

1

3

5

Stereotypes puzzle

- Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-pipeline demonstrations.
Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:
a kindergarten teacher
works in a bookstore and takes yoga classes
an active feminist
a psychiatric social worker
a member of an outdoors club
. a bank teller
an insurance salesperson
a bank teller and an active feminist

2

4

$-S_{2}=\{$ Cathy, Alaa, Keiko, Daniela $\}$

- Can define a set of all elements satisfying some condition: $-\{x \mid$ such that $x \ldots\}$ is called set builder notation
$-S_{3}=\{x \mid x$ is an even number $\}$
- PEOPLE $=\{x \mid x$ is a person living on Earth now $\}$
- BANKTELLERS $=\{x \mid x$ is a person who is a bank teller $\}$

6

7
－When all elements of a set S_{1} are also elements of a set S_{2} ，we say that
S_{1} is a subset of S_{2} ，written $S_{1} \subseteq S_{2}$

- BANKTELLERS \subseteq PEOPLE
$-E V E N \subseteq \mathbb{Z}$
$-\mathbb{N} \subseteq\{x \in \mathbb{Z} \mid x \geq 1\}$
－$S_{1}=S_{2}$ when $S_{1} \subseteq S_{2}$ and $S_{2} \subseteq S_{1}$

$-\mathbb{N}=\{x \in \mathbb{Z} \mid x \geq 1\}$
－S_{1} is a proper subset of a S_{2} ，written $S_{1} \subset S_{2}$ when $S_{1} \subseteq S_{2}$ ，but $S_{1} \neq S_{2}$ - BANKTELLERS \subset PEOPLE，EVEN $\subset \mathbb{Z}$ ．

9

11

－Notation $a \in S$（＂a in S＂）means that an element a belongs to the set S ，and $a \notin S$ states that a is not in S －Susan \in PEOPLE．Susan \notin BANKTELLERS $-0.5 \in \mathbb{R} .0 .5 \notin \mathbb{Z}$

－Also，can write $x \in S$ for a variable x （in particular in set builder notation）

$$
\begin{aligned}
& \text { - BANKTELLERS }=\{x \in \text { PEOPLE } \mid \mathrm{x} \text { is a bank teller }\} \\
& -\operatorname{EVEN}=\{x \in \mathbb{Z} \mid x \text { is divisible by } 2\}
\end{aligned}
$$

8

10

12

13

Set operations as formulas

- Let A and B be sets with predicates $x \in A, x \in B$ - Such as $A=\{1,2,3\}$ and $B=\{2,3,4\}$
- We can make formulas out of predicates the same way as we did for propositions, but now our formulas have free variables:
- Even $(x) \vee$ DivisibleByThree $(x) \rightarrow \neg \operatorname{Prime}(x)$
- Feminist $(x) \wedge$ Bankteller (x)
- Now scenarios can correspond to values of x .
- The first formula is false for $\mathrm{x}=2$ since Even (2) = true, but \neg Prime (2) $=$ false.
- This is called predicate logic (or first-order logic), as opposed to propositional logic we did so far.

15

Predicates vs. sets

- Predicates and sets are two sides of the same coin
- For each set S there is a predicate which is true exactly on elements of S
- For each predicate P there is a set S of values of x on which P is true.

Predicate P
A collection of elements
Becomes true/false on a given element
$\mathrm{S}_{\mathrm{P}}=\{x \mid P(x)$ is true $\}$
$P_{S}(x) \equiv " x \in S^{\prime \prime}$

- To write formulas, need something that is true/false: predicates!

