

1

Determining formula type

- How long does it take to check if a formula is satisfiable?
- If somebody gives you a satisfying assignment, then in time roughly the size of the formula.
- On a m-symbol formula, take time proportional to m
- What if you don't know a satisfying assignment? How hard it is to find it?
- Using a truth table: in time proportional to $m * 2^{n}$ on a length m n variable formula.
- Is it fast?...

3

Complexity of computation

- Would you still consider a problem really solvable if it takes a very long time?
- Say 10^{n} steps on an n-symbol string?
- At a billion (10^{9}) steps per second (${ }^{\sim} 1 \mathrm{GHz}$)?
- To process a string of length 100:.
- will take $10^{100} / 10^{9}$ seconds, or $\sim 3 \times 10^{72}$ centuries.
- Age of the universe: about 1.38×10^{10} years.
- Atoms in the observable universe: $10^{78}-10^{82}$.

Special types of sentences

- A sentence that has a satisfying assignment is satisfiable. - Some row in the truth table ends with True.
- Example: $\mathrm{B} \rightarrow \mathrm{A}$
- Sentence is a contradiction (unsatisfiable):
- All assignments are falsifying.
- All rows end with False.
- Example: $A \wedge \neg A$
- Sentence is a tautology:
- All assignments are satisfying
_ Example: $\mathrm{B} \rightarrow \mathrm{A} \vee B$
- We will see later that to check if an argument is correct
need to see if a corresponding formula is a tautology

2

4

6

Determining formula type

- How long does it take to check if a formula is satisfiable?
- Using a truth table: about $m * 2^{h}$ steps
- Is it efficient?
- Not really! Formula with 100 variables is already too big!:
- In software verification: millions of variables!
- Can we do better?

A million-dollar question!

7

8

The million dollar question

- In Russian, called "perebor" (перебор) problem.
- "perebor" translates as "exhaustive search".
- Question: is it always possible to avoid looking through nearly all potential solutions to find an answer?
- Such as all truth assignments for a formula with a truth table.
- Are there situations when exhaustive search is unavoidable?

9

- In English, known as "P vs. NP" problem
- P stands for "polynomial time" (efficiently) computable".
- NP is "polynomial time checkable"
- non-deterministic polynomial-time computable
- Question: is everything efficiently checkable also efficiently computable?
- Or do we need to go through nearly all potential solutions?

10

The million dollar question

or ao we neeu to go througn neariy anf potentar solutions?

11

13

NP-completeness:
To solve P vs NP, enough to find a way to check if formulas are satisfiable that always works (significantly) faster than truth tables!

Or show that it is impossible.

14

- A formula is like a basket of apples.

formula is a tautology

$=$
All apples in the basket are good.

- Can you check that all apples in a basket are good without looking at every single one?
- Can you do it for every possible basket of apples?

Smell test?
15

16

17

Logical equivalence

- Two formulas F and G are logically equivalent $(F \Leftrightarrow G$ or $F \equiv G$) if they have the same value for every row in the truth table on their variables.
$-A \wedge \neg A \equiv F A L S E$
- (same as saying it is a contradiction)
$-(\neg A \vee B) \equiv(A \rightarrow B)$
$-(A \leftrightarrow B) \equiv(A \rightarrow B) \wedge(B \rightarrow A)$

- Useful fact: to prove $F \equiv G$, prove that $F \leftrightarrow G$ is a tautology

Logical equivalence

Even more useful fact:

- If $F \equiv G$, and F is a subformula of H, then replacing F with G in H results in a formula logically equivalent to H.
- Recall that a subformula corresponds to a node in a syntax tree.
- So we can replace a subtree with another for a logically equivalent formula without changing the value of the whole formula.
$-\mathrm{B} \wedge(A \rightarrow B) \vee C \equiv B \wedge(\neg A \vee B) \vee C$,
- because $(\neg A \vee B) \equiv(A \rightarrow B)$
$-(B \wedge A \rightarrow C) \vee A \equiv(\neg(B \wedge A) \vee C) \vee A$
- Do two replacements: one is renaming variables in $(\neg A \vee B) \equiv(A \rightarrow B)$ to some other names (say $(\neg F \vee G) \equiv(F \rightarrow G))$
- And the other putting $B \wedge A$ instead of F, and C instead of G.

