If there are two inputs,  the form  such as 𝑒𝑙𝑒𝑚1 ≤ 𝑒𝑙𝑒𝑚2 is also OK

Boolean

Set

Element
𝑃

𝑒𝑙𝑒𝑚1 𝑒𝑙𝑒𝑚2

𝑃(𝑒𝑙𝑒𝑚1 , 𝑒𝑙𝑒𝑚2)
≤

𝑥 𝑦

𝑥 ≤ 𝑦

– To construct a predicate correctly, its inputs must take values from 
corresponding domains

• Inputs to predicates  can be  functions, as long as output of the function is from 
the correct domain:  so if the predicate P takes an integer as its input, and 𝑥 takes 
integer values, then P(𝑥 + 1) is OK.   

Boolean

Set

Element
𝑃

𝑒𝑙𝑒𝑚1 𝑒𝑙𝑒𝑚2

𝑃(𝑒𝑙𝑒𝑚1 , 𝑒𝑙𝑒𝑚2)
≤

𝑥 𝑦

𝑥 ≤ 𝑦
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Computational view of quantifiers

• Inputs to quantifier machines are a set, a name of a variable of 
type element of that set, and a formula with that variable free.

• Quantifier machines also return Boolean

Boolean

Set

Element
∀ ∀

true

𝑥
ℤ

𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)

Bool

Bool

Set
Element

name

– Universal quantifier constructing machine takes a variable name, a set
and a formula, and return a new formula of  the form 

• ∀𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑛𝑎𝑚𝑒
Boolean

Set

Element

∀

∀ 𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑛𝑎𝑚𝑒)
∀

∀𝑥 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥))

element 
name 

Set

Formula

𝑥

ℤ

𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)

Liars paradox 
puzzle

• The first formulation of the famous liar’s paradox, 
attributed to a Cretan philosopher Epimenides, stated 

“All Cretans are liars”. 

Is this really a paradox?

Liars paradox 
puzzle

• The first formulation of the famous liar’s paradox, 
attributed to a Cretan philosopher Epimenides, stated 

“All Cretans are liars”. 

Is this really a paradox?

Liars paradox 
puzzle

• The first formulation of the famous liar’s paradox, 
attributed to a Cretan philosopher Epimenides, stated 

“All Cretans are liars”. 

Is this really a paradox?

– If “all” is not true, that means that there is a 
counterexample: a Cretan that does not lie.

– So if Epimenides lied, what is true is that 
there are some truth-tellers on Crete (and 
potentially some liars, too) 

– And Epimenides is one of the liars.  

– However, “I am lying”  would be a paradox.

49 50
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Counterexamples

• How to prove that a statement “∀𝑥 ∈ 𝑆, 𝐹 𝑥 “ is false?   
– All girls hate math. 

– No! 
• I don’t hate math ☺

– Everybody in O’Brian family is tall
• No, Jenny is O’Brian and she is quite short.

– It is foggy all the time, every day in St. John’s
• No, sometimes it is not foggy (like today). 

Counterexample: 

Element of S for which 
the formula is false.

One is enough, though 
more than one is OK. 

Negation of a universal statement

• What is the negation of “All”, that is, what  statement is true 
whenever “∀𝑥 ∈ 𝑆, 𝐹 𝑥 “ is false?  
– All girls hate math. 
– No! 

• All girls love math? 
• Some girls do not hate math!  I don’t. 

– Everybody in O’Brian family is tall
• No, there is someone (Jenny) who is O’Brian and short. 

– It is foggy all the time, every day in St. John’s
• No, sometimes it is not foggy (like today). 

“Not All “ ≡ “Some not”

As there is a quantifier ∀ for 
“all”, there is also a quantifier 

for “some”:  ∃, called   
existential quantifier. 

Existential quantifier

• ∃𝑥 ∈ 𝑆 𝐹 𝑥

(pronounced “exists”)

is true when there is some value a for 𝑥 in 𝑆
for which 𝐹(𝑥) is true. 

– This 𝑎 ∈ 𝑆 is called a witness. 

¬ ∀𝑥 ∈ 𝑆 𝐹 𝑥 ≡ ∃𝑥 ∈ 𝑆 ¬𝐹 𝑥

∀𝑥 ∈ 𝑆 𝐹 𝑥 is false iff there exists  ∃ a counterexample:  
an element 𝑎 ∈ S such that ¬𝐹(𝑎) is true.   

