2022-10-13

Stereotypes puzzle .

Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a
student she was deeply concerned with issues of discrimination and social justice and also
participated in anti-pipeline demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most
likely. Susan is:

a kindergarten teacher

works in a bookstore and takes yoga classes
an active feminist

a psychiatric social worker

a member of an outdoors club

a bank teller

an insurance salesperson

a bank teller and an active feminist

OIS

Stereotypes puzzle . ‘3?‘3‘ Scenarios and sets

« Susanis 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she a
was deeply concerned with issues of discrimination and social justice and also participated in anti- * Want to reason abOUt more general scenarios
pipeline demonstrations. . .

) o _)) _ * Rather than just true/false, vary over objects:
Please _rank the following possibilities by how likely they are. List them from least likely to most likely.
Susan is: — even numbers, integers, primes

1. akindergarden teacher — people that are and are not bank tellers,

2. works in a bookstore and takes yoga classes . . .

3. an active feminist EentiiElas — pairs of animals in the same ecosystem...

4. a psychiatric social worker . . .

e e ek s * Want multiple properties of these objects:

6. abank teller — an even number that is divisible by 4 and > 10,

7. aninsurance salesperson

8. abankteller and an active feminist — a person that is also a bank teller...

Sets

* Asetis a collection of objects.

— The order of elements does not matter. ﬁ ﬁ ‘% ﬂ

— There are no duplicates.

L AL
- 5i=(1,2,3), 1 it =

— S, ={Cathy, Alaa, Keiko, Daniela}

* Can define a set of all elements satisfying some condition:
— {x | such that x ... }is called set builder notation

— S3 ={ x| xis an even number }
— PEOPLE = {x | x is a person living on Earth now}
— BANKTELLERS = {x | x is a person who is a bank teller}

,""ﬂ’\,’ﬁ‘

Special sets

* Notation for some special sets:
—Emptyset @ (set with no elements in it)
— Natural numbers N = {1,2,3, ...}
* Sometimes start with 0.
—Integers Z = { ...— 2,—1,0,1,2, ...}

— Rational numbers Q = {E | m,n integers,n # 0}

2022-10-13

N fﬂ“ﬂm

A 2

‘iﬂi\f Set elements B2y
iz b

* Notation a € S (“ain S”) means that an element a belongs to the
setS,anda & S states thatais notin S
—Susan € PEOPLE. Susan ¢ BANKTELLERS
—05€R 05¢7Z ‘

Bank
tellers

* When all elements of a set S; are also elements of a set S, we say that
Sy is a subset of S,, written §; € S,
— BANKTELLERS S PEOPLE
—EVENCZ °

Bank
-Nc{xeZ|x>1}

tellers
* Sy =S,whenS; €5andS; €5,
-N={xeZ|x>1}

» S, is a proper subset of a S,, written S; € S, when S; € S,,but S; # S,
— BANKTELLERS C PEOPLE, EVEN c Z.

n * Also, can write x € S for a variable x (in particular in set builder
— Real numbers R notation)
— Binary strings {0,1}* — BANKTELLERS = { x € PEOPLE | x is a bank teller}
—EVEN = { x € Z| x is divisible by 2 }
7 8
P fotrs |
&5% . #am)
Ll Subsets and equality TEE Venn diagrams
iz b

« Circles are sets
— BANKTELLERS, FEMINISTS, DOGS, MAMMALS, BIRDS, EVEN
* Square is the universe
— PEOPLE, ANIMALS,R
* Dots are elements
— Susan,0.5
A circle for one set inside another means subset
— DOGS EMAMMALS
« Circles not overlapping indicates there are no
common elements (they are disjoint)
— MAMMALS is disjoint from BIRDS

How can we do logic with sets?

PEOPLE

BANK
TELLERS
.

ANIMALS

G

9 10
Predicates “
* A predicate P(x) is a “proposition with a variable”. Here, x is a
variable that can take values from a set D called the domain or
universe of P(x).
— Variable names are usually x,y, z, or words like name, usually lowercase.
— Predicate names are usually P(), Q(), and capitalized words:
* P(y), Q(2),P(name), Even(x)
* Examples: Feminist(x), Bankteller(person), P(y).
— In the first two cases, D is PEOPLE.
— x € Sis also a predicate for a specific S with the variable x
* Here, D is the universe to which elements of S belong.
11

12

2022-10-13

Instantiation of predicates

When x in P(x) is replaced with a specific element of D (instantiated), the
predicate becomes a proposition.