19

20

21

22

Negating a formula

- Often given a formula A we want to say that it is not true, that is, write a formula equivalent to $\neg A$
- "It's sunny and cold today"! -- No, it's not!
- For our brain, hard to understand multiple negations:
- "I refuse to vote against repealing the ban on smoking in public. "
- How can we simplify such formulas with nested negations?

23

Double negation

- Double negations cancel each other: Law of Excluded Middle.
$-\neg \neg A \equiv A$
- "I do not disagree with you" = "I agree with you"

24

25

26

27

De Morgan's laws: examples

- Let A be "it's sunny" and B "it's cold".
- "It's sunny and cold today"! -- No, it's not!
- That could mean
- No, it's not sunny.
- No, it's not cold.
- No, it's neither sunny nor cold.
- In all of these scenarios, "It's not sunny or not cold" is true.
- Let A be " $x<2$ ", B be " $x>4$ ".

- "Either $x<2$ or $x>4$ " - No, it is not!
- Then $2 \leq x \leq 4$

28

Negating "if .. then"

- Let A be "I play" and B "I win".
- $A \rightarrow B$: "If I play, then I win"
- Equivalent to $\neg A \vee B$: "Either I do not play, or I win".

- Negation: $\neg(A \rightarrow B)$: "It is not so that if I play then I win".
- By de Morgan's law: $\neg(\neg A \vee B) \equiv(\neg \neg A \wedge \neg B)$
- By double negation: $(\neg \neg A \wedge \neg B) \equiv(A \wedge \neg B)$
- So negation of "If I play then I win" is "I play and I don't win".

30

31

Negating long formulas.

- Start with the syntax tree.
- Starting from the top, keep applying De Morgan's laws and double negation rules.
- Stop when all negations are on variables.
- $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$
- $(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad$ (negating $\rightarrow)$

33

Negating long formulas.

- Start with the syntax tree.
- Starting from the top, keep applying De Morgan's laws and double negation rules.
- Stop when all negations are on variables.
- $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$
- $(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad$ (negating $\rightarrow)$
- $(A \vee \neg B) \wedge(\neg \neg A \vee \neg C)$ (de Morgan)

Negating long formulas.

- Start with the syntax tree.
- Starting from the top, keep applying De Morgan's laws and double negation rules.
- Stop when all negations are on variables.
- $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$

32

Negating long formulas.

- Start with the syntax tree.
- Starting from the top, keep applying De Morgan's laws and double negation rules.
- Stop when all negations are on variables.
- $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$
- $(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad$ (negating $\rightarrow)$
- $(A \vee \neg B) \wedge(\neg \neg A \vee \neg C)$ (de Morgan)

34

Negating long formulas.

- Start with the syntax tree.
- Starting from the top, keep applying De Morgan's laws and double negation rules.
- Stop when all negations are on variables.
- $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$
- $(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad$ (negating $\rightarrow)$
- $(A \vee \neg B) \wedge(\neg \neg A \vee \neg C)$ (de Morgan)

- $(A \vee \neg B) \wedge(A \vee \neg C)$ (removing $\neg \neg)$

Negating long formulas.

- Start with the syntax tree.
- Starting from the top, keep applying De Morgan's laws and double negation rules.
- Stop when all negations are on variables.
- $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$
- $(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad$ (negating $\rightarrow)$
- $(A \vee \neg B) \wedge(\neg \neg A \vee \neg C)$ (de Morgan)
- $(A \vee \neg B) \wedge(A \vee \neg C)$ (removing $\neg \neg)$

