
2022-10-13

1

Stereotypes puzzle

• Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a
student she was deeply concerned with issues of discrimination and social justice and also
participated in anti-pipeline demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most
likely. Susan is:

1. a kindergarten teacher
2. works in a bookstore and takes yoga classes
3. an active feminist
4. a psychiatric social worker
5. a member of an outdoors club
6. a bank teller
7. an insurance salesperson
8. a bank teller and an active feminist

• Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she
was deeply concerned with issues of discrimination and social justice and also participated in anti-
pipeline demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely.
Susan is:

1. a kindergarden teacher
2. works in a bookstore and takes yoga classes
3. an active feminist
4. a psychiatric social worker
5. a member of an outdoors club
6. a bank teller
7. an insurance salesperson
8. a bank teller and an active feminist

Bank tellers Feminists

Stereotypes puzzle Scenarios and sets

• Want to reason about more general scenarios

• Rather than just true/false, vary over objects:

– even numbers, integers, primes

– people that are and are not bank tellers,

– pairs of animals in the same ecosystem...

• Want multiple properties of these objects:

– an even number that is divisible by 4 and > 10,

– a person that is also a bank teller...

Sets

• A set is a collection of objects.
– The order of elements does not matter.
– There are no duplicates.

– 𝑆1={1, 2, 3},
– 𝑆2 = {Cathy, Alaa, Keiko, Daniela}

• Can define a set of all elements satisfying some condition:
– {x | such that x ... } is called set builder notation

– 𝑆3 = 𝑥 𝑥 is an even number }
– PEOPLE = {x | x is a person living on Earth now}
– BANKTELLERS = { x | x is a person who is a bank teller}

1 2

3 4

5 6

2022-10-13

2

Special sets

• Notation for some special sets:

– Empty set ∅ (set with no elements in it)

– Natural numbers ℕ = 1, 2, 3, …

• Sometimes start with 0.

– Integers ℤ = … − 2, −1, 0, 1, 2, …

– Rational numbers ℚ =
𝑚

𝑛
𝑚, 𝑛 integers, 𝑛 ≠ 0}

– Real numbers ℝ

– Binary strings 0,1 ∗

• Notation 𝑎 ∈ 𝑆 (“a in S”) means that an element 𝑎 belongs to the
set S, and 𝑎 ∉ 𝑆 states that 𝑎 is not in S
– Susan ∈ PEOPLE. Susan ∉ BANKTELLERS

– 0.5 ∈ ℝ. 0.5 ∉ ℤ

• Also, can write 𝑥 ∈ 𝑆 for a variable x (in particular in set builder
notation)
– BANKTELLERS = { 𝑥 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 | x is a bank teller}

– EVEN = 𝑥 ∈ ℤ 𝑥 is divisible by 2 }

Bank
tellers

Set elements

Feminists

PEOPLE

• When all elements of a set 𝑆1 are also elements of a set 𝑆2, we say that
𝑆1 is a subset of 𝑆2 , written 𝑆1 ⊆ 𝑆2
– BANKTELLERS ⊆ PEOPLE

– 𝐸𝑉𝐸𝑁 ⊆ ℤ
– ℕ ⊆ 𝑥 ∈ ℤ 𝑥 ≥ 1 }

• 𝑆1 = 𝑆2 when 𝑆1 ⊆ 𝑆2 and 𝑆2 ⊆ 𝑆1
– ℕ = 𝑥 ∈ ℤ 𝑥 ≥ 1 }

• 𝑆1 is a proper subset of a 𝑆2, written 𝑆1 ⊂ 𝑆2 when 𝑆1 ⊆ 𝑆2 , but 𝑆1 ≠ 𝑆2
– BANKTELLERS ⊂ PEOPLE, 𝐸𝑉𝐸𝑁 ⊂ ℤ.

Bank
tellers

Subsets and equality

Feminists

PEOPLE

Venn diagrams

• Circles are sets
– BANKTELLERS, FEMINISTS, DOGS, MAMMALS, BIRDS, EVEN

• Square is the universe
– PEOPLE, ANIMALS,ℝ

• Dots are elements
– Susan,0.5

• A circle for one set inside another means subset
– DOGS ⊆MAMMALS

• Circles not overlapping indicates there are no
common elements (they are disjoint)
– MAMMALS is disjoint from BIRDS

PEOPLE

BANK
TELLERS

FEMINISTS

MAMMALS

ANIMALS

DOGS

BIRDSHow can we do logic with sets?

Predicates

• A predicate 𝑃(𝑥) is a “proposition with a variable”. Here, 𝑥 is a
variable that can take values from a set 𝐷 called the domain or
universe of 𝑃 𝑥 .
– Variable names are usually 𝑥, 𝑦, 𝑧, or words like 𝑛𝑎𝑚𝑒, usually lowercase.

– Predicate names are usually P(), 𝑄 , and capitalized words:
• 𝑃 𝑦 , 𝑄 𝑧 , 𝑃 𝑛𝑎𝑚𝑒 , Even(x)

• Examples: Feminist(x), Bankteller(person), P(y).
– In the first two cases, D is PEOPLE.

– 𝑥 ∈ 𝑆 is also a predicate for a specific 𝑆 with the variable 𝑥
• Here, D is the universe to which elements of S belong.

7 8

9 10

11 12

2022-10-13

3

Instantiation of predicates

• When 𝑥 in 𝑃 𝑥 is replaced with a specific element of D (instantiated), the
predicate becomes a proposition.
– Even(3), Feminist(Susan)

• After instantiation, the predicate gets a specific truth value true or false.
– Even(3) is false. Feminist(Susan) is true.

• 𝑃 𝑥 may be true for some values of 𝑥 ∈ 𝐷, and false for other.
– 𝐸𝑣𝑒𝑛(𝑥) is true for even numbers 𝑥 ∈ ℤ, but false for odd integers.

– 𝐹𝑒𝑚𝑖𝑛𝑖𝑠𝑡(𝑦) is true for some 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸, and false for others...

– Here, domain of 𝑥 is ℤ, and domain of 𝑦 is 𝑃𝐸𝑂𝑃𝐿𝐸
• 𝐸𝑣𝑒𝑛(𝑦) is not defined for 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸, only for elements of ℤ.