— Even(3), Feminist(Susan)

After instantiation, the predicate gets a specific truth value true or false.
— Even(3) is false. Feminist(Susan) is true.

P(x) may be true for some values of x € D, and false for other.
— Even(x) is true for even numbers x € Z, but false for odd integers.
— Feminist(y) is true for some y € PEOPLE, and false for others...
— Here, domain of x is Z, and domain of y is PEOPLE

* Even(y) is not defined for y € PEOPLE, only for elements of Z.

Predicates vs. sets

* Predicates and sets are two sides of the same coin
— For each set S there is a predicate which is true exactly on elements of S
— For each predicate P there is a set S of values of x on which P is true.
N Y
A collection of elements

Becomes true/false on a given element
Sp = {x| P(x) is true}

Ps(x) ="x € 5“

* To write formulas, need something that is true/false: predicates!

13

14

Predicate logic

We can make formulas out of predicates the same way as we did
for propositions, but now our formulas have free variables:
— Even(x) V DivisibleByThree(x) - —~Prime(x)
— Feminist(x) A Bankteller(x)
— Now scenarios can correspond to values of x.
* The first formula is false for x=2 since Even(2) = true, but =Prime(2) = false.

This is called predicate logic (or first-order logic), as opposed to
propositional logic we did so far.

Set operations as formulas v

Let A and B be sets with predicates x € 4, x € B
— Such as A={1,2,3} and B={ 2,3,4}

* Union
* Intersection ANB ={x|x€AAx €B}

—AUB={x|x€AvxeB}
— The green part of top picture U — The coloured part in the top picture.
-ANB={23} @ - AUB={1234} Y
AUB
* Difference A —B ={x|x € AA-(x € B)}
— The yellow part i

* Symmetric difference
-~ AAB=(A—B)U(B—A)

— The yellow and blue parts of the top
picture.

- AMB ={1,4} (@

—A-B={1}

+ Complement 4 ={x € U|—(x € 4)}
— The blue part on the Venn diagram
— IfuniverseU=N, 4 ={x € N |x & {1,2,3} }

15

16

Predicates with several variables

Sometimes, want a predicate that depends on more than one variable
— LessThan(x,y), for x,y € R, is true ifand only if x <y
« Alternatively, can just write x < y tomean LessThan(x,y)
— Divides(x,y),for x,y € Z, is true if and only if x is a divisor of y
« Divides(3,6) is true. Divides(12,4) is false.

A predicate P(Xq, ..., X,) is a “proposition with variables”, where values of the
variables x;, ..., x,, come from some sets S, ..., Sy, called their domains or universes.
— Sometimes the domains of its variables are the same, other times different.

— Order of variables matters.

For any specific tuple of elements (instantiation of x, ..., x,), a predicate
P(Xy, ..., Xp) is either true or false.
— For any pair of numbers, x < y can be either true or false:

* LessThan(1,2), thatis 1 < 2 is true, whereas LessThan(2,1) is false

Predicates: arity

.

A predicate on one variable is called “unary”, on two “binary”, on three variables
“ternary”

— ingeneral a predicate on n variables is called n-ary predicate.
— Number of variables a predicate takes as input is called its arity.

Parent(x,y) is true when the person x is a parent of the person y
— Parent(King George VI, Queen Elizabeth II) is true
— This is a binary predicate

Ternary predicates examples:
— Sum(x,y,z) which is true whenx +y = z.
— Between(x,y, z) which is true wheny< x andx < z
* Forboth of them, can take the domain to be R

— Registrations(name, cour, sem) which is true when name is the name of a student who takes the
course cour in semester sem.

17

18

2022-10-13

Quantifiers

* A formula of predicate logic can
be evaluated when the values of
all variables are known.

— Alternatively, we might want
the formula to hold no matter
what the values are.

— Or wonder if there is any
value that makes it true

[‘ "
19 20
. o Quantifiers: universal (V)
Universal quantlfler
« Theorems often look like this: “For all x the following is true”,
. Vx€SF(x) and then a formula with x as a free variable.
X = — Forall x € Z DivisibleBySix(x) — DivisibleByThree(x)

(pronounced “forall”) — Foralln €N if n > 4, then 2" > n?

is true when

for all possible values x can take in S
the formula F(x) is true.

« |If there is a quantifier over a variable, such variable is not
free anymore.

If there are no free variables, the whole formula evaluates
to either true or false.