37

7

38

Knights and knaves again

40

Knights and knaves again

Knights and knaves again

- Puzzle: You see three islanders talking to each other, Arnold, Bob and Charlie.
- You ask Arnold "Are you a knight?", but can't hear what he answered.
- Bob pitches in: "Arnold said that he is a knave!" and
- Charlie interjects "Don't believe Bob, he's lying".
- Out of Bob and Charlie, who is a knight and who is a knave?
- Puzzle: You see three islanders talking to each other, Arnold, Bob and Charlie.
- You ask Arnold "Are you a knight?", but can't hear what he answered.
- Bob pitches in: "Arnold said that he is a knave!"
- and Charlie interjects "Don't believe Bob, he's lying".
- Out of Bob and Charlie, who is a knight/knave?
- Look at the sentence "I am a knave". Who of the knights/ knaves can say this?
- If A is "Arnold is a knight" and S is "I am a knave", when is $\mathrm{S} \leftrightarrow A$ (what Arnold said is true if and only if he is a knight).
- But also "I am a knave" is the same as saying $\neg A$
- $A \leftrightarrow \neg A$ is a contradiction: it is false no matter what A is.
- So Bob must be lying: Bob is a knave. And Charlie is a knight.
- $A \wedge C \rightarrow \neg B \vee C$
- By $(\mathrm{F} \rightarrow G) \equiv(\neg F \vee G)$
- equivalent to $\neg(A \wedge C) \vee(\neg B \vee C)$
- De Morgan's law
- $\neg(A \wedge C)$ is equivalent to $(\neg A \vee \neg C)$
- Can we simplify this formula further?

43

Changing the order: commutativity rule

- We simplified $A \wedge C \rightarrow \neg B \vee C$ to $\neg A \vee \neg C \vee \neg B \vee C$
- Can we go any further?
- In arithmetic, $3+4+5=4+5+3$, etc
- The answer remains the same if you change order
- As long as terms are part of the same "big" sum or product
- In logic, also can change the order of subformulas in a big V or big \wedge
- Let's rewrite $\neg A \vee \neg C \vee \neg B \vee C$ as $\neg A \vee \neg B \vee \neg C \vee C$
- But $\neg C \vee C$ is always true! So the whole formula is a tautology.

45

Logical equivalences

- For any logic formulas A, B, C,
- like in arithmetic (with \vee as,$+ \wedge$ as *)
$A \vee B \equiv B \vee A \quad A \wedge B \equiv B \wedge A \quad$ Commutativity
$(A \vee B) \vee C \equiv A \vee(B \vee C) \quad(A \wedge B) \wedge C \equiv A \wedge(B \wedge C) \quad$ Associativity
$(A \vee B) \wedge C \equiv(A \wedge C) \vee(B \wedge C)$
- And unlike arithmetic $\quad(A \wedge B) \vee C \equiv(A \vee C) \wedge(B \vee C) \quad$ Distributivity (2)

Properties of TRUE and FALSE

- Double negation: $\neg \neg A \equiv A$

TRUE $\vee A \equiv T R U E$. TRUE $\wedge A \equiv A$
FALSE $\vee A \equiv A . \quad$ FALSE $\wedge A \equiv F A L S E$
$A \vee \neg A \equiv T R U E \quad A \wedge \neg A \equiv F A L S E$

- De Morgan's laws: $\neg(A \vee B) \equiv \neg A \wedge \neg B$ $\neg(A \vee B) \equiv \neg A \wedge \neg B$
$\neg(\mathrm{~A} \wedge B) \equiv \neg A \vee \neg B$

46

Simplification with distributivity example

- $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$
$\equiv(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad$ (negating \rightarrow)
$\equiv(A \vee \neg B) \wedge(\neg \neg A \vee \neg C) \quad$ (de Morgan's law)
$\equiv(A \vee \neg B) \wedge(A \vee \neg C) \quad$ (double negation)
- Can now simplify further, if we want to.
$\equiv A \vee(\neg B \wedge \neg C) \quad$ (distributivity: factor out A$)$

Laws of logic can prove equivalence

- Every Boolean function can be written as a formula.
- Moreover, as a CNF or DNF formula, using only \vee, \wedge, \neg
- So for every Boolean function we can build a formula to compute it just out of V, \wedge, \neg
- Connectives \rightarrow and \leftrightarrow are syntactic sugar
- Though there are many formulas with the same truth table, for each truth table there is just one canonical CNF and one canonical DNF.
- So the logic equivalences (laws of logic) can be used to find out whether any two formulas are equivalent.
- Use laws of logic to convert both formulas to their canonical CNFs (or canonical DNFs).
- Check if you got the same answer.

