

Stereotypes puzzle Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-pipeline demonstrations. Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is: 1. a kindergarten teacher 2 works in a bookstore and takes yoga classes an active feminist 3. a psychiatric social worker a member of an outdoors club 5. a bank teller 6. an insurance salesperson a bank teller and an active feminist 7. 8.

*** Subsets and equality रेख 🛲 式 • When all elements of a set S_1 are also elements of a set S_2 , we say that S_1 is a **subset** of S_2 , written $S_1 \subseteq S_2$ – BANKTELLERS ⊆ PEOPLE $- EVEN \subseteq \mathbb{Z}$ Bank $-\mathbb{N} \subseteq \{x \in \mathbb{Z} \mid x \ge 1\}$ Feminists tellers • $S_1 = S_2$ when $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$ $\mathbb{N} = \{ x \in \mathbb{Z} \mid x \ge 1 \}$ • S_1 is a **proper subset** of a S_2 , written $S_1 \subset S_2$ when $S_1 \subseteq S_2$, but $S_1 \neq S_2$ BANKTELLERS \subset PEOPLE, $EVEN \subset \mathbb{Z}$. 9

Instantiation of predicates

- When x in P(x) is replaced with a specific element of D (instantiated), the predicate becomes a proposition. - Even(3), Feminist(Susan)
- · After instantiation, the predicate gets a specific truth value true or false. - Even(3) is false. Feminist(Susan) is true.
- *P*(*x*) may be true for some values of *x* ∈ *D*, and false for other.
 - Even(x) is true for even numbers $x \in \mathbb{Z}$, but false for odd integers.
 - Feminist(y) is true for some y ∈ PEOPLE, and false for others...
 - Here, domain of x is Z, and domain of y is PEOPLE
 - Even(y) is not defined for y ∈ PEOPLE, only for elements of Z.

13

X

Predicates vs. sets

- · Predicates and sets are two sides of the same coin - For each set S there is a predicate which is true exactly on elements of S
 - For each predicate P there is a set S of values of x on which P is true.

Set S	Predicate P
A collection of elements	Becomes true/false on a given element
$S_P = \{x P(x) \text{ is true}\}$	$P_S(x) \equiv "x \in S"$

• To write formulas, need something that is true/false: predicates!

- A predicate on one variable is called "unary", on two "binary", on three variables "ternary"
 - in general a predicate on n variables is called n-ary predicate.
 - Number of variables a predicate takes as input is called its arity.
- Parent(x,y) is true when the person x is a parent of the person y Parent(King George VI, Queen Elizabeth II) is true This is a binary predicate
- Ternary predicates examples:

- Sum(x, y, z) which is true when x + y = z. Between(x, y, z) which is true when $y \le x$ and $x \le z$ For both them, can take the domain to be R when ame is the name of a student who takes the course *cour* in semseter *sem*.

Formulas: computational view

- As you are building a formula, think like a computer scientist:
 What would a program (machine) that computes its value look like?
- What are that program's inputs and outputs
- and what are their types?
- When would this program output an error?
- Think of operations in the formula computationally.

 $x \le y$

 \leq

P(elem₁, elem₂)

 $x \le y$

P(elem₁,elem₂)

 $\exists x \exists y Loves(x,y)$

omebody loves some

87

Constructing predicate logic formulas

- A single predicate is a predicate logic formula
 P(x, y), x₁ = x₂, Even(num)
- In these formulas, x, y, x₁, x₂, num are free variables
- If F and G are predicate logic formulas, then so are $F \land G$ $F \lor G$ $F \to G$ $F \leftrightarrow G$ $\neg F$
- If F(x) is a predicate logic formula with a free variable x from the domain S, then so are $\forall x \in S F(x)$ as well as $\exists x \in S F(x)$
 - Here x is no longer a free variable, it gets bound by the quantifier.
 - When the domain is clear, just write $\forall x F(x)$ (respectively, $\exists x F(x)$)
 - Use parentheses to avoid ambiguity: $\forall x (G(x) \rightarrow H)$ is not equivalent to $(\forall x G(x)) \rightarrow H$