Examples with existential quantifier

• “There exists an even prime number.” 
– Domain ℤ
– Predicates 𝐸𝑣𝑒𝑛(𝑥) and 𝑃𝑟𝑖𝑚𝑒(𝑥)

– ∃𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒 𝑥
• This is true: 2 is both even and prime.

• “There is some number between 0 and 1” 
– Domain ℝ, predicate <

– ∃𝑥 ∈ ℝ, (0 < 𝑥) ∧ (𝑥 < 1)
• True when the domain is ℝ

– There is not just one, but lots of real numbers 
between 0 and 1

• Would be false if we change the domain to  ℤ

• “𝑛 is divisible by 𝑚 if there is 
an integer which when 
multiplied by 𝑚 gives 𝑛”

– Domain ℤ,  Predicate =

– ∃𝑧 ∈ ℤ, 𝑛 = 𝑚𝑧

• True  for n= 6, 𝑚 = 3;  in this 
case, z = 2

• False when eg 𝑛 = 3, 𝑚 = 2

– Here, 𝑛 and 𝑚 are still free 
variables, whereas 𝑧 is bound by 
the quantifier. 

– Quantifier constructing machines take a variable name, a set and a 
formula, and return a new formula of  the form 

• ∀𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑛𝑎𝑚𝑒

• ∃𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑛𝑎𝑚𝑒)
Boolean

Set

Element

∃

∃ 𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑛𝑎𝑚𝑒)
∃

∃𝑥 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥))

element 
name 

Set

Formula

𝑥

ℤ

𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)

Truth of existential statements

• ∃𝑥 ∈ 𝑆 𝐹 𝑥 is true when 𝐹 𝑎 is true for some 𝑎 ∈ 𝑆

– “I am teaching some course” is true because I am teaching COMP 1002

– Here, COMP 1002 is the witness for the truth of “I am teaching some course” 

• That is, when 𝐹 𝑎1 ∨ 𝐹 𝑎2 ∨ ⋯ ∨ 𝐹 𝑎𝑛 ∨ ⋯ is true, where 
𝑎1, 𝑎2, … is a list of all elements of 𝑆

– Enough to find a single witness  𝑎 ∈ 𝑆 with 𝐹 𝑎 true to prove ∃𝑥 ∈ 𝑆 𝐹 𝑥 . 

– To show that ∃𝑥 ∈ 𝑆 𝐹 𝑥 is false, show that for all 𝑎 ∈ 𝑆, 𝐹 𝑎 is false 

• That is because ¬ ∃𝒙 ∈ 𝑺 𝑭 𝒙 ≡ ∀𝒙 ∈ 𝑺 ¬𝑭 𝒙

55 56

57 58

59 60



2022-10-13

11

Quantifiers in English

• Universal quantifier:  usually “every”, “all”, “each”, “any”. 
– Every day it is foggy. Each number is divisible by 1.

• “None”, “no”,  “nobody”,  “nothing” also translate as universal quantifier
– Nobody works on Sundays  ≡ Everybody does not work on Sundays 

• Existential quantifier: “some”, “a”, “exists”
– Some students got 100% on the first lab. 

– There exists a prime number greater than 100. 

• The word “any” can mean either! 

Quantifiers in English: “any”

• “Any” can have different meanings depending on the context:

• Any = some

– Can I have any (piece of the) pie? 

– Can I have some (piece of the) pie? 

• Any = all 

– Any student knows this. 

– Every student knows this.

62

• Any student can get an A
• Would any student get  an A?

When negating a quantified formula, 
the domain always stays the same.

• Quantifiers flip 

(∀ becomes ∃, ∃ becomes ∀)

• The formula  under quantifiers gets a 
¬ in front, and can be simplified 
further, treating logical connectives 
the same way as in propositional 
logic, and predicates as propositions.

¬ ∀𝑥 ∈ 𝑆 𝐹 𝑥 ≡ ∃𝑥 ∈ 𝑆 ¬𝐹(𝑥)

¬(∃𝑥 ∈ 𝑆 𝐹 𝑥 ) ≡ ∀𝑥 ∈ 𝑆 ¬𝐹(𝑥)

Not all integers are even  ≡ Some integers are not even 

¬ ∀𝑥 ∈ ℤ 𝐸𝑣𝑒𝑛 𝑥 ≡ ∃𝑥 ∈ ℤ ¬𝐸𝑣𝑒𝑛 𝑥

• Some integers are both even and prime – no,
none of the integers is both even and prime 
each integer is not even or not prime

¬ ∃𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒 𝑥 ≡ ∀𝑥 ∈ ℤ, ¬𝐸𝑣𝑒𝑛 𝑥 ∨ ¬𝑃𝑟𝑖𝑚𝑒 𝑥

• As in propositional case, push negations inside the formula, onto predicates.  
– “NOT (ALL trees have leaves)” is more confusing than “some trees do not have leaves” or 

“some trees have something other than leaves (e.g., needles).  