14

16

- Intersection $A \cap B=\{x \mid x \in A \wedge x \in B\}$ - The green part of top picture $-A \cap B=\{2,3\}$

- Difference $A-B=\{x \mid x \in A \wedge \neg(x \in B)\}$
- The yellow part in the top picture.
$-\mathrm{A}-\mathrm{B}=\{1\}$

A

- Union
$-A \cup B=\{x \mid x \in A \vee x \in B\}$ - The coloured part in the top picture.
$-A \cup B=\{1,2,3,4\}$
- Symmetric difference
$-A \Delta B=(A-B) \cup(B-A)$ - The yellow and blue parts of the top picture.
$-\mathrm{A} \Delta B=\{1,4\}$
- The blue part on the Venn diagram A
- If universe $\mathrm{U}=\mathbb{N}, \bar{A}=\{x \in \mathbb{N} \mid x \notin\{1,2,3\}\}$

Predicates with several variables

- Sometimes, want a predicate that depends on more than one variable - LessThan (x, y), for $x, y \in \mathbb{R}$, is true if and only if $x<y$ - Alternatively, can just write $x<y$ to mean LessThan (x, y)
- Divides (x, y), for $x, y \in \mathbb{Z}$, is true if and only if x is a divisor of y - Divides $(3,6)$ is true. Divides $(12,4)$ is false.
- A predicate $P\left(\mathrm{x}_{1}, \ldots, x_{n}\right)$ is a "proposition with variables", where values of the variables x_{1}, \ldots, x_{n} come from some sets S_{1}, \ldots, S_{n}, called their domains or universes. - Sometimes the domains of its variables are the same, other times different. - Order of variables matters.
- For any specific tuple of elements (instantiation of x_{1}, \ldots, x_{n}), a predicate $P\left(\mathrm{x}_{1}, \ldots, x_{n}\right)$ is either true or false.
- For any pair of numbers, $\mathrm{x}<\mathrm{y}$ can be either true or false: - LessThan $(1,2)$, that is $1<2$ is true, whereas LessThan $(2,1)$ is false
Predicates with several variables
- Sometimes, want a predicate that depends on more than one variable
- LessThan (x, y), for $x, y \in \mathbb{R}$, is true if and only if $x<y$
- Alternatively, can just write $x<y$ to mean LessThan (x, y)
- Divides (x, y), for $x, y \in \mathbb{Z}$, is true if and only if x is a divisor of y
• Divides $(3,6)$ is true. Divides $(12,4)$ is false.
- A predicate $P\left(\mathrm{x}_{1}, \ldots, x_{n}\right)$ is a "proposition with variables", where values of the
variables x_{1}, \ldots, x_{n} come from some sets S_{1}, \ldots, S_{n}, called their domains or universes.
- Sometimes the domains of its variables are the same, other times different.
- Order of variables matters.
- For any specific tuple of elements (instantiation of $\left.x_{1}, \ldots, x_{n}\right)$, a predicate
$P\left(\mathrm{x}_{1}, \ldots, x_{n}\right)$ is either true or false.
- For any pair of numbers, $\mathrm{x}<\mathrm{y}$ can be either true or false:
• LessThan(1,2), that is $1<2$ is true, whereas LessThan(2,1$)$ is false

17

Predicates: arity

- A predicate on one variable is called "unary", on two "binary", on three variables "ternary"
- in general a predicate on n variables is called n-ary predicate.
- Number of variables a predicate takes as input is called its arity
- Parent (x, y) is true when the person x is a parent of the person y
- Parent(King George VI, Queen Elizabeth II) is true
- This is a binary predicate
- Ternary predicates examples:
$-\operatorname{Sum}(x, y, z)$ which is true when $x+y=z$.
- Between (x, y, z) which is true when $\mathrm{y} \leq x$ and $\mathrm{x} \leq z$
- For both of them, can take the domain to be \mathbb{R}
- Registrations(name, cour, sem) which is true when name is the name of a student who takes the
course cour in semester sem. course cour in semester sem.

18

19

Quantifiers

- A formula of predicate logic can be evaluated when the values of all variables are known.
- Alternatively, we might want the formula to hold no matter what the values are.
- Or wonder if there is any value that makes it true

20

Universal quantifier

- $\forall x \in S F(x)$
(pronounced "forall")
is true when
for all possible values x can take in S
the formula $F(x)$ is true.
- If there is a quantifier over a variable, such variable is not free anymore.
- If there are no free variables, the whole formula evaluates to either true or false.