Predicates vs. sets

• Predicates and sets are two sides of the same coin

– For each set S there is a predicate which is true exactly on elements of S

– For each predicate P there is a set S of values of 𝑥 on which P is true.

• To write formulas, need something that is true/false: predicates!

Set S Predicate P

A collection of elements Becomes true/false on a given element

SP = 𝑥 𝑃 𝑥 is true} 𝑃𝑆 𝑥 ≡ "𝑥 ∈ 𝑆“

Predicate logic

• We can make formulas out of predicates the same way as we did
for propositions, but now our formulas have free variables:

– 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑇ℎ𝑟𝑒𝑒(𝑥) → ¬𝑃𝑟𝑖𝑚𝑒 𝑥

– 𝐹𝑒𝑚𝑖𝑛𝑖𝑠𝑡 𝑥 ∧ 𝐵𝑎𝑛𝑘𝑡𝑒𝑙𝑙𝑒𝑟 𝑥

– Now scenarios can correspond to values of x.

• The first formula is false for x=2 since 𝐸𝑣𝑒𝑛 2 = 𝑡𝑟𝑢𝑒, but ¬𝑃𝑟𝑖𝑚𝑒 2 = 𝑓𝑎𝑙𝑠𝑒.

• This is called predicate logic (or first-order logic), as opposed to
propositional logic we did so far.

• Union

– 𝐴 ∪ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
– The coloured part in the top picture.

– 𝐴 ∪ 𝐵 = 1,2,3,4

• Symmetric difference

– 𝐴 Δ 𝐵 = 𝐴 − 𝐵 ∪ (𝐵 − 𝐴)
– The yellow and blue parts of the top

picture.

– AΔ𝐵 = 1,4

• Let A and B be sets with predicates 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵
– Such as A={1,2,3} and B={ 2,3,4}

• Intersection 𝐴 ∩ 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
– The green part of top picture

– 𝐴 ∩ 𝐵 = {2,3}

• Difference 𝐴 − 𝐵 = 𝑥 𝑥 ∈ 𝐴 ∧ ¬(𝑥 ∈ 𝐵)}
– The yellow part in the top picture.

– A − 𝐵 = 1

• Complement 𝐴 = 𝑥 ∈ 𝑈 ¬(𝑥 ∈ 𝐴)}
– The blue part on the Venn diagram

– If universe U = ℕ, 𝐴 = 𝑥 ∈ ℕ 𝑥 ∉ 1,2,3 }

U

U

Set operations as formulas
A B

U

𝐴 ∪ 𝐵

A U

U

A-B

𝐴Δ𝐵

U

𝐴 ∩ 𝐵

Predicates with several variables

• Sometimes, want a predicate that depends on more than one variable
– 𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛(𝑥, 𝑦), for 𝑥, 𝑦 ∈ ℝ, is true if and only if 𝑥 < 𝑦

• Alternatively, can just write 𝑥 < 𝑦 to mean 𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛 𝑥, 𝑦

– 𝐷𝑖𝑣𝑖𝑑𝑒𝑠 𝑥, 𝑦 , for 𝑥, 𝑦 ∈ ℤ, is true if and only if 𝑥 is a divisor of 𝑦
• 𝐷𝑖𝑣𝑖𝑑𝑒𝑠 3,6 is true. 𝐷𝑖𝑣𝑖𝑑𝑒𝑠 12,4 is false.

• A predicate 𝑃(x1, … , 𝑥𝑛) is a “proposition with variables”, where values of the
variables 𝑥1, … , 𝑥𝑛 come from some sets 𝑆1, … , 𝑆𝑛, called their domains or universes.
– Sometimes the domains of its variables are the same, other times different.
– Order of variables matters.

• For any specific tuple of elements (instantiation of 𝑥1, … , 𝑥𝑛), a predicate
𝑃(x1, … , 𝑥𝑛) is either true or false.
– For any pair of numbers, x < y can be either true or false:

• LessThan(1,2), that is 1 < 2 is true, whereas LessThan(2,1) is false

Predicates: arity

• A predicate on one variable is called “unary”, on two “binary”, on three variables
“ternary”
– in general a predicate on 𝑛 variables is called 𝑛-ary predicate.
– Number of variables a predicate takes as input is called its 𝑎𝑟𝑖𝑡𝑦.

• Parent(x,y) is true when the person 𝑥 is a parent of the person 𝑦
– 𝑃𝑎𝑟𝑒𝑛𝑡(King George VI, Queen Elizabeth II) is true
– This is a binary predicate

• Ternary predicates examples:
– 𝑆𝑢𝑚(𝑥, 𝑦, 𝑧) which is true when 𝑥 + 𝑦 = 𝑧.
– 𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑥, 𝑦, 𝑧) which is true when y≤ 𝑥 and x ≤ 𝑧

• For both of them, can take the domain to be ℝ

– 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑛𝑎𝑚𝑒, 𝑐𝑜𝑢𝑟, 𝑠𝑒𝑚) which is true when 𝑛𝑎𝑚𝑒 is the name of a student who takes the
course 𝑐𝑜𝑢𝑟 in semester 𝑠𝑒𝑚.

13 14

15 16

17 18

2022-10-13

4

Quantifiers

• A formula of predicate logic can
be evaluated when the values of
all variables are known.

– Alternatively, we might want
the formula to hold no matter
what the values are.

– Or wonder if there is any
value that makes it true

Universal quantifier

• ∀𝑥 ∈ 𝑆 𝐹 𝑥

(pronounced “forall”)

is true when

for all possible values 𝑥 can take in 𝑆

the formula 𝐹(𝑥) is true.

• If there is a quantifier over a variable, such variable is not
free anymore.

• If there are no free variables, the whole formula evaluates
to either true or false.

Quantifiers: universal (∀)

• Theorems often look like this: “For all x the following is true”,
and then a formula with x as a free variable.
– For all 𝑥 ∈ ℤ 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑆𝑖𝑥 𝑥 → 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑇ℎ𝑟𝑒𝑒(𝑥)
– For all 𝑛 ∈ ℕ if 𝑛 > 4, then 2𝑛 > 𝑛2

• We write this in predicate logic using the universal quantifier ∀

– ∀𝑥 ∈ ℤ 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑆𝑖𝑥 𝑥 → 𝐷𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐵𝑦𝑇ℎ𝑟𝑒𝑒(𝑥)

– ∀𝑛 ∈ ℕ 𝑛 > 4 → 2𝑛 > 𝑛2

Some textbooks put a comma after the quantifier, some period, others nothing.
Some insist that the formula must be in parentheses if it is more than one predicate.
• When in doubt, use parentheses.