49

Complete set of connectives

- In fact, \neg, V is already complete. So is \neg, \wedge.
- By DeMorgan's, $(A \vee B) \equiv \neg(\neg A \wedge \neg B)$ No need for \vee !
- But Λ, \vee is not complete: cannot do \neg with just Λ, V.
- Because when both inputs have the same value,
- both \wedge, \vee leave them unchanged.
$\cdot A \wedge A \equiv A \vee A \equiv A$

51

Ways to say $A \rightarrow B$ in English

- Lots of ways to say $A \rightarrow B$ • A : "it's wet", B : "it's slippery". $A \rightarrow B$
- "If A, then B " ("If A, B") - If it's wet, it's slippery
- "A implies B" - It's wet implies that it's slipper
- "A only if B" - It's wet only if it's slippery.
- "B unless $-A$ " - It's slippery unless it is not wet.
- "B if A" ("B when(ever) A") - It's slippery when it's wet.
- "B follows from A "
- Being slippery follows from being wet
- "A is sufficient for B "
- Being wet is sufficient (to make it) slippery
- "B is necessary for A "
- It must be slippery when it is wet

More on if... then...

- You see the following cards. Each has a letter on one side and a number on the other.

- Which cards do you need to turn to check that if a card has a J on it then it has a 5 on the other side?

55

Converse and inverse

- Let $A \rightarrow B$ be an implication (if A then B). - if a card has a J on one side then it has a 5 on the other
- If a card has 5 on one side, then it has J on the other.
- Converse is not equivalent to the original implication! - For $A=$ true, $B=$ false, $A \rightarrow B$ is false, $\mathrm{B} \rightarrow A$ is true.
- Converse is not equivalent to the negation of $A \rightarrow B$
$-\neg(A \rightarrow B) \equiv A \wedge \neg B$.
- For $\mathrm{A}=$ true, $\mathrm{B}=$ true, $\mathrm{B} \rightarrow A$ is true, but $\neg(A \rightarrow B)$ is false.
- Converse is equivalent to the inverse $\neg A \rightarrow \neg B$ of $A \rightarrow B$ - If a card does not have J on one side, it cannot have 5 on the other.

57

Contrapositive vs. Converse

- "If a person is carrying a weapon, then the airport metal detector will ring".
- Same as "If the airport metal detector does not ring, then the person is not carrying a weapon".
- Not the same as: "If the airport metal detector rings, then the person is carrying a weapon."
- "If the person is sick, then the test is positive".
- "If he is a murderer, his fingerprints are on the knife".

58

If and only if

- $A \leftrightarrow B$ (" A if and only if B ", biconditional, also written as " A iff $\mathrm{B} ")$ is true exactly when both the implication $A \rightarrow B$ and its converse $\mathrm{B} \rightarrow A$ (equivalently, inverse $\neg A \rightarrow \neg B$) are true
- Come to the lab on Monday if and only if you are in section 2 .
- If you are in section 2 , then come to lab on Monday
- If you came to lab on Monday, you better be in section 2
- Equivalently, if you are not in section 2, do not come to Monday lab: come to Wednesday lab instead.
- Arnold is a knight if and only if he what he said is true.

60

61

Treasure hunt

- In the back of an old cupboard you discover a note signed by a pirate famous for his bizarre sense of humour and love of logical puzzles. In the note he wrote that he had hidden a treasure somewhere on the property. He listed 5 true statements and challenged the reader to use them to figure out the location of the treasure

62

63
64

65

Treasure hunt

1. If this house is next to a lake, then a treasure is not in the kitchen
2. If the tree in the front yard is an elm, then the treasure is in the kitchen
3. This house is next to a lake
4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
5. If the tree in the back yard is an oak, then the treasure is in the garage.

67

Natural deduction

- A: this house is next to a lake.

1. $A \rightarrow \neg B$
2. $\neg B$

- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E : The tree in the back is oak
- F : The treasure is in the garage
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake
- Therefore, the treasure is not in the kitchen.

68

69

Arguments and validity

- An argument, in logic, is a sequence of propositional statements.
- Called argument form when statements are formulas involving variables.
- The last statement in the sequence is called the conclusion. All the rest are premises.
- An argument is valid if whenever all premises are true, the conclusion is also true.
- So if premises are P_{1}, \ldots, P_{n}, and conclusion is C ,

The argument is valid If and only if $P_{1} \wedge P_{2} \wedge \cdots P_{n} \rightarrow C$ is a tautology

70

71

Arguments and validity

- Arguments are often written in this format:
- Symbol. is pronounced "therefore"

72

73

75

Rules of inference

- Just like we used equivalences to simplify a formula instead of writing truth tables
- Can apply tautologies of the form $\mathrm{F} \rightarrow G$ - so that if F is an AND of several formulas derived so far, then we get G , and add G to premises.
- Such as $((p \rightarrow q) \wedge p) \rightarrow q$
- Keep going until we get the conclusion.
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake - Therefore, the treasure is not in the kitchen.
- Here, p is "the house is next to the lake", and q is "the treasure is not in the kitchen".