21

Examples with universal quantifier -

* “Every bird can fly”
— Domain BIRD
— Predicate CanFly(x)
—Vx € BIRD CanFly(x)

* Not true: penguins

“Any two people are related”
Domain PEOPLE
Predicate Related(x,y)

Vx € PEOPLE ¥y € PEOPLE Related (x,y
Can shorten this as

Vx,y € PEOPLE Related(x,y)

* “I work each day of the week! ® “
— Domain DAYS = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}
— Predicate Work(x), where x € DAYS
— Vx € DAYS Work(x)

We write this in predicate logic using the universal quantifier v
— Vx € Z DivisibleBySix(x) - DivisibleByThree(x)
—-VneNn>4- 2" >n?

Some textbooks put a comma after the quantifier, some period, others nothing.

Some insist that the formula must be in parentheses if it is more than one predicate.
* When in doubt, use parentheses.

22

Examples with universal quantifier -

“Every integer is either even or odd.”
— Domain Z

— Predicates Even(x) and 0dd (x)

— Vx €Z Even(x) v 0dd(x)

« This is true: every integer is even or odd.

“Every odd integer is prime”
— Domain Z
— Predicates Prime(x) and Odd (x)
— Vx €Z 0dd(x) - Prime(x)
* False: for example 9 is odd but not prime.

“For every two numbers one is less than
the other”

— Domain R
— Predicate LessThan(x, y)

* Canjustwriteitas x <y
—-VxXERVYyERx<yVy<x

« False: x and y may take the same value

“Adding 1 to any odd integer results in
an even number”

—Vx€Z 0dd(x) > Even(x +1)

* This is also true.

23

24

2022-10-13

Universal quantifier and truth -

For every formula F of predicate logic with a free variable x, we can
write Vx € S F(x)

— Where F(a) can have quantifiers, too.
— We call a sentence of the form Vx € S F(x) a universal statement

* The formula “Vx € S F(x)"is true iff F(a) is true for every a € S.
— Thatiis, if a;, ay, ..., ay,, ... isalist of all elements of S, then
"Vx € S F(x)"is true iff "F(a,) A F(az) A+ AF(ay) A--" istrue.

* To evaluate a universally quantified formula Vx € S F(x), check that
foreach a € S, F(a) is true.

25

26

27

Evaluating universally quantified formulas

Take the domain D = {0,1,2}, predicates x < yandx >y
—"Vx € {0,1,2} x = 0"is true for all instantiations of x > 0:

x =0 true for 0, and 1,and 2 substituted for x in the formula.

—So0 = 0istrue,and 1 = Qs true, and 2 > 0 is also true.
—Thatis, when 0=>0 A1>0A2 = 0is true.
* Which happens to be the case.

—"Vx € {0,1,2} x >0 Ax < 2"is true when
c(0=20A0<2)A(1=20A1<2)A(2=0A2<2) istrue.

Evaluating universally quantified formulas

* Take the domain D = {0,1,2}, predicates x < yandx >y
— Let’sevaluate VXEDVy €D x<y
— Now we have two variables, so let’s do it one quantifier at a time.
— First, let’s try all values for x then AND the resulting formulas together:
VXxEDVYy€ED x<y=(Vy EDO<y)A(VYy ED1<y)A(Vy ED2<Yy)
— Now, for each formula in parentheses, try all values of y:
=0<OAO<DAWOS2) true
1<0)AA<DAQ1<2) false
2<0)A@R<1DA(R<2) false
— Finally, putting it all together, Vx € D Vy € D x < y becomes

(=)A= DAO=D)A(I<OAASDAAS))ARSOARSDARSD)
— Now we see thatVx € DVy € D x < yis false

* Evaluating predicates with infinite domains is harder, need proofs.

28

Quantifiers and conditionals

* Which of these are true? How can we write them as formulas?
— All squares are white. All white shapes are squares
— All circles are blue. All blue shapes are circles.