Examples with universal quantifier

• “Every bird can fly”

– Domain 𝐵𝐼𝑅𝐷

– Predicate 𝐶𝑎𝑛𝐹𝑙𝑦(𝑥)

– ∀𝑥 ∈ 𝐵𝐼𝑅𝐷 𝐶𝑎𝑛𝐹𝑙𝑦(𝑥)

• Not true: penguins

• “I work each day of the week! “

– Domain DAYS = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

– Predicate Work(x), where 𝑥 ∈ 𝐷𝐴𝑌𝑆

– ∀𝑥 ∈ 𝐷𝐴𝑌𝑆 𝑊𝑜𝑟𝑘 𝑥

“Any two people are related”
Domain 𝑃𝐸𝑂𝑃𝐿𝐸
Predicate Related 𝑥, 𝑦
∀𝑥 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 ∀ 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑥, 𝑦

Can shorten this as
∀𝑥, 𝑦 ∈ 𝑃𝐸𝑂𝑃𝐿𝐸 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 𝑥, 𝑦

Examples with universal quantifier

• “Every integer is either even or odd.”
– Domain ℤ

– Predicates 𝐸𝑣𝑒𝑛(𝑥) and 𝑂𝑑𝑑(𝑥)

– ∀𝑥 ∈ ℤ 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑 𝑥
• This is true: every integer is even or odd.

• “Adding 1 to any odd integer results in
an even number”

– ∀𝑥 ∈ ℤ 𝑂𝑑𝑑 𝑥 → 𝐸𝑣𝑒𝑛 𝑥 + 1
• This is also true.

• “Every odd integer is prime”
– Domain ℤ
– Predicates Prime(𝑥) and 𝑂𝑑𝑑(𝑥)

– ∀𝑥 ∈ ℤ 𝑂𝑑𝑑 𝑥 → 𝑃𝑟𝑖𝑚𝑒 𝑥
• False: for example 9 is odd but not prime.

• “For every two numbers one is less than
the other”
– Domain ℝ
– Predicate LessThan(𝑥, 𝑦)

• Can just write it as 𝑥 < 𝑦

– ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ 𝑥 < 𝑦 ∨ 𝑦 < 𝑥
• False: x and y may take the same value

19 20

21 22

23 24

2022-10-13

5

Universal quantifier and truth

• For every formula F of predicate logic with a free variable x, we can
write ∀𝑥 ∈ 𝑆 𝐹 𝑥
– Where 𝐹 𝑎 can have quantifiers, too.
– We call a sentence of the form ∀𝑥 ∈ 𝑆 𝐹 𝑥 a universal statement

• The formula “∀𝑥 ∈ 𝑆 𝐹 𝑥 " is true iff 𝐹 𝑎 is true for every 𝑎 ∈ 𝑆.
– That is, if 𝑎1, 𝑎2, … , 𝑎𝑛, … is a list of all elements of S, then
"∀𝑥 ∈ 𝑆 𝐹 𝑥 " is true iff "𝐹 𝑎1 ∧ 𝐹 𝑎2 ∧ ⋯ ∧ 𝐹 𝑎𝑛 ∧ ⋯” is true.

• To evaluate a universally quantified formula ∀𝑥 ∈ 𝑆 𝐹 𝑥 , check that
for each 𝑎 ∈ 𝑆, 𝐹(𝑎) is true.

Evaluating universally quantified formulas

• Take the domain 𝐷 = 0,1,2 , predicates 𝑥 ≤ 𝑦 and 𝑥 ≥ 𝑦
– "∀𝑥 ∈ 0,1,2 𝑥 ≥ 0" is true for all instantiations of 𝑥 ≥ 0:

𝑥 ≥ 0 true for 0, and 1, and 2 substituted for x in the formula.

– So 0 ≥ 0 is true, and 1 ≥ 0 is true, and 2 ≥ 0 is also true.

– That is, when 0 ≥ 0 ∧ 1 ≥ 0 ∧ 2 ≥ 0 is true.
• Which happens to be the case.

– "∀𝑥 ∈ 0,1,2 𝑥 ≥ 0 ∧ 𝑥 ≤ 2" is true when
• 0 ≥ 0 ∧ 0 ≤ 2 ∧ 1 ≥ 0 ∧ 1 ≤ 2 ∧ (2 ≥ 0 ∧ 2 ≤ 2) is true.

Evaluating universally quantified formulas

• Take the domain 𝐷 = 0,1,2 , predicates 𝑥 ≤ 𝑦 and 𝑥 ≥ 𝑦
– Let’s evaluate ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦
– Now we have two variables, so let’s do it one quantifier at a time.
– First, let’s try all values for 𝑥 then AND the resulting formulas together:

∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦 ≡ (∀𝑦 ∈ 𝐷 0 ≤ 𝑦) ∧ (∀𝑦 ∈ 𝐷 1 ≤ 𝑦) ∧(∀𝑦 ∈ 𝐷 2 ≤ 𝑦)

– Now, for each formula in parentheses, try all values of 𝑦:
∀𝑦 ∈ 𝐷 0 ≤ 𝑦 ≡ 0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2 true
∀𝑦 ∈ 𝐷 1 ≤ 𝑦 ≡ 1 ≤ 0 ∧ 1 ≤ 1 ∧ 1 ≤ 2 false
∀𝑦 ∈ 𝐷 2 ≤ 𝑦 ≡ 2 ≤ 0 ∧ 2 ≤ 1 ∧ 2 ≤ 2 false

– Finally, putting it all together, ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦 becomes
0 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2 ∧ 1 ≤ 0 ∧ 1 ≤ 1 ∧ 1 ≤ 2 ∧ (2 ≤ 0 ∧ 2 ≤ 1 ∧ 2 ≤ 2)

– Now we see that ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 ≤ 𝑦 is false

• Evaluating predicates with infinite domains is harder, need proofs.

Quantifiers and conditionals

• Which of these are true? How can we write them as formulas?