21

Quantifiers: universal (\forall)

- Theorems often look like this: "For all x the following is true", and then a formula with x as a free variable.
- For all $x \in \mathbb{Z}$ DivisibleBySix $(x) \rightarrow$ DivisibleByThree (x)
- For all $n \in \mathbb{N}$ if $n>4$, then $2^{n}>n^{2}$
- We write this in predicate logic using the universal quantifier \forall
$-\forall x \in \mathbb{Z}$ DivisibleBySix $(x) \rightarrow$ DivisibleByThree (x)
$-\forall n \in \mathbb{N} n>4 \rightarrow 2^{n}>n^{2}$

Some textbooks put a comma after the quantifier, some period, others nothing.
Some insist that the formula must be in parentheses if it is more than one predicate.

- When in doubt, use parentheses.

22

Examples with universal quantifier

Examples with universal quantifier

- "Every integer is either even or odd."
- Domain \mathbb{Z}
- Predicates Even (x) and $\operatorname{Odd}(x)$
$-\forall x \in \mathbb{Z} \operatorname{Even}(x) \vee \operatorname{Odd}(x)$
- This is true: every integer is even or odd.
- "Adding 1 to any odd integer results in an even number"
$-\forall x \in \mathbb{Z} \quad \operatorname{Odd}(x) \rightarrow \operatorname{Even}(x+1)$
- This is also true.
- "Every odd integer is prime"
- Domain \mathbb{Z}
- Predicates $\operatorname{Prime}(x)$ and $\operatorname{Odd}(x)$
$-\forall x \in \mathbb{Z} \operatorname{Odd}(x) \rightarrow \operatorname{Prime}(x)$
- False: for example 9 is odd but not prime.
- "For every two numbers one is less than the other"
- Domain \mathbb{R}
- Predicate LessThan (x, y)
- Can just write it as $x<y$
$-\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} x<y \vee y<x$
- False: x and y may take the same value

25

Evaluating universally quantified formulas

- Take the domain $D=\{0,1,2\}$, predicates $x \leq y$ and $x \geq y$
- " $\forall x \in\{0,1,2\} x \geq 0$ " is true for all instantiations of $x \geq 0$:

$$
x \geq 0 \text { true for } 0 \text {, and } 1 \text {, and } 2 \text { substituted for } \mathrm{x} \text { in the formula. }
$$

- So $0 \geq 0$ is true, and $1 \geq 0$ is true, and $2 \geq 0$ is also true.
- That is, when $0 \geq 0 \wedge 1 \geq 0 \wedge 2 \geq 0$ is true.
- Which happens to be the case.
- " $\forall x \in\{0,1,2\} x \geq 0 \wedge x \leq 2$ " is true when
- $(0 \geq 0 \wedge 0 \leq 2) \wedge(1 \geq 0 \wedge 1 \leq 2) \wedge(2 \geq 0 \wedge 2 \leq 2)$ is true.

Universal quantifier and truth

- For every formula F of predicate logic with a free variable x , we can write $\forall x \in S F(x)$
- Where $F(a)$ can have quantifiers, too.
- We call a sentence of the form $\forall x \in S \quad F(x)$ a universal statement
- The formula " $\forall x \in S \quad F(x)$ " is true iff $F(a)$ is true for every $a \in S$. - That is, if $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ is a list of all elements of S, then
$" \forall x \in S F(x)$ " is true iff " $F\left(a_{1}\right) \wedge F\left(a_{2}\right) \wedge \cdots \wedge F\left(a_{n}\right) \wedge \cdots$ " is true.
- To evaluate a universally quantified formula $\forall x \in S F(x)$, check that for each $a \in S, F(a)$ is true.