When negating a quantified formula, the domain stays the same. 
Quantifiers flip (∀ becomes ∃, ∃ becomes ∀)
The formula under quantifiers  gets a ¬ in front, and can be simplified further

“NOT” is for predicates, not domains!

• For any formula 𝐹 we can write ¬𝐹 to denote a formula which is 
true if and only if 𝐹 is false, just like in propositional logic

• 𝐹 = “All trees have leaves” 
• Is ¬𝐹 “non-trees have non-leaves”?...  

• No! What is a non-tree and a non-leaf, anyway?  

¬𝐹 is “Not all trees have leaves”
– which is the same as  “Some trees do not have leaves” 

– we are still talking about trees! 

• When simplifying a negated formula, we flip quantifiers and negate 
subformulas as we would in propositional logic
– But we never change the domain! 
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– A negation machine takes a Boolean, and outputs a Boolean. 

• If you give something non-Boolean to a negation machine, it will give 
you an error! 

¬
ERROR

¬

Boolean

Set

Element

Element

Bool

Bool

– A negation machine takes a Boolean, and outputs a Boolean. 

• If you give something non-Boolean to a negation machine, it will give 
an error! 

Boolean

Set

Element

¬

𝑥

ERROR

¬

𝐹(𝑥)

¬𝐹(𝑥)

We can mix both types of 
quantifiers in a formula. 

But the order matters! 

• Predicate: 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦), true when x loves y.  Domain: people.   

∀x ∃y Loves(x,y)

Everybody loves 
somebody

∃x ∀y Loves(x,y)

Somebody loves
everybody 

∀x ∃y Loves(y,x)

Everybody is loved by somebody

∃x ∀y Loves(y,x)

Somebody is loved by everybody

Nested quantifiers

• Order of variables under different quantifiers, the order of 
quantifiers themselves, matters.  
– Everybody loves somebody  is true for people in general

– Whereas somebody loves everybody is rare (only the sun shines 
on everyone)

• Order in a predicate matters. 
– To love is is not the same as to be loved.  

– Everyone is loved by their mother

– yet  it is rare to be loved by everyone (except maybe Elvis) 
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Nested quantifiers

• Names of variables don’t matter

– Everybody loves somebody: 

∀x ∃y Loves(x,y) same as ∀y ∃x Loves(y,x) same as ∀p1 ∃p2 𝐿𝑜𝑣𝑒𝑠 𝑝1, 𝑝2

– Somebody is loved by everybody:   

∃x ∀y Loves(y,x) same as ∃y ∀x Loves(x,y) same as ∃p1∀p2𝐿𝑜𝑣𝑒𝑠 𝑝2, 𝑝1

Nested quantifiers
• When quantifiers of the same time are next to each other, their order does not matter. 

• First says that every two people love each other:  eg when   the domain is a happy family
• Second says that somewhere there is a person who feels love (to someone else, or 

maybe to themselves)  

• However, in  ∃𝑥 ∀𝑦 ∃𝑧 𝐹(𝑥, 𝑦, 𝑧) you cannot exchange 𝑥 with 𝑧: 
– 𝑧 might be different for each different 𝑦, but the same 𝑥 should work for all of them! 
– Can ignore order only for quantifiers of the same type right next to each other

∀x ∀y Loves(x,y)

Everybody loves everybody

∃x ∃y Loves(x,y)

Somebody loves somebody

• ∀x ∃y Loves(x,y)   Everybody loves somebody

• ∀x ∃y Loves(y,x)   Everybody is loved by somebody

• ∀x ∀y Loves(x,y)   Everybody loves everybody

• ∃x ∀y Loves(x,y) Somebody loves everybody

• ∃x ∀y Loves(y,x) Somebody  is loved by everybody 

• ∃x ∃y Loves(x,y)   Somebody loves somebody

Evaluating sentences with nested quantifiers

• Take a formula with no free variables: a sentence
– How do we find out if it is true or false? Play a game! 

• Two players,  taking turns in order of quantifiers
– The red player holding ∀ suggests counterexamples
– The green player holding ∃ suggests witnesses. 
– If the red player has a way to  win no matter what the 

green player does,  then the formula is false
– If the green player has a way to win no matter what the 

red player does, then the formula is true.
• The sentence is always either true or false, so one of them can 

always win. 