– All squares are white. All white shapes are squares

– All circles are blue. All blue shapes are circles.

25 26

27 28

29 30

2022-10-13

6

Quantifiers and conditionals

• Which of these are true? How can we write them as formulas?

– All squares are white. All white shapes are squares

– All circles are blue. All blue shapes are circles.

– They all have the structure ∀𝑥 ∈ 𝑆, 𝑃 𝑥 → 𝑄 𝑥

Quantifiers and conditionals

• Which of these are true? How can we write them as formulas?

– All squares are white. All white shapes are squares

– All circles are blue. All blue shapes are circles.

– They all have the structure ∀𝑥 ∈ 𝑆, 𝑃 𝑥 → 𝑄 𝑥

• All squares are white: for all shapes, if it is a square, then it is white

– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆, 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥 → 𝑊ℎ𝑖𝑡𝑒 𝑥

• Different from “All white objects are squares”:

– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆, 𝑊ℎ𝑖𝑡𝑒 𝑥 → 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥

• When all elements of a set 𝑆1 are also elements of a set 𝑆2, we say
that 𝑆1 is a subset of 𝑆2, written 𝑆1 ⊆ 𝑆2

– Treat 𝑥 ∈ 𝑆 as a predicate. Let 𝑈 be the universe.

– 𝑆1 ⊆ 𝑆2 iff ∀𝑥 ∈ 𝑈 𝑥 ∈ 𝑆1 → 𝑥 ∈ 𝑆2

– 𝐸𝑉𝐸𝑁 ⊆ ℤ, ℕ ⊆ 𝑥 ∈ ℤ 𝑥 ≥ 1 }, DOGS ⊆ MAMMALS

• 𝑆1 = 𝑆2 when 𝑆1 ⊆ 𝑆2 and 𝑆2 ⊆ 𝑆1

– ∀𝑥 ∈ 𝑈 𝑥 ∈ 𝑆1 ↔ 𝑥 ∈ 𝑆2

– ℕ = 𝑥 ∈ ℤ 𝑥 ≥ 1 }

Subsets and implication

MAMMALS

ANIMALS

DOGS

Quantifiers and conditionals

• All squares are white.
– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥 → 𝑊ℎ𝑖𝑡𝑒 𝑥 . False!

• All white shapes are squares
– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝑊ℎ𝑖𝑡𝑒 𝑥 → 𝑆𝑞𝑢𝑎𝑟𝑒 𝑥 True!

• All circles are blue.

– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝐶𝑖𝑟𝑐𝑙𝑒 𝑥 → 𝐵𝑙𝑢𝑒 𝑥 .

• All blue shapes are circles.
– ∀𝑥 ∈ 𝑆𝐻𝐴𝑃𝐸𝑆 𝐵𝑙𝑢𝑒 𝑥 → 𝐶𝑖𝑟𝑐𝑙𝑒 𝑥 .

• All lemurs live in the trees.
– ∀𝑥 ∈ 𝐴𝑁𝐼𝑀𝐴𝐿𝑆 𝐿𝑒𝑚𝑢𝑟 𝑥 → 𝐿𝑖𝑣𝑒𝑠𝐼𝑛 𝑇𝑟𝑒𝑒𝑠 𝑥

• All animals living in the trees are lemurs.

– ∀𝑥 ∈ 𝐴𝑁𝐼𝑀𝐴𝐿𝑆 𝐿𝑖𝑣𝑒𝑠𝐼𝑛 𝑇𝑟𝑒𝑒𝑠 𝑥 → 𝐿𝑒𝑚𝑢𝑟 𝑥

Quantifiers and conditionals

• Why don’t we write them as ∀𝑥 ∈ 𝑆𝑄𝑈𝐴𝑅𝐸𝑆 𝑊ℎ𝑖𝑡𝑒 𝑥 ?

– Sometimes we can, but the first form is easier to reason about.

– Besides, the predicate 𝑊ℎ𝑖𝑡𝑒(𝑥) is more useful when defined for any
shapes, rather than only squares!

• More commonly, we use a shorthand called restricted
quantifiers (or quantifiers with restricted domain):

– ∀𝑥 ≥ 0 𝐸𝑣𝑒𝑛 𝑥 is a shorthand for ∀𝑥 (𝑥 ≥ 0 → 𝐸𝑣𝑒𝑛 𝑥)

• Why do we write → rather than ∧ ?

• ∀𝑥 𝑥 ≥ 0 ∧ 𝐸𝑣𝑒𝑛 𝑥 is immediately false in ℤ since some integers are < 0.

• Then you should say what you mean,’ the March Hare went on.
• `I do,’ Alice hastily replied; `at least–at least I mean what I say–that’s

the same thing, you know.’
• `Not the same thing a bit!’ said the Hatter. `You might just as well say

that “I see what I eat” is the same thing as “I eat what I see”!’
• `You might just as well say,’ added the March Hare, `that “I like what I

get” is the same thing as “I get what I like”!’
• `You might just as well say,’ added the Dormouse, who seemed to be

talking in his sleep, `that “I breathe when I sleep” is the same thing as
“I sleep when I breathe”!’

“Alice’s Adventures
in Wonderland”

by Lewis Carroll

31 32

33 34

35 36

2022-10-13

7

Formulas: computational view

• As you are building a formula, think like a computer scientist:

– What would a program (machine) that computes its value look like?

– What are that program’s inputs and outputs

– and what are their types?

– When would this program output an error?

• Think of operations in the formula computationally.

Type checking

• A formula consists of pieces of different types
– Boolean: taking values true/false

• Predicates, formulas

• Can use operations ¬,∨,∧, →

– Elements
• Variables and fixed elements (constants) from the domain.

• Occur as inputs to predicates and in quantifiers such as ∀𝑥 ∈ 𝑆

• Can use operations (functions) from the domain:

– If elements are numbers, can use 𝑥 + 𝑦, 𝑥 ⋅ 𝑦, etc

– Sets of elements
• Used for domains: only occurs in quantifiers such as ∀𝑥 ∈ 𝑆

Type checking

• A formula consists of pieces of different types

– Boolean: taking values true/false

– Elements: e.g. numbers

– Sets of elements

• ∀𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑 𝑥

Type checking

• A formula consists of pieces of different types

– Boolean: taking values true/false

– Elements: e.g. numbers

– Sets of elements

• ∀𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑 𝑥

∨

• Propositional variables and formulas are of type Boolean

– that is, they take values in the set {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

– To evaluate a propositional variable, return its truth value.