Jux Jm X X]

29

30

2022-10-13

Quantifiers and conditionals Quantifiers and conditionals
¢ Which of these are true? How can we write them as formulas? * Which of these are true? How can we write them as formulas?
— All squares are white. All white shapes are squares — All squares are white. All white shapes are squares

— All circles are blue. All blue shapes are circles. — All circles are blue. All blue shapes are circles.

ee meeon e e mooBn

— They all have the structure Vx € S, P(x) - Q(x)

— They all have the structure Vx € S, P(x) - Q(x) * All squares are white: for all shapes, if it is a square, then it is white
—Vx € SHAPES, Square(x) » White(x)

« Different from “All white objects are squares”:
—Vx € SHAPES, White(x) - Square(x)

31 32
il
. .. faorra i . .
Subsets and implication ghom Quantifiers and conditionals
ot D
* When all elements of a set S; are also elements of a set S,, we say : A”;q”;';;:;;;”gite-) o D), B .
. . - VX quare(x) — te(x). alse!
that S; is a subset of S, written S; € S, o AT SHERES e STEE
—Treat x € S as a predicate. Let U be the universe. — Vx € SHAPES White(x) - Square(x) True! D
-5, €S, iffvxeEU x€8 »x€S, « Allcircles are blue.
—EVEN € Z, NS {x € Z | x = 1}, DOGS € MAMMALS — Vx € SHAPES Circle(x) — Blue(x). .
« All blue shapes are circles.
— Vx € SHAPES Blue(x) — Circle(x). .
S, =S,whenS; € S,andS, € 5; ANMALS « All'lemurs live in the trees.
— Vx € ANIMALS Lemur(x) - Livesin Trees(x)
—-Vx€eU x€S;©x€S, . L .
< All animals living in the trees are lemurs.
-N={x€Zlx>1} — Vx € ANIMALS LivesIn Trees(x) — Lemur(x) .

33 34

@
[

* Why don’t we write them as Vx € SQUARES White(x) ? .
— Sometimes we can, but the first form is easier to reason about.
— Besides, the predicate White(x) is more useful when defined for an@

Quantifiers and conditionals Then you should say what you mean,’ the March Hare went on.

‘I do,’ Alice hastily replied; “at least—at least | mean what | say—that’s
the same thing, you know.

*Not the same thing a bit!” said the Hatter. "You might just as well say
that “I see what | eat” is the same thing as “I eat what | see”!’

“You might just as well say,’ added the March Hare, “that “I like what |

SiETs, Cetfher &I @y SeEres. get” is the same thing as “I get what | like”!’
! . * ‘You might just as well say,” added the Dormouse, who seemed to be
talking in his sleep, ‘that “I breathe when | sleep” is the same thing as
* More commonly, we use a shorthand called restricted “I sleep when | breathe”!” i «g’%‘?‘(’ﬂ
quantifiers (or quantifiers with restricted domain): . :

—Vx =0 Even(x) is a shorthand for Vx (x = 0 - Even(x)) . i:’wz;x:;:::ﬁm

* Why do we write — rather than A ?

* Vx x = 0 A Even(x) isimmediately false in Z since some integers are < 0. . by Lewis Carroll

35 36

37

Formulas: computational view

2022-10-13

* As you are building a formula, think like a computer scientist:

— What would a program (machine) that computes its value look like?

— What are that program’s inputs and outputs
— and what are their types?

— When would this program output an error?

* Think of operations in the formula computationally.

Type checking

« A formula consists of pieces of different types

— Boolean: taking values true/false

* Predicates, formulas O
* Can use operations —,V,A, = = -

— Elements |
« Variables and fixed elements (constants) from the domain.

* Occur as inputs to predicates and in quantifiers such as Vx € S =
 Can use operations (functions) from the domain:
— If elements are numbers, can use x + y,x - y, etc

— Sets of elements

 Used for domains: only occurs in quantifiers such as Vx € §

Type checking

* A formula consists of pieces of different types
— Boolean: taking values true/false
— Elements: e.g. numbers
— Sets of elements

e Vx €Z, Even(x)V 0dd(x)

39

40

Type checking
« A formula consists of pieces of different types _
— Boolean: taking values true/false O
— Elements: e.g. numbers <

— Sets of elements

* ¥x € Z, Even(x)v0dd(x) =

Propositional variables and formulas are of type Boolean

— that s, they take values in the set {true, false}

— To evaluate a propositional variable, return its truth value.

Now, treat connectives as machines with inputs and outputs.
— They take Boolean inputs, and return Boolean outputs.

41

42

2022-10-13

 To evaluate a propositional formula, go up its syntax tree: * Propositional variables and formulas are of type Boolean
— If the formula (node in the tree) is just one variable, return its value

— thatis, they take values in the set {true, false}
— If a formula (node) is an operation, apply the respective “evaluation machine”:

« If F, G are propositional formulas, then so are =F,FAG,F VG,F - G
* Machines for V,A, =, < want two Boolean inputs — So, operations V,A, =, < need to have Boolean type on both sides
* Machine for - wants one Boolean input * And = has to have a Boolean type following it.
* Each machine outputs a single Boolean value.