I want 
it false! 

I want 
it true! 

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that 
no matter what integer 𝑥 you pick, 
there is some integer  𝑦 that does not 
divide 𝑥 (does not give 𝑥 no matter 
what 𝑧 you multiply it by).  
– Do you think it is true? Let’s play the 

game!  

– The formula starts with ∀, so             goes 
first.  After that            chooses 𝑦, then it 
is            again
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𝑥 = 0 Beat that!

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that 
no matter what integer 𝑥 you pick, 
there is some integer  𝑦 that does not 
divide 𝑥 (does not give 𝑥 no matter 
what 𝑧 you multiply it by).  
– Do you think it is true? Let’s play the 

game!  

– The formula starts with ∀, so             goes 
first.  After that            chooses 𝑦, then it 
is            again

𝑥 = 0 Beat that!

uhm, 𝑦 = 1?

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that 
no matter what integer 𝑥 you pick, 
there is some integer  𝑦 that does not 
divide 𝑥 (does not give 𝑥 no matter 
what 𝑧 you multiply it by).  
– Do you think it is true? Let’s play the 

game!  

– The formula starts with ∀, so             goes 
first.  After that            chooses 𝑦, then it 
is            again

𝑥 = 0 Beat that!

uhm, 𝑦 = 1?

Nope! Set 𝑧 = 0

and now 0 = 1 ⋅ 0

The formula is false!

Mwahahaha! 

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that 
no matter what integer 𝑥 you pick, 
there is some integer  𝑦 that does not 
divide 𝑥 (does not give 𝑥 no matter 
what 𝑧 you multiply it by).  
– Do you think it is true? Let’s play the 

game!  

– The formula starts with ∀, so             goes 
first.  After that            chooses 𝑦, then it 
is            again

∀𝑥 ∈ {1,2,3} ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Now we changed the domain of 𝑥, so 
𝑥 can only take values 1, 2 or 3. 
– Do you think it is true now? Let’s play the 

game and find out!  

– So the formula is true. 
• No matter what 𝑥 among allowed 1,2,3 he takes, 

she can reply with 𝑦 = 𝑥 + 1 and win.

• Note that her choice of 𝑦 depends on  what 
value of 𝑥 he picks. 

• But since he has to choose 𝑥 before she chooses 
𝑦, it is OK, as she would know his choice for the 
value of 𝑥. The order of quantifiers matters!  

Say 𝑥 = 2

Then let 𝑦 = 3?

Say 𝑧 = 0? . .
But 2 ≠ 0 ⋅ 3
I give up. No matter         
what 𝑧 I try,  2 ≠ 𝑧 ⋅ 3
You win  Arrrgh! 

Say 𝑥 = 5

Then let 𝑦 = 6?

Say 𝑧 = 0? . .
But 5 ≠ 0 ⋅ 6
I give up. No matter         
what 𝑧 I try,  5 ≠ 𝑧 ⋅ 6
You win  Arrrgh! 

∀𝑥 ∈ ℤ (𝑥 = 0 ∨ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧)

• Now let’s try a more complex formula, 
which says that for every integer 𝑥 either 
𝑥 = 0 or there is an integer 𝑦 that does 
not divide 𝑥
– After the first step where              sets 𝑥, the 

formula  under ∀𝑥 splits into ∨ of two. 

– The first, 𝑥 = 0, can be evaluated right away
• He’d lose immediately if he sets 𝑥 to be 0

• So he’d better choose a non-zero value for 𝑥

– Still, no  matter what 𝑥 he takes, she can 
always reply with 𝑦 = 𝑥 + 1 (if 𝑥 < 0, then 
𝑦 = 𝑥 − 1) and win 

Say 𝑥 = 2

Say y = 3

Take 𝑧 = 0

It works ☺

∀𝑥 ∈ ℤ ∀𝑦 ∈ 𝑍 ∃𝑧 ∈ ℤ 𝑥𝑧 = 𝑦𝑧)

• If there are several quantifiers of the 
same type, the corresponding player 
keeps getting a turn 

– Here, the formula starts with two ∀

– So            gets to go twice, setting both x 
and y.

– Only then            gets her turn to set z. 
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General rules for building 
predicate logic formulas

Variables and terms 

• Simplest formulas are predicates: 𝑃 𝑥, 𝑦 , 𝑥1 = 𝑥2, 𝐸𝑣𝑒𝑛(𝑛𝑢𝑚)

– Here, 𝑥, 𝑦, 𝑥1 , 𝑥2 , 𝑛𝑢𝑚 are variables, that is, placeholders for elements in 
the domains of the predicates. 