• Now, treat connectives as machines with inputs and outputs.

– They take Boolean inputs, and return Boolean outputs.

Bool Bool

Bool

∨

∨

true false

true

∨

37 38

39 40

41 42

2022-10-13

8

∨

• To evaluate a propositional formula, go up its syntax tree:

– If the formula (node in the tree) is just one variable, return its value

– If a formula (node) is an operation, apply the respective “evaluation machine”:

• Machines for ∨,∧, →,↔ want two Boolean inputs

• Machine for ¬ wants one Boolean input

• Each machine outputs a single Boolean value.

∨

∨

true false

true

∨

Bool

BoolBool

∨

• Propositional variables and formulas are of type Boolean

– that is, they take values in the set {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

• If 𝐹, 𝐺 are propositional formulas, then so are ¬𝐹, 𝐹 ∧ 𝐺, 𝐹 ∨ 𝐺, 𝐹 → 𝐺

– So, operations ∨,∧, →,↔ need to have Boolean type on both sides

• And ¬ has to have a Boolean type following it.

– The result of all of these operations is also of Boolean type.

∨

p ¬𝑞 ∧ 𝑟

𝑝 ∨ (¬𝑞 ∧ 𝑟)
Bool

BoolBool

Predicate logic formulas

• A predicate logic formula consists of different types

– Boolean: taking values true/false

– Elements: e.g. numbers

– Sets of elements

• We still can use ∨,∧, →,↔, ¬ machines, both for
constructing and for evaluating formulas

– As formulas are of type Boolean

• Also need machines for predicates and quantifiers.

Computational view of predicates

• Predicate machines take elements as inputs and return Boolean

– Different inputs may be elements from different sets

– The number of inputs depends on a predicate

Boolean

Set

Element
𝑃 ≤

4 2

falseBool

ElementElement

– Predicate machines take a list of variables or actual elements of their
domain of type element as inputs and return a formula of the form

• 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑒𝑙𝑒𝑚1, 𝑒𝑙𝑒𝑚2, . . ,)

– If there are two inputs, the form such as 𝑒𝑙𝑒𝑚1 ≤ 𝑒𝑙𝑒𝑚2 is also OK

Boolean

Set

Element
𝑃

𝑒𝑙𝑒𝑚1 𝑒𝑙𝑒𝑚2

𝑃(𝑒𝑙𝑒𝑚1 , 𝑒𝑙𝑒𝑚2)
≤

𝑥 𝑦

𝑥 ≤ 𝑦

– To construct a predicate correctly, its inputs must take values from
corresponding domains

• Inputs to predicates can be functions, as long as output of the function is from
the correct domain: so if the predicate P takes an integer as its input, and 𝑥 takes
integer values, then P(𝑥 + 1) is OK.

Boolean

Set

Element
𝑃

𝑒𝑙𝑒𝑚1 𝑒𝑙𝑒𝑚2

𝑃(𝑒𝑙𝑒𝑚1 , 𝑒𝑙𝑒𝑚2)
≤

𝑥 𝑦

𝑥 ≤ 𝑦

43 44

45 46

47 48

2022-10-13

9

Computational view of quantifiers

• Inputs to quantifier machines are a set, a name of a variable of
type element of that set, and a formula with that variable free.

• Quantifier machines also return Boolean

Boolean

Set

Element
∀ ∀

true

𝑥
ℤ

𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)

Bool

Bool

Set
Element

name

– Universal quantifier constructing machine takes a variable name, a set
and a formula, and return a new formula of the form

• ∀𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑛𝑎𝑚𝑒
Boolean

Set

Element

∀

∀ 𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑛𝑎𝑚𝑒)
∀

∀𝑥 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥))

element
name

Set

Formula

𝑥

ℤ

𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)

Liars paradox
puzzle

• The first formulation of the famous liar’s paradox,
attributed to a Cretan philosopher Epimenides, stated

“All Cretans are liars”.

Is this really a paradox?

Liars paradox
puzzle

• The first formulation of the famous liar’s paradox,
attributed to a Cretan philosopher Epimenides, stated

“All Cretans are liars”.

Is this really a paradox?

Liars paradox
puzzle

• The first formulation of the famous liar’s paradox,
attributed to a Cretan philosopher Epimenides, stated

“All Cretans are liars”.

Is this really a paradox?

– If “all” is not true, that means that there is a
counterexample: a Cretan that does not lie.

– So if Epimenides lied, what is true is that
there are some truth-tellers on Crete (and
potentially some liars, too)

– And Epimenides is one of the liars.

– However, “I am lying” would be a paradox.

49 50

51 52

53 54

2022-10-13

10

Counterexamples

• How to prove that a statement “∀𝑥 ∈ 𝑆, 𝐹 𝑥 “ is false?
– All girls hate math.

– No!
• I don’t hate math ☺

– Everybody in O’Brian family is tall
• No, Jenny is O’Brian and she is quite short.

– It is foggy all the time, every day in St. John’s
• No, sometimes it is not foggy (like today).

Counterexample:

Element of S for which
the formula is false.

One is enough, though
more than one is OK.

Negation of a universal statement

• What is the negation of “All”, that is, what statement is true
whenever “∀𝑥 ∈ 𝑆, 𝐹 𝑥 “ is false?
– All girls hate math.
– No!

• All girls love math?
• Some girls do not hate math! I don’t.

– Everybody in O’Brian family is tall
• No, there is someone (Jenny) who is O’Brian and short.

– It is foggy all the time, every day in St. John’s
• No, sometimes it is not foggy (like today).

“Not All “ ≡ “Some not”

As there is a quantifier ∀ for
“all”, there is also a quantifier

for “some”: ∃, called
existential quantifier.

Existential quantifier

• ∃𝑥 ∈ 𝑆 𝐹 𝑥

(pronounced “exists”)

is true when there is some value a for 𝑥 in 𝑆
for which 𝐹(𝑥) is true.

– This 𝑎 ∈ 𝑆 is called a witness.