— The result of all of these operations is also of Boolean type.

e @ O
— —

L)
- -
O 8 O # Grenmn D
43 44
Predicate logic formulas Computational view of predicates
* A predicate logic formula consists of different types * Predicate machines take elements as inputs and return Boolean

— Boolean: taking values true/false = i — Different inputs may be elements from different sets
— Elements: e.g. numbers =

— The number of inputs depends on a predicate
— Sets of elements

T o
- — S

.

We still can use V,A, =, &, = machines, both for
constructing and for evaluating formulas
— As formulas are of type Boolean

* Also need machines for predicates and quantifiers.

= 7
@ |
45

46
— Predicate machines take a list of variables or actual elements of their — To construct a predicate correctly, its inputs must take values from
domain of type element as inputs and return a formula of the form corresponding domains
« Predicate (elemy, elems,..,) « Inputs to predicates can be functions, as long as output of the function is from
If there are two inputs, the form such as elem; < elem, is also OK

the correct domain: so if the predicate P takes an integer as its input, and x takes
integer values, then P(x + 1) is OK.

G T O

Gy > O T

47

48

2022-10-13

Computational view of quantifiers

* Inputs to quantifier machines are a ., a name of a variable of
type element of that ., and a formula with that variable free.

¢ Quantifier machines also return Boolean

= ® P
y e

ol ol
@ e

Element
name

— Universal quantifier constructing machine takes a variable name, -
and a formula, and return a new formula of the form
« ¥name € Set Formuld(name)

=0 g
Cwglomovma>

Vx € Z (Even(x) vV 0dd(x))

y
y

49 50
* The first formulation of the famous liar’s paradox,
attributed to a Cretan philosopher Epimenides, stated
Liars paradox “All Cretans are liars”.
puzzle
Is this really a paradox?
52

The first formulation of the famous liar’s paradox,
attributed to a Cretan philosopher Epimenides, stated

Liars paradox
puzzle

“All Cretans are liars”.

Is this really a paradox?

The first formulation of the famous liar’s paradox,
attributed to a Cretan philosopher Epimenides, stated

Liars paradox
puzzle

“All Cretans are liars”.

Is this really a paradox?

—If “all” is not true, that means that there is a
counterexample: a Cretan that does not lie.

— So if Epimenides lied, what is true is that
there are some truth-tellers on Crete (and
potentially some liars, too)

— And Epimenides is one of the liars.

— However, “l am lying” would be a paradox.

54

2022-10-13

Counterexamples

» How to prove that a statement “Vx € S, F(x)“is false?
— All girls hate math.
— No!
-I]don’t hate math ©

Counterexample:

Element of S for which

— Everybody in O’Brian family is tall i fermulE s flsa,

. No, is O’Brian and she is quite short.

_Itis foggy all the time, every day in St. John's| LB PRA eI =)
* No, sometimes it is not foggy (like ffoday). more than one is OK.

Negation of a universal statement

What is the negation of “All”, that is, what statement is true
whenever “Vx € S, F(x)"is false N T 0
— All girls hate math.
— No!

+ All girls love math? As there is a quantifier V for

for “some”: 3, called
existential quantifier.

* No, there is someone (Jenny) who is O’Brian and short.

— Everybody in O’Brian family is tall

— It is foggy all the time, every day in St. John's
* No, sometimes it is not foggy (like today).

EEEIEE ML e IR el “all”, there is also a quantifier

55 56
. , . Examples with existential quantifier
Existential quantlfler
+ “There exists an even prime number.” * “nis divisible by m if there is
~ Domain Z an integer which when
e 3x € SF(x) ’ — Predicates Even(x) and Prime(x) . g . Y
feraneuEed) teds) —3xeZ, Even(x)APrime(x) multiplied by m gives n
) . R * This is true: 2 is both even and prime. — Domain Z, Predicate =
is true when there is some value a for x in § ’
for which F(x) is true. . “There is some number between Oand 17~ — 32 €Z n=mz -
— This a € S'is called a witness. — Domain R, predicate < * True for n=6,m = 3; in this
—3xeR, (0<x)A(x<1) case, z=2
* True when the domain is R * False wheneg n =3, m =2
—|(\1x ES F(x)) = 3dx€S-F(x) — There is not just one, but lots of real numbers)
Vr € 5 Fx) i false ff th s) . 1o between 0and 1 — Here, n and m are still free
x X) Is Talse 1 ere exis S. a counterexample: * Would be false if we change the domain to Z variables, whereas z is bound by
an element a € S such that —F (a) is true. "
the quantifier.
57 58