Evaluating universally quantified formulas

- Take the domain $D=\{0,1,2\}$, predicates $x \leq y$ and $x \geq y$ - Let's evaluate $\forall x \in D \forall y \in D \quad x \leq y$
- Now we have two variables, so let's do it one quantifier at a time.
- First, let's try all values for x then AND the resulting formulas together:
$\forall x \in D \forall y \in D \quad x \leq y \equiv(\forall y \in D 0 \leq y) \wedge(\forall y \in D 1 \leq y) \wedge(\forall y \in D 2 \leq y)$
- Now, for each formula in parentheses, try all values of y : $\forall y \in D 0 \leq y \equiv(0 \leq 0) \wedge(0 \leq 1) \wedge(0 \leq 2)$ true
$\forall y \in D 1 \leq y \equiv(1 \leq 0) \wedge(1 \leq 1) \wedge(1 \leq 2)$ false
- Finally, putting it all together, $\forall x \in D \forall y \in D x \leq y$ becomes
$((0 \leq 0) \wedge(0 \leq 1) \wedge(0 \leq 2)) \wedge((1 \leq 0) \wedge(1 \leq 1) \wedge(1 \leq 2)) \wedge((2 \leq 0) \wedge(2 \leq 1) \wedge(2 \leq 2))$
- Now we see that $\forall x \in D \forall y \in D x \leq y$ is false
- Evaluating predicates with infinite domains is harder, need proofs.

28

29

Quantifiers and conditionals

- Which of these are true? How can we write them as formulas?
- All squares are white. All white shapes are squares
- All circles are blue. All blue shapes are circles.

\square \square

30

Quantifiers and conditionals

- Which of these are true? How can we write them as formulas?
- All squares are white. All white shapes are squares
- All circles are blue. All blue shapes are circles.

- They all have the structure $\forall x \in S, P(x) \rightarrow Q(x)$

31

- When all elements of a set S_{1} are also elements of a set S_{2}, we say that S_{1} is a subset of S_{2}, written $S_{1} \subseteq S_{2}$
- Treat $x \in S$ as a predicate. Let U be the universe.
$-S_{1} \subseteq S_{2}$ iff $\forall x \in U \quad x \in S_{1} \rightarrow x \in S_{2}$
$-E V E N \subseteq \mathbb{Z}, \mathbb{N} \subseteq\{x \in \mathbb{Z} \mid x \geq 1\}$, DOGS \subseteq MAMMALS
- $S_{1}=S_{2}$ when $S_{1} \subseteq S_{2}$ and $S_{2} \subseteq S_{1}$
$-\forall x \in U \quad x \in S_{1} \leftrightarrow x \in S_{2}$
$-\mathbb{N}=\{x \in \mathbb{Z} \mid x \geq 1\}$

33

Quantifiers and conditionals

- Why don't we write them as $\forall x \in \operatorname{SQUARES}$ White (x) ?
- Sometimes we can, but the first form is easier to reason about.
- Besides, the predicate White (x) is more useful when defined for any shapes, rather than only squares!
- More commonly, we use a shorthand called restricted quantifiers (or quantifiers with restricted domain):
$-\forall x \geq 0 \operatorname{Even}(x)$ is a shorthand for $\forall x(x \geq 0 \rightarrow \operatorname{Even}(x))$
- Why do we write \rightarrow rather than \wedge ?
- $\forall x x \geq 0 \wedge \operatorname{Even}(x)$ is immediately false in \mathbb{Z} since some integers are <0.