¬ ∀𝑥 ∈ 𝑆 𝐹 𝑥 ≡ ∃𝑥 ∈ 𝑆 ¬𝐹 𝑥

∀𝑥 ∈ 𝑆 𝐹 𝑥 is false iff there exists ∃ a counterexample:
an element 𝑎 ∈ S such that ¬𝐹(𝑎) is true.

Examples with existential quantifier

• “There exists an even prime number.”
– Domain ℤ
– Predicates 𝐸𝑣𝑒𝑛(𝑥) and 𝑃𝑟𝑖𝑚𝑒(𝑥)

– ∃𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒 𝑥
• This is true: 2 is both even and prime.

• “There is some number between 0 and 1”
– Domain ℝ, predicate <

– ∃𝑥 ∈ ℝ, (0 < 𝑥) ∧ (𝑥 < 1)
• True when the domain is ℝ

– There is not just one, but lots of real numbers
between 0 and 1

• Would be false if we change the domain to ℤ

• “𝑛 is divisible by 𝑚 if there is
an integer which when
multiplied by 𝑚 gives 𝑛”

– Domain ℤ, Predicate =

– ∃𝑧 ∈ ℤ, 𝑛 = 𝑚𝑧

• True for n= 6, 𝑚 = 3; in this
case, z = 2

• False when eg 𝑛 = 3, 𝑚 = 2

– Here, 𝑛 and 𝑚 are still free
variables, whereas 𝑧 is bound by
the quantifier.

– Quantifier constructing machines take a variable name, a set and a
formula, and return a new formula of the form

• ∀𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑛𝑎𝑚𝑒

• ∃𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑛𝑎𝑚𝑒)
Boolean

Set

Element

∃

∃ 𝑛𝑎𝑚𝑒 ∈ 𝑆𝑒𝑡 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑛𝑎𝑚𝑒)
∃

∃𝑥 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥))

element
name

Set

Formula

𝑥

ℤ

𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)

Truth of existential statements

• ∃𝑥 ∈ 𝑆 𝐹 𝑥 is true when 𝐹 𝑎 is true for some 𝑎 ∈ 𝑆

– “I am teaching some course” is true because I am teaching COMP 1002

– Here, COMP 1002 is the witness for the truth of “I am teaching some course”

• That is, when 𝐹 𝑎1 ∨ 𝐹 𝑎2 ∨ ⋯ ∨ 𝐹 𝑎𝑛 ∨ ⋯ is true, where
𝑎1, 𝑎2, … is a list of all elements of 𝑆

– Enough to find a single witness 𝑎 ∈ 𝑆 with 𝐹 𝑎 true to prove ∃𝑥 ∈ 𝑆 𝐹 𝑥 .

– To show that ∃𝑥 ∈ 𝑆 𝐹 𝑥 is false, show that for all 𝑎 ∈ 𝑆, 𝐹 𝑎 is false

• That is because ¬ ∃𝒙 ∈ 𝑺 𝑭 𝒙 ≡ ∀𝒙 ∈ 𝑺 ¬𝑭 𝒙

55 56

57 58

59 60

2022-10-13

11

Quantifiers in English

• Universal quantifier: usually “every”, “all”, “each”, “any”.
– Every day it is foggy. Each number is divisible by 1.

• “None”, “no”, “nobody”, “nothing” also translate as universal quantifier
– Nobody works on Sundays ≡ Everybody does not work on Sundays

• Existential quantifier: “some”, “a”, “exists”
– Some students got 100% on the first lab.

– There exists a prime number greater than 100.

• The word “any” can mean either!

Quantifiers in English: “any”

• “Any” can have different meanings depending on the context:

• Any = some

– Can I have any (piece of the) pie?

– Can I have some (piece of the) pie?

• Any = all

– Any student knows this.

– Every student knows this.

62

• Any student can get an A
• Would any student get an A?

When negating a quantified formula,
the domain always stays the same.

• Quantifiers flip

(∀ becomes ∃, ∃ becomes ∀)

• The formula under quantifiers gets a
¬ in front, and can be simplified
further, treating logical connectives
the same way as in propositional
logic, and predicates as propositions.

¬ ∀𝑥 ∈ 𝑆 𝐹 𝑥 ≡ ∃𝑥 ∈ 𝑆 ¬𝐹(𝑥)

¬(∃𝑥 ∈ 𝑆 𝐹 𝑥) ≡ ∀𝑥 ∈ 𝑆 ¬𝐹(𝑥)

Not all integers are even ≡ Some integers are not even

¬ ∀𝑥 ∈ ℤ 𝐸𝑣𝑒𝑛 𝑥 ≡ ∃𝑥 ∈ ℤ ¬𝐸𝑣𝑒𝑛 𝑥

• Some integers are both even and prime – no,
none of the integers is both even and prime
each integer is not even or not prime

¬ ∃𝑥 ∈ ℤ, 𝐸𝑣𝑒𝑛 𝑥 ∧ 𝑃𝑟𝑖𝑚𝑒 𝑥 ≡ ∀𝑥 ∈ ℤ, ¬𝐸𝑣𝑒𝑛 𝑥 ∨ ¬𝑃𝑟𝑖𝑚𝑒 𝑥

• As in propositional case, push negations inside the formula, onto predicates.
– “NOT (ALL trees have leaves)” is more confusing than “some trees do not have leaves” or

“some trees have something other than leaves (e.g., needles).

When negating a quantified formula, the domain stays the same.
Quantifiers flip (∀ becomes ∃, ∃ becomes ∀)
The formula under quantifiers gets a ¬ in front, and can be simplified further

“NOT” is for predicates, not domains!

• For any formula 𝐹 we can write ¬𝐹 to denote a formula which is
true if and only if 𝐹 is false, just like in propositional logic

• 𝐹 = “All trees have leaves”
• Is ¬𝐹 “non-trees have non-leaves”?...

• No! What is a non-tree and a non-leaf, anyway?

¬𝐹 is “Not all trees have leaves”
– which is the same as “Some trees do not have leaves”

– we are still talking about trees!

• When simplifying a negated formula, we flip quantifiers and negate
subformulas as we would in propositional logic
– But we never change the domain!

61 62

63 64

65 66

2022-10-13

12

– A negation machine takes a Boolean, and outputs a Boolean.