— Quantifier constructing machines take a variable name, a set and a
formula, and return a new formula of the form

« ¥name € Set Formuld(name)

* 3name € Set Formula (name)

2 %e

SN

i’ 3x € Z (Even(x) V 0dd(x))

Truth of existential statements

e dx € § F(x) is true when F(a) is true for some a € S

— “l am teaching some course” is true because | am teaching COMP 1002

— Here, COMP 1002 is the witness for the truth of “I am teaching some course”
* Thatis, when F(a;) V F(a,) V-V F(ay) V -+ is true, where

ay, ay, ... is a list of all elements of S

— Enough to find a single witness a € S with F(a) true to prove 3x € S F(x).

— To show that 3x € S F(x) is false, show that for all a € S, F(a) is false

* Thatis because - (3x €S F(x)) = Vx€S-F(x)

59

60

10

2022-10-13

Quantifiers in English

Universal quantifier: usually “every”, “all”, “each”, “any”. -
— Every day it is foggy. Each number is divisible by 1.

* “None”, “no”, “nobody”, “nothing” also translate as universal quantifier

— Nobody works on Sundays = Everybody does not work on Sundays

»oun

Existential quantifier: “some”, “a”, “exists”
— Some students got 100% on the first lab.
— There exists a prime number greater than 100.

The word “any” can mean either!

Quantifiers in English: “any”

“Any” can have different meanings depending on the context:

Any = some & \
Sl

— Can | have any (piece of the) pie?
'\.’3‘

— Can | have some (piece of the) pie?

Any =all -

— Any student knows this.

* Any student can getan A

— Every student knows this. * Would any student get an A?

61 62
When negating a quantified formula,
the domain always stays the same.
* Quantifiers flip
(V becomes 3, 3 becomes V)
* The formula under quantifiers gets a
= in front, and can be simplified
further, treating logical connectives
the same way as in propositional
logic, and predicates as propositions.
-(Vx € SF(x)) = 3x € S ~F(x)
—(3x € SF(x)) = Vx € S =F(x)
63 64
When negating a quantified formula, the domain stays the same. “« ” . .
i 0 g NOT” is for predicates, not domains!
Quantifiers flip (V becomes 3, 3 becomes V)
The formula under quantifiers gets a — in front, and can be simplified further X .
¢ For any formula F we can write —F to denote a formula which is
true if and only if F is false, just like in propositional logic
Not all integers are even = Some integers are not even ¢ F =“All trees have leaves”
—(Vx €Z Even(x)) =3x €Z ~Even(x) * Is=F “non-trees have non-leaves”?...
* No! What is a non-tree and a non-leaf, anyway?
* Some integers are both even and prime — no, ‘f * F is “Not all t h | ”
none of the integers is both even and prime 8 =7 (3 INes Bl s (TeE USEES
each integer is not even or not prime — which is the same as “Some trees do not have leaves”
—(3x € Z, Even(x) A Prime (x)) = Vx € Z,~Even(x) V ~Prime(x) — we are still talking about trees!
_ . o _ * When simplifying a negated formula, we flip quantifiers and negate
* Asin propositional case, push pegatlons |ns'|de the formula, onto predicates. subformulas as we would in propositional logic
— “NOT (ALL trees have leaves)” is more confusing than “some trees do not have leaves” or)
“some trees have something other than leaves (e.g., needles). — But we never change the domain!
65 66

11

2022-10-13

— A negation machine takes a Boolean, and outputs a Boolean.

* If you give something non-Boolean to a negation machine, it will give
you an error!

<
S

<
[—
]

—

= 5

67

— A negation machine takes a Boolean, and outputs a Boolean. |~

« If you give something non-Boolean to a negation machine, it will give é
an error!

[

TR
E“

S
»

69

68

We can mix both types of
quantifiers in a formula.

But the order matters!

71

* Predicate: Loves(x,y), true when x loves y. Domain: people.