Quantifiers and conditionals

- Which of these are true? How can we write them as formulas?
- All squares are white. All white shapes are squares
- All circles are blue. All blue shapes are circles.
- They all have the structure $\forall x \in S, P(x) \rightarrow Q(x)$
- All squares are white: for all shapes, if it is a square, then it is white $-\forall x \in \operatorname{SHAPES}, \operatorname{Square}(x) \rightarrow$ White (x)
- Different from "All white objects are squares":
$-\forall x \in \operatorname{SHAPES}$, White $(x) \rightarrow \operatorname{Square}(x)$
32

Quantifiers and conditionals

- All squares are white.
$-\forall x \in \operatorname{SHAPES}$ Square $(x) \rightarrow$ White (x). False!
- All white shapes are squares
$-\forall x \in \operatorname{SHAPES}$ White $(x) \rightarrow$ Square $(x) \quad$ True!
- All circles are blue.
$-\forall x \in \operatorname{SHAPES} \operatorname{Circle}(x) \rightarrow$ Blue (x).
- All blue shapes are circles.
$-\forall x \in \operatorname{SHAPES}$ Blue $(x) \rightarrow \operatorname{Circle}(x)$.
- All lemurs live in the trees.
$-\forall x \in$ ANIMALS Lemur $(x) \rightarrow$ LivesIn Trees (x)
- All animals living in the trees are lemurs.
$-\forall x \in$ ANIMALS LivesIn Trees $(x) \rightarrow \operatorname{Lemur}(x)$

34

37

Type checking

- A formula consists of pieces of different types
- Boolean: taking values true/false
- Predicates, formulas
- Can use operations $\neg, \vee, \wedge, \rightarrow$
- Elements
- Variables and fixed elements (constants) from the domain.
- Occur as inputs to predicates and in quantifiers such as $\forall x \in S$
- Can use operations (functions) from the domain:
- If elements are numbers, can use $x+y, x \cdot y$, etc
- Sets of elements
- Used for domains: only occurs in quantifiers such as $\forall x \in S$

39

Formulas: computational view

- As you are building a formula, think like a computer scientist:
- What would a program (machine) that computes its value look like?
- What are that program's inputs and outputs
- and what are their types?
- When would this program output an error?
- Think of operations in the formula computationally.

38

-

Type checking

- A formula consists of pieces of different types
- Boolean: taking values true/false
- Elements: e.g. numbers
- Sets of elements
- $\forall x \in \mathbb{Z}, \operatorname{Even}(x) \vee \operatorname{Odd}(x)$

41

40

Type checking

- A formula consists of pieces of different types
- Boolean: taking values true/false
- Elements: e.g. numbers
-Sets of elements
- $\forall x \in \mathbb{Z}, \operatorname{Even}(x) \vee \operatorname{Odd}(x)$
(

- Propositional variables and formulas are of type Boolean
- that is, they take values in the set \{true,false\}
- To evaluate a propositional variable, return its truth value.
- Now, treat connectives as machines with inputs and outputs.
- They take Boolean inputs, and return Boolean outputs.

42

- To evaluate a propositional formula, go up its syntax tree:
- If the formula (node in the tree) is just one variable, return its value
- If a formula (node) is an operation, apply the respective "evaluation machine":
- Machines for $V, \wedge, \rightarrow, \leftrightarrow$ want two Boolean inputs
- Machine for \neg wants one Boolean input
- Each machine outputs a single Boolean value.

43

Predicate logic formulas

- A predicate logic formula consists of different types
- Boolean: taking values true/false
- Elements: e.g. numbers
- Sets of elements
- We still can use $V, \wedge, \rightarrow, \leftrightarrow, \neg$ machines, both for constructing and for evaluating formulas - As formulas are of type Boolean
- Also need machines for predicates and quantifiers.

45

46

Computational view of predicates

- Predicate machines take elements as inputs and return Boolean
- Different inputs may be elements from different sets
- The number of inputs depends on a predicate

44

- Propositional variables and formulas are of type Boolean
- that is, they take values in the set $\{$ true, false $\}$
- If F, G are propositional formulas, then so are $\neg F, F \wedge G, F \vee G, F \rightarrow G$ - So, operations $V, \wedge, \rightarrow, \leftrightarrow$ need to have Boolean type on both sides - And \neg has to have a Boolean type following it.
- The result of all of these operations is also of Boolean type.