• If you give something non-Boolean to a negation machine, it will give
you an error!

¬
ERROR

¬

Boolean

Set

Element

Element

Bool

Bool

– A negation machine takes a Boolean, and outputs a Boolean.

• If you give something non-Boolean to a negation machine, it will give
an error!

Boolean

Set

Element

¬

𝑥

ERROR

¬

𝐹(𝑥)

¬𝐹(𝑥)

We can mix both types of
quantifiers in a formula.

But the order matters!

• Predicate: 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦), true when x loves y. Domain: people.

∀x ∃y Loves(x,y)

Everybody loves
somebody

∃x ∀y Loves(x,y)

Somebody loves
everybody

∀x ∃y Loves(y,x)

Everybody is loved by somebody

∃x ∀y Loves(y,x)

Somebody is loved by everybody

Nested quantifiers

• Order of variables under different quantifiers, the order of
quantifiers themselves, matters.
– Everybody loves somebody is true for people in general

– Whereas somebody loves everybody is rare (only the sun shines
on everyone)

• Order in a predicate matters.
– To love is is not the same as to be loved.

– Everyone is loved by their mother

– yet it is rare to be loved by everyone (except maybe Elvis)

67 68

69 70

71 72

2022-10-13

13

Nested quantifiers

• Names of variables don’t matter

– Everybody loves somebody:

∀x ∃y Loves(x,y) same as ∀y ∃x Loves(y,x) same as ∀p1 ∃p2 𝐿𝑜𝑣𝑒𝑠 𝑝1, 𝑝2

– Somebody is loved by everybody:

∃x ∀y Loves(y,x) same as ∃y ∀x Loves(x,y) same as ∃p1∀p2𝐿𝑜𝑣𝑒𝑠 𝑝2, 𝑝1

Nested quantifiers
• When quantifiers of the same time are next to each other, their order does not matter.

• First says that every two people love each other: eg when the domain is a happy family
• Second says that somewhere there is a person who feels love (to someone else, or

maybe to themselves)

• However, in ∃𝑥 ∀𝑦 ∃𝑧 𝐹(𝑥, 𝑦, 𝑧) you cannot exchange 𝑥 with 𝑧:
– 𝑧 might be different for each different 𝑦, but the same 𝑥 should work for all of them!
– Can ignore order only for quantifiers of the same type right next to each other

∀x ∀y Loves(x,y)

Everybody loves everybody

∃x ∃y Loves(x,y)

Somebody loves somebody

• ∀x ∃y Loves(x,y) Everybody loves somebody

• ∀x ∃y Loves(y,x) Everybody is loved by somebody

• ∀x ∀y Loves(x,y) Everybody loves everybody

• ∃x ∀y Loves(x,y) Somebody loves everybody

• ∃x ∀y Loves(y,x) Somebody is loved by everybody

• ∃x ∃y Loves(x,y) Somebody loves somebody

Evaluating sentences with nested quantifiers

• Take a formula with no free variables: a sentence
– How do we find out if it is true or false? Play a game!

• Two players, taking turns in order of quantifiers
– The red player holding ∀ suggests counterexamples
– The green player holding ∃ suggests witnesses.
– If the red player has a way to win no matter what the

green player does, then the formula is false
– If the green player has a way to win no matter what the

red player does, then the formula is true.
• The sentence is always either true or false, so one of them can

always win.

I want
it false!

I want
it true!

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that
no matter what integer 𝑥 you pick,
there is some integer 𝑦 that does not
divide 𝑥 (does not give 𝑥 no matter
what 𝑧 you multiply it by).
– Do you think it is true? Let’s play the

game!

– The formula starts with ∀, so goes
first. After that chooses 𝑦, then it
is again

73 74

75 76

77 78

2022-10-13

14

𝑥 = 0 Beat that!

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that
no matter what integer 𝑥 you pick,
there is some integer 𝑦 that does not
divide 𝑥 (does not give 𝑥 no matter
what 𝑧 you multiply it by).
– Do you think it is true? Let’s play the

game!

– The formula starts with ∀, so goes
first. After that chooses 𝑦, then it
is again

𝑥 = 0 Beat that!

uhm, 𝑦 = 1?

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that
no matter what integer 𝑥 you pick,
there is some integer 𝑦 that does not
divide 𝑥 (does not give 𝑥 no matter
what 𝑧 you multiply it by).
– Do you think it is true? Let’s play the

game!

– The formula starts with ∀, so goes
first. After that chooses 𝑦, then it
is again

𝑥 = 0 Beat that!

uhm, 𝑦 = 1?

Nope! Set 𝑧 = 0

and now 0 = 1 ⋅ 0

The formula is false!

Mwahahaha!

∀𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Let’s first read the formula. It says that
no matter what integer 𝑥 you pick,
there is some integer 𝑦 that does not
divide 𝑥 (does not give 𝑥 no matter
what 𝑧 you multiply it by).
– Do you think it is true? Let’s play the

game!

– The formula starts with ∀, so goes
first. After that chooses 𝑦, then it
is again

∀𝑥 ∈ {1,2,3} ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧

• Now we changed the domain of 𝑥, so
𝑥 can only take values 1, 2 or 3.
– Do you think it is true now? Let’s play the

game and find out!

– So the formula is true.
• No matter what 𝑥 among allowed 1,2,3 he takes,

she can reply with 𝑦 = 𝑥 + 1 and win.

• Note that her choice of 𝑦 depends on what
value of 𝑥 he picks.

• But since he has to choose 𝑥 before she chooses
𝑦, it is OK, as she would know his choice for the
value of 𝑥. The order of quantifiers matters!

Say 𝑥 = 2

Then let 𝑦 = 3?

Say 𝑧 = 0? . .
But 2 ≠ 0 ⋅ 3
I give up. No matter
what 𝑧 I try, 2 ≠ 𝑧 ⋅ 3
You win Arrrgh!

Say 𝑥 = 5

Then let 𝑦 = 6?

Say 𝑧 = 0? . .
But 5 ≠ 0 ⋅ 6
I give up. No matter
what 𝑧 I try, 5 ≠ 𝑧 ⋅ 6
You win Arrrgh!