Vx Iy Loves(x,y) 3x Vy Loves(x,y)

Everybody loves
somebody

dit

Somebody loves
everybody

Vx 3y Loves(y,x) 3x Vy Loves(y,x)

Everybody is loved by somebody Somebody is loved by everybody

Nested quantifiers

* Order of variables under different quantifiers, the order of
quantifiers themselves, matters.

— Everybody loves somebody is true for people in general 'ﬁ‘ ’ﬁ"ﬁ‘

— Whereas somebody loves everybody is rare (only the sun shines
on everyone)

Order in a predicate matters.
— To love is is not the same as to be loved.
— Everyone is loved by their mother

— yet itis rare to be loved by everyone (except maybe Elvis) e»—e

72

12

2022-10-13

Nested quantifiers

* Names of variables don’t matter

— Everybody loves somebody: ’*‘ H
Vx 3y Loves(x,y) same as Vy 3x Loves(y,x) same as Vp, 3p, Loves(py, p3)

— Somebody is loved by everybody: f
3x Vy Loves(y,x) same as 3y Vx Loves(x,y) same as 3p,Vp,Loves(p,, p1)

PR Vx Vy Loves(x,y)

Nested quantifiers

When quantifiers of the same time are next to each other, their order does not matter.

Ix Ay Loves(x,y)

Everybody loves everybod Somebody loves somebod
First says that every two people love each other: eg when the domain is a happy family

Second says that somewhere there is a person who feels love (to someone else, or
maybe to themselves)

VY
However, in 3x Vy 3z F(x,y, z) you cannot exchange x with z: -1 -
— z might be different for each different y, but the same x should work for all of them!
— Can ignore order only for quantifiers of the same type right next to each other

73 74
* Vx Jy Loves(x,y) Everybody loves somebody f*« A
w15 e Jx Vy Loves(x,y) Somebody loves everybody
* Vx Jy Loves(y,x) Everybody is loved by somebody @
E 7+ 3x Vy Loves(y,x) Somebody is loved by everybody
* Vx Yy Loves(x,y) Everybody loves everybody 3 n z
; x‘ Vi« dx Ty Loves(x,y) Somebody loves somebody
75 76
Evaluating sentences with nested quantifiers Vx EZ3Iy ELVzZEZL x * yz
* Take a formula with no free variables: a sentence * Let’s first read the formula. It says that
— How do we find out if it is true or false? Play a game! I want V no matter what integer x you pick
o g . e it false! f : !
Two players, taking turns in order of quantifiers there is some integer y that does not
— The red player holding V suggests counterexamples divide x (does not give x no matter
— The green player holding 3 sugg.ests witnesses. what z you muItipIy it by).
— If the red player has a way to win no matter what the L P
green player does, then the formula is false = Do you think it is true? Let’s play the
— If the green player has a way to win no matter what the game!
red player does, then the formula is true. — The formula starE;_with V, so goes
* The sentence is always either true or false, so one of them can first. After that chooses y, then it
always win. i b : 3 J ’
=) is again
77

78

13

2022-10-13

Vx €EZ3AyELVZEL x + yz

* Let’s first read the formula. It says that
=]
no matter what integer x you pick, W x =0 Beat that!

there is some integer y that does not
divide x (does not give x no matter
what z you multiply it by).

— Do you think it is true? Let’s play the

game!

— The formula starts.with V, so goes
first. After that = chooses y, then it
is again

L1

Vx €EZ3y ELVZEL x + yz

* Let’s first read the formula. It says that — 0 Beat that!
no matter what integer x you pick, x*= eat that:
there is some integer y that does not -
uhm,y = 1? %j

divide x (does not give x no matter
what z you multiply it by).
— Do you think it is true? Let’s play the

game!

— The formula starts_with V, so goes
first. After that = chooses y, then it
is again

79

80

Vx EZ3y ELVZEL x * yz

* Let’s first read the formula. It says that
no matter what integer x you pick,
there is some integer y that does not
divide x (does not give x no matter
what z you multiply it by).

— Do you think it is true? Let’s play the

game!

— The formula starts.with V, so goes
first. After that 3 chooses y, then it
is again g

x = 0 Beat that!

)
uhm, y =17 %
v
Nope! Setz = 0
andnow 0 =1-0

The formula is false!
Mwahahaha!

Vx €{1,23}3y ELVZEZ x * yz

WSayx:Z

Thenlet y = 3?