47

- To construct a predicate correctly, its inputs must take values from corresponding domains
- Inputs to predicates can be functions, as long as output of the function is from the correct domain: so if the predicate P takes an integer as its input, and x takes integer values, then $\mathrm{P}(x+1)$ is OK .

48

Computational view of quantifiers

- Inputs to quantifier machines are a set, a name of a variable of type element of that set, and a formula with that variable free.

49

50

51

52

53

- The first formulation of the famous liar's paradox, attributed to a Cretan philosopher Epimenides, stated
Liars paradox puzzle
"All Cretans are liars".
Is this really a paradox?
- If "all" is not true, that means that there is a counterexample: a Cretan that does not lie.
- So if Epimenides lied, what is true is that there are some truth-tellers on Crete (and potentially some liars, too)
- And Epimenides is one of the liars.
- However, "I am lying" would be a paradox.

54

Counterexamples

- How to prove that a statement " $\forall x \in S, F(x)$ " is false?
- All girls hate math.
- No!
-Idon't hate math ©
- Everybody in O'Brian family is tall
- No, Jenny is O'Brian and she is quite short.
- It is foggy all the time, every day in St. John's
- No, sometimes it is not foggy (like today).

Counterexample:
Element of S for which the formula is false.

One is enough, though more than one is OK.

55

Examples with existential quantifier

"There exists an even prime number."

- Domain \mathbb{Z}
- Predicates Even (x) and Prime (x)
$-\exists x \in \mathbb{Z}, \operatorname{Even}(x) \wedge \operatorname{Prime}(x)$
- This is true: 2 is both even and prime.
"There is some number between 0 and 1 "
- Domain \mathbb{R}, predicate $<$
$-\exists x \in \mathbb{R}, \quad(0<x) \wedge(x<1)$

$$
\text { case, } z=2
$$

- True when the domain is \mathbb{R}
- There is not just
between 0 and 1
between 0 and 1
- Would be false if we change the domain to \mathbb{Z}
- " n is divisible by m if there is an integer which when multiplied by m gives $n^{\prime \prime}$
- Domain \mathbb{Z}, Predicate $=$
$-\exists z \in \mathbb{Z}, \quad n=m z$
- True for $n=6, m=3$; in this
- False when eg $n=3, m=2$
- Here, n and m are still free variables, whereas z is bound by the quantifier.

58

Truth of existential statements

- $\exists x \in S F(x)$ is true when $F(a)$ is true for some $a \in S$
- "I am teaching some course" is true because I am teaching COMP 1002 - Here, COMP 1002 is the witness for the truth of "I am teaching some course"
- That is, when $F\left(a_{1}\right) \vee F\left(a_{2}\right) \vee \cdots \vee F\left(a_{n}\right) \vee \cdots$ is true, where a_{1}, a_{2}, \ldots is a list of all elements of S
- Enough to find a single witness $a \in S$ with $F(a)$ true to prove $\exists x \in S F(x)$.
- To show that $\exists x \in S F(x)$ is false, show that for all $a \in S, F(a)$ is false
- That is because $\neg(\exists x \in S F(x)) \equiv \forall x \in S \neg F(x)$

60

Quantifiers in English

- Universal quantifier: usually "every", "all", "each", "any". - Every day it is foggy. Each number is divisible by 1.
- "None", "no", "nobody", "nothing" also translate as universal quantifier - Nobody works on Sundays \equiv Everybody does not work on Sundays
- Existential quantifier: "some", "a", "exists"
- Some students got 100% on the first lab.
- There exists a prime number greater than 100.
- The word "any" can mean either!

61

63

Quantifiers in English: "any"

- "Any" can have different meanings depending on the context:

- Can I have any (piece of the) pie?
- Can I have some (piece of the) pie?
- Any = all

- Any student knows this.
- Every student knows this.