– Instead of a variable, can have an expression (also called a function or a 
term), which takes values of variables and returns a value in the domain:  

• 𝑥 + 1, 𝑥 ⋅ 𝑦 are terms 

• Can now use them in  𝐸𝑣𝑒𝑛 𝑥 + 1 , or in   𝑥 ⋅ 𝑦 = 𝑧

• E.g. if the domain of Even and = is ℤ, then 𝑥, 𝑦, 𝑧 take values in ℤ, so the 
value of  𝑥 + 1 ∈ ℤ, and the value of 𝑥 ⋅ 𝑦 ∈ ℤ no matter what values 𝑥, 𝑦, 𝑧 take. 

– If the formula is a predicate, then all the variables it takes are free. 

• Including all variables mentioned in the terms, as  𝑥, 𝑦, 𝑧 in  𝑥 ⋅ 𝑦 = 𝑧

Boolean

Set

Element

Naming conventions

• Names of variables do not matter,  as long as you use the same 
name every time you refer to a specific placeholder in a formula. 
∀𝑥 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)) is the same as ∀𝑦 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑦 ∨ 𝑂𝑑𝑑 𝑦 )

• The convention is to use either lowercase letters, usually at the 
end of the alphabet (𝑥, 𝑦, 𝑧, 𝑤, 𝑥1, 𝑥2) or lowercase words (𝑛𝑢𝑚
for number) for variables
– Just like unknowns in arithmetic equations

– Letters 𝑎, 𝑏, 𝑐 more often used for specific elements. 

• Use capitalized words (𝐸𝑣𝑒𝑛, 𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛) or 𝑃, 𝑄 for predicates. 
– Often use 𝑃, 𝑄 when the interpretation of the predicate is not specified

Prenex normal form

• Better to avoid using same names for  different variables – it is 
confusing. 

– ∀𝑥 ∃𝑦 𝑃 𝑥, 𝑦 ∧ ∃𝑦 𝑄 𝑥, 𝑦 ≡ ∀𝑥 ∃ 𝑦 𝑃 𝑥, 𝑦 ∧ ∃𝑧 𝑄 𝑥, 𝑧

≡ ∀𝑥 ∃𝑦 ∃𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑥, 𝑧

• The final line is an example of a special form of a predicate logic 
formula with all quantifiers in front followed by a formula without 
quantifiers,  called prenex normal form.  
– Here, the names must be different to differentiate variables, as they all 

have the same scope: the whole formula. 

Constructing predicate logic formulas

• A single predicate is a predicate logic formula

– 𝑃 𝑥, 𝑦 , 𝑥1 = 𝑥2, 𝐸𝑣𝑒𝑛(𝑛𝑢𝑚)

– In these formulas, 𝑥, 𝑦, 𝑥1, 𝑥2, 𝑛𝑢𝑚 are free variables 

• If 𝐹 and 𝐺 are predicate logic formulas, then so are 
𝐹 ∧ 𝐺 F ∨ 𝐺 𝐹 → 𝐺 𝐹 ↔ 𝐺 ¬𝐹

• If 𝐹 𝑥 is a predicate logic formula with a free variable 𝑥 from the domain S, 
then so are   ∀𝑥 ∈ 𝑆 𝐹 𝑥 as well as ∃𝑥 ∈ 𝑆 𝐹(𝑥)
– Here 𝑥 is no longer a free variable, it gets bound by the quantifier.

– When the domain is clear,  just write ∀𝑥 𝐹 𝑥 (respectively,  ∃𝑥 𝐹(𝑥) )

– Use parentheses to avoid ambiguity:  ∀𝑥 (𝐺 𝑥 → 𝐻) is not equivalent to (∀𝑥 𝐺 𝑥 ) → 𝐻
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Make sure to type-check! 

• Always think which types can be 
combined with which operations, 
– and what the result looks like! 

• Remember that if you give an 
evaluation machine  incorrectly 
formatted input, it will give you an 
error. 
– “𝐸𝑣𝑒𝑛 𝑥 , 𝑂𝑑𝑑(𝑥)" ERROR!

– “∃ 𝐸𝑣𝑒𝑛 " ERROR!

– “𝐸𝑣𝑒𝑛(𝑥 = 𝑦)" ERROR!

– “∀𝑥 ∈ ℤ ¬𝑥" 𝐸𝑅𝑅𝑂𝑅!

Boolean

Set

Element
¬

Bool¬

Bool
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