* Now we changed the domain of x, so
x can only take values 1, 2 or 3.
— Do you think it is true now? Let’s play the f
game and find out! 3
’ }j z
— So the formula is true. i
* No matter what x among allowed 1,2,3 he takes,
she can reply with y = x + 1 and win.
* Note that her choice of y depends on what
value of x he picks.
* But since he has to choose x before she chooses
y, itis OK, as she would know his choice for the
value of x. The order of quantifiers matters!

Sayz = 07..
But2+#0-3

| give up. No matter
what zltry, 2#2z-3
You win ® Arrrgh!

81 82
Vx EZ(x=0VIYELVZETL x #+ yz) Vx EZVYy€Z Az €L xz = yz)
* Now let’s try a more complex formula, WSay P * If there are several quantifiers of the W Sayx =2
which says that-for every integer x either . same type, the corresponding player
x = 0 or there is an integer y that does fry ;
i] keeps getting a turn
not divide x Thenlety = 67 = >) Sayy =3
— After the first step where sets x, the L7 — Here, the formula starts with two v
formula under Vx splits into V of two. Sayz = 07..
— The first, x = 0, can be evaluated right away W R -So W gets to go twice, setting both x _
* He'd lose immediately if he sets x to be 0 | give up. No matter andy.) Takez =0 § N
* So he’d better choose a non-zero value for x what z 1 t.,:y' 5# Zl "6 only th ts her t 2 2 It works © %ﬂ
— Still, no matter what x he takes, she can Ve il ® Axil = QU WE HaSlE AR s i
always reply with y = x + 1 (if x < 0, then
y =x — 1) and win
83

84

14

85

2022-10-13

General rules for building
predicate logic formulas

Variables and terms

* Simplest formulas are predicates: P(x,y), x; = x,, Even(num)
—Here, x,y, x1, X, num are variables, that is, placeholders for elements in
the domains of the predicates.
— Instead of a variable, can have an expression (also called a function or a
term), which takes values of variables and returns a value in the domain:
*x+1, x-y are terms
* Can now use them in Even(x + 1), orin x-y =z
* E.g. if the domain of Even() and = is Z, then x,y, z take values in Z, so the
value of x + 1 € Z, and the value of x - y € Z no matter what values x, y, z take.
— If the formula is a predicate, then all the variables it takes are free.
* Including all variables mentioned in the terms, as x,y,z in x -y =z

Naming conventions

* Names of variables do not matter, as long as you use the same
name every time you refer to a specific placeholder in a formula.
Vx € Z (Even(x) v 0dd(x)) is the same as Vy € Z (Even(y) v 0dd(y))

The convention is to use either lowercase letters, usually at the

end of the alphabet (x, y, z, w, x4, x,) or lowercase words (num
for number) for variables

— Just like unknowns in arithmetic equations

— Letters a, b, c more often used for specific elements.

Use capitalized words (Even, LessThan) or P, Q for predicates.
— Often use P, Q when the interpretation of the predicate is not specified

87

88

Prenex normal form

* Better to avoid using same names for different variables — it is
confusing.

—Vx (Ey P(x,y)) A (Ey Q(x, y)) = Vx (3 y P(x, y)) A (Hz Q(x,z))

= vx3y3zP(x,y) AQ(x,2)

* The final line is an example of a special form of a predicate logic
formula with all quantifiers in front followed by a formula without
quantifiers, called prenex normal form.

— Here, the names must be different to differentiate variables, as they all
have the same scope: the whole formula.

Constructing predicate logic formulas

* Asingle predicate is a predicate logic formula
- P(x,y), x1 = x, Even(num)
— In these formulas, x, y, x1, X, num are free variables

* If F and G are predicate logic formulas, then so are
FAG FvaG F-G FeG =F

 If F(x) is a predicate logic formula with a free variable x from the domain S,
thensoare Vx € S F(x) aswellas3x € S F(x)

— Here x is no longer a free variable, it gets bound by the quantifier.
— When the domain is clear, just write Vx F(x) (respectively, 3x F(x))

— Use parentheses to avoid ambiguity: Vx (G(x) » H) is not equivalent to (vx G(x)) » H

89

90

15

Make sure to type-check!

¢ Always think which types can be
combined with which operations,
— and what the result looks like!

* Remember that if you give an
evaluation machine incorrectly
formatted input, it will give you an
error.

— “Even(x),0dd(x)" ERROR!
— “3 Even " ERROR!

— “Even(x = y)" ERROR!

— “Yx € Z —x" ERROR!

— Bool

o-g

91

2022-10-13

16