- Any student can get an A
- Would any student get an A?

62

.

67
\square

69

68

70

- Predicate: Loves (x, y), true when x loves y . Domain: people.

71

Nested quantifiers

- Order of variables under different quantifiers, the order of quantifiers themselves, matters.
- Everybody loves somebody is true for people in general
- Whereas somebody loves everybody is rare (only the sun shines on everyone)
- Order in a predicate matters.
- To love is is not the same as to be loved.
- Everyone is loved by their mother
- yet it is rare to be loved by everyone (except maybe Elvis)

73

Nested quantifiers

- When quantifiers of the same time are next to each other, their order does not matter.

74

- $\forall x \exists y$ Loves(x, y) Everybody loves somebody

- $\forall x \exists y \operatorname{Loves}(\mathrm{y}, \mathrm{x}) \quad$ Everybody is loved by somebody

- $\exists \mathrm{x} \forall \mathrm{y}$ Loves (y, x) Somebody is loved by everybody
- $\forall \mathrm{x} \forall \mathrm{y}$ Loves (x, y) Everybody loves everybody A
- $\exists x \exists y$ Loves(x, y) Somebody loves somebody

75
76

Evaluating sentences with nested quantifiers

- Take a formula with no free variables: a sentence - How do we find out if it is true or false? Play a game!
- Two players, taking turns in order of quantifiers
- The red player holding \forall suggests counterexamples
- The green player holding \exists suggests witnesses.
- If the red player has a way to win no matter what the green player does, then the formula is false
- If the green player has a way to win no matter what the red player does, then the formula is true.
- The sentence is always either true or false, so one of them can always win.

77
$\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} \forall z \in \mathbb{Z} x \neq y z$

- Let's first read the formula. It says that no matter what integer x you pick, there is some integer y that does not divide x (does not give x no matter what z you multiply it by).
- Do you think it is true? Let's play the game!
- The formula starts with \forall, so
 first. After that chooses y, then it is \forall again $\exists 3$

78
$\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} \forall z \in \mathbb{Z} x \neq y z$

- Let's first read the formula. It says that no matter what integer x you pick, there is some integer y that does not divide x (does not give x no matter what z you multiply it by).
- Do you think it is true? Let's play the game!
- The formula starts with \forall, so goes first. After that 毅 chooses y, then it is H again

79

$$
\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} \forall z \in \mathbb{Z} x \neq y z
$$

- Let's first read the formula. It says that no matter what integer x you pick, there is some integer y that does not divide x (does not give x no matter what z you multiply it by).
- Do you think it is true? Let's play the game!
- The formula starts with \forall, so
 first. After that $\hat{\imath}$ chooses y, then it is $\forall /$ again ain $コ 2$

$\forall x \in\{1,2,3\} \exists y \in \mathbb{Z} \forall z \in \mathbb{Z} x \neq y z$

- Now we changed the domain of x, so x can only take values 1,2 or 3 .
- Do you think it is true now? Let's play the game and find out!

go arm f.
- No matter what x among allowed $1,2,3$ he takes, she can reply with $y=x+1$ and win.
- Note that her choice of y depends on what value of x he picks.
- But since he has to choose x before she chooses y, it is OK , as she would know his choice for the value of x. The order of quantifiers matters!

82
81
Nope! Set $z=0$ and now $0=1 \cdot 0$ The formula is false! Mwahahaha!
$\forall x \in \mathbb{Z}(x=0 \vee \exists y \in \mathbb{Z} \forall z \in \mathbb{Z} x \neq y z)$

- Now let's try a more complex formula, which says that for every integer x either $x=0$ or there is an integer y that does not divide x
- After the first step where
 sets x, the formula under $\forall x$ splits into V of two.
- The first, $x=0$, can be evaluated right away - He'd lose immediately if he sets x to be 0 - So he'd better choose a non-zero value for x
- Still, no matter what x he takes, she can always reply with $y=x+1$ (if $x<0$, then $y=x-1$) and win

Then let $y=6$?