∀𝑥 ∈ ℤ (𝑥 = 0 ∨ ∃𝑦 ∈ ℤ ∀𝑧 ∈ ℤ 𝑥 ≠ 𝑦𝑧)

• Now let’s try a more complex formula,
which says that for every integer 𝑥 either
𝑥 = 0 or there is an integer 𝑦 that does
not divide 𝑥
– After the first step where sets 𝑥, the

formula under ∀𝑥 splits into ∨ of two.

– The first, 𝑥 = 0, can be evaluated right away
• He’d lose immediately if he sets 𝑥 to be 0

• So he’d better choose a non-zero value for 𝑥

– Still, no matter what 𝑥 he takes, she can
always reply with 𝑦 = 𝑥 + 1 (if 𝑥 < 0, then
𝑦 = 𝑥 − 1) and win

Say 𝑥 = 2

Say y = 3

Take 𝑧 = 0

It works ☺

∀𝑥 ∈ ℤ ∀𝑦 ∈ 𝑍 ∃𝑧 ∈ ℤ 𝑥𝑧 = 𝑦𝑧)

• If there are several quantifiers of the
same type, the corresponding player
keeps getting a turn

– Here, the formula starts with two ∀

– So gets to go twice, setting both x
and y.

– Only then gets her turn to set z.

79 80

81 82

83 84

2022-10-13

15

General rules for building
predicate logic formulas

Variables and terms

• Simplest formulas are predicates: 𝑃 𝑥, 𝑦 , 𝑥1 = 𝑥2, 𝐸𝑣𝑒𝑛(𝑛𝑢𝑚)

– Here, 𝑥, 𝑦, 𝑥1 , 𝑥2 , 𝑛𝑢𝑚 are variables, that is, placeholders for elements in
the domains of the predicates.

– Instead of a variable, can have an expression (also called a function or a
term), which takes values of variables and returns a value in the domain:

• 𝑥 + 1, 𝑥 ⋅ 𝑦 are terms

• Can now use them in 𝐸𝑣𝑒𝑛 𝑥 + 1 , or in 𝑥 ⋅ 𝑦 = 𝑧

• E.g. if the domain of Even and = is ℤ, then 𝑥, 𝑦, 𝑧 take values in ℤ, so the
value of 𝑥 + 1 ∈ ℤ, and the value of 𝑥 ⋅ 𝑦 ∈ ℤ no matter what values 𝑥, 𝑦, 𝑧 take.

– If the formula is a predicate, then all the variables it takes are free.

• Including all variables mentioned in the terms, as 𝑥, 𝑦, 𝑧 in 𝑥 ⋅ 𝑦 = 𝑧

Boolean

Set

Element

Naming conventions

• Names of variables do not matter, as long as you use the same
name every time you refer to a specific placeholder in a formula.
∀𝑥 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑥 ∨ 𝑂𝑑𝑑(𝑥)) is the same as ∀𝑦 ∈ ℤ (𝐸𝑣𝑒𝑛 𝑦 ∨ 𝑂𝑑𝑑 𝑦)

• The convention is to use either lowercase letters, usually at the
end of the alphabet (𝑥, 𝑦, 𝑧, 𝑤, 𝑥1, 𝑥2) or lowercase words (𝑛𝑢𝑚
for number) for variables
– Just like unknowns in arithmetic equations

– Letters 𝑎, 𝑏, 𝑐 more often used for specific elements.

• Use capitalized words (𝐸𝑣𝑒𝑛, 𝐿𝑒𝑠𝑠𝑇ℎ𝑎𝑛) or 𝑃, 𝑄 for predicates.
– Often use 𝑃, 𝑄 when the interpretation of the predicate is not specified

Prenex normal form

• Better to avoid using same names for different variables – it is
confusing.

– ∀𝑥 ∃𝑦 𝑃 𝑥, 𝑦 ∧ ∃𝑦 𝑄 𝑥, 𝑦 ≡ ∀𝑥 ∃ 𝑦 𝑃 𝑥, 𝑦 ∧ ∃𝑧 𝑄 𝑥, 𝑧

≡ ∀𝑥 ∃𝑦 ∃𝑧 𝑃 𝑥, 𝑦 ∧ 𝑄 𝑥, 𝑧

• The final line is an example of a special form of a predicate logic
formula with all quantifiers in front followed by a formula without
quantifiers, called prenex normal form.
– Here, the names must be different to differentiate variables, as they all

have the same scope: the whole formula.

Constructing predicate logic formulas

• A single predicate is a predicate logic formula

– 𝑃 𝑥, 𝑦 , 𝑥1 = 𝑥2, 𝐸𝑣𝑒𝑛(𝑛𝑢𝑚)

– In these formulas, 𝑥, 𝑦, 𝑥1, 𝑥2, 𝑛𝑢𝑚 are free variables

• If 𝐹 and 𝐺 are predicate logic formulas, then so are
𝐹 ∧ 𝐺 F ∨ 𝐺 𝐹 → 𝐺 𝐹 ↔ 𝐺 ¬𝐹

• If 𝐹 𝑥 is a predicate logic formula with a free variable 𝑥 from the domain S,
then so are ∀𝑥 ∈ 𝑆 𝐹 𝑥 as well as ∃𝑥 ∈ 𝑆 𝐹(𝑥)
– Here 𝑥 is no longer a free variable, it gets bound by the quantifier.

– When the domain is clear, just write ∀𝑥 𝐹 𝑥 (respectively, ∃𝑥 𝐹(𝑥))

– Use parentheses to avoid ambiguity: ∀𝑥 (𝐺 𝑥 → 𝐻) is not equivalent to (∀𝑥 𝐺 𝑥) → 𝐻

85 86

87 88

89 90

2022-10-13

16

Make sure to type-check!

• Always think which types can be
combined with which operations,
– and what the result looks like!

• Remember that if you give an
evaluation machine incorrectly
formatted input, it will give you an
error.
– “𝐸𝑣𝑒𝑛 𝑥 , 𝑂𝑑𝑑(𝑥)" ERROR!

– “∃ 𝐸𝑣𝑒𝑛 " ERROR!

– “𝐸𝑣𝑒𝑛(𝑥 = 𝑦)" ERROR!

– “∀𝑥 ∈ ℤ ¬𝑥" 𝐸𝑅𝑅𝑂𝑅!

Boolean

Set

Element
¬

Bool¬

Bool

91