Say $z=0$? .
But $5 \neq 0 \cdot 6$
I give up. No matter what z I try, $5 \neq z \cdot 6$ You win $)^{-2}$ Arrrgh!
$\forall x \in \mathbb{Z} \forall y \in Z \quad \exists z \in \mathbb{Z} \quad x z=y z)$

- If there are several quantifiers of the same type, the corresponding player keeps getting a turn
- Here, the formula starts with two \forall

Take $z=0$ It works \odot

85

Variables and terms

- Simplest formulas are predicates: $P(x, y), x_{1}=x_{2}$, Even(num)
- Here, x, y, x_{1}, x_{2}, num are variables, that is, placeholders for elements in the domains of the predicates.
- Instead of a variable, can have an expression (also called a function or a term), which takes values of variables and returns a value in the domain: - $x+1, x \cdot y$ are terms
- Can now use them in $\operatorname{Even}(x+1)$, or in $x \cdot y=z$
- E.g. if the domain of Even () and $=$ is \mathbb{Z}, then x, y, z take values in \mathbb{Z}, so the value of $x+1 \in \mathbb{Z}$, and the value of $x \cdot y \in \mathbb{Z}$ no matter what values x, y, z take. - If the formula is a predicate, then all the variables it takes are free. - Including all variables mentioned in the terms, as x, y, z in $x \cdot y=z$

87

86

Naming conventions

- Names of variables do not matter, as long as you use the same name every time you refer to a specific placeholder in a formula. $\forall x \in \mathbb{Z}($ Even $(x) \vee \operatorname{Odd}(x))$ is the same as $\forall y \in \mathbb{Z}($ Even $(y) \vee \operatorname{Odd}(y))$
- The convention is to use either lowercase letters, usually at the end of the alphabet (x, y, z, w, x_{1}, x_{2}) or lowercase words (num for number) for variables
- Just like unknowns in arithmetic equations
- Letters a, b, c more often used for specific elements.
- Use capitalized words (Even, LessThan) or P, Q for predicates. - Often use P, Q when the interpretation of the predicate is not specified

88

Prenex normal form

- Better to avoid using same names for different variables - it is confusing.
$-\forall x(\exists y P(x, y)) \wedge(\exists y Q(x, y)) \equiv \forall x(\exists y P(x, y)) \wedge(\exists z Q(x, z))$

$$
\equiv \forall x \exists y \exists z P(x, y) \wedge Q(x, z)
$$

- The final line is an example of a special form of a predicate logic formula with all quantifiers in front followed by a formula without quantifiers, called prenex normal form.
- Here, the names must be different to differentiate variables, as they all have the same scope: the whole formula.

Constructing predicate logic formulas

- A single predicate is a predicate logic formula
- $P(x, y), x_{1}=x_{2}, \operatorname{Even}(n u m)$
- In these formulas, $x, y, x_{1}, x_{2}, n u m$ are free variables
- If F and G are predicate logic formulas, then so are
$F \wedge G \quad F \vee G \quad F \rightarrow G \quad F \leftrightarrow G \quad \neg F$
- If $F(x)$ is a predicate logic formula with a free variable x from the domain S , then so are $\forall x \in S F(x)$ as well as $\exists x \in S F(x)$
- Here x is no longer a free variable, it gets bound by the quantifier.
- When the domain is clear, just write $\forall x F(x)$ (respectively, $\exists x F(x)$)
- Use parentheses to avoid ambiguity: $\forall x(G(x) \rightarrow H)$ is not equivalent to $(\forall x G(x)) \rightarrow H$

Make sure to type-check!

- Always think which types can be combined with which operations, - and what the result looks like!
- Remember that if you give an evaluation machine incorrectly formatted input, it will give you an error.
- "Even(x),Odd(x)" ERROR!
- " \exists Even" ERROR!