77

Modus ponens and friends

- There are several rules related to modus ponens
- Technically not modus ponens, but easily equivalent - Since $p \rightarrow q \equiv \neg p \vee q \equiv \neg q \rightarrow \neg p$
- Most textbooks consider them separate rules; we don't.
- But if somebody asks you specifically "what is modus ponens", that's the first rule below.
- $p \rightarrow q$
- p
$\therefore \mathrm{q}$
Modus Ponens
78
we will see a lot in the next lecture)
- And its friend hypothetical syllogism
Resolution
Hypothetical syllogism

- $\neg p \vee q$	• $p \rightarrow q$	- If $x>3$ then $x>2$
- $\neg \mathrm{q} \vee r$	- $\mathrm{q} \rightarrow r$	- If $x>2$ then $x>1$
$\therefore \neg p \vee r$	$\therefore p \rightarrow r$	\therefore If $x>3$ then $x>1$

79

Auxiliary rules

- These are short "common-sense" rules. You don't need to know them by name, just be able to use them.

80

81

Proof vs. disproof

- To disprove that something is always true, enough to give just one scenario where it is false (find a falsifying assignment).
- To disprove that $A \rightarrow B \equiv B \rightarrow A$
- Take $A=$ true, $B=$ false,
- Then $A \rightarrow B$ is false, but $\mathrm{B} \rightarrow A$ is true.
- To disprove that $B \rightarrow A \equiv \neg(A \rightarrow B)$
- Take $A=$ true, $B=$ true
- Then $\mathrm{B} \rightarrow A$ is true, but $\neg(A \rightarrow B)$ is false.
- I have classes every day! - No, you don't have classes on Saturday
- Women don't do Computer Science! - Me?

82

False premises

- An argument can still be valid when some of its premises are false.
- Remember, contradiction implies anything.
- Bertrand Russell: "If $2+2=5$, then I am the pope"

Puzzle: can you see how to prove this?

False premises

- An argument can still be valid even when some of the premises are false.
- Remember, "contradiction implies A" is true for any A.
- Bertrand Russell: "If $2+2=5$, then I am the pope"

Puzzle: can you see how to prove this?

85

Valid and invalid arguments

- An argument is valid if whenever all premises P_{1}, \ldots, P_{n} are true, the conclusion C is also true.
-That is, $P_{1} \wedge P_{2} \wedge \cdots P_{n} \rightarrow C$ is a tautology
- $P_{1} \wedge P_{2} \wedge \cdots P_{n} \rightarrow C$ should be true no matter what values propositional
variables in premises and conclusion take.
- False premise does not make an argument invalid.
- Alternatively, there can be an invalid argument with true premises and/or conclusion.
- The only impossible combination is a valid argument with true premises and false conclusion.

87

Inconsistent statements

- A list of logic statements that cannot all be true at the same time is called inconsistent.
- That is, an AND of these statements is a contradiction (unsatisfiable).
$-p, \neg p$ are inconsistent, because $p \wedge \neg p$ is a contradiction
$-(\mathrm{p} \vee q),(p \vee \neg q), \neg p$ are inconsistent, since $(p \vee q) \wedge(p \vee \neg q) \wedge \neg p$ is unsatisfiable.
- "I have a lab only on Tuesday. I don't have a class on Tuesday. I have a class and a lab on the same day."
- "If the sky is clear then the sun is shining. If it is night, then the sky is clear. It is night and the sun is not shining".

88

Inconsistent statements

- From a policy rules :
- You need to change your password every 6 month you otherwise you will get locked out of your account.
- If your device tries to access the system unsuccessfully
 several times, you will be locked out of your account.
- From common sense:
- While I am changing the password on my computer, my phone would be trying to read mail and so will be unsuccessfully accessing my account!
- So the policy rules, common sense and not being locked out of my account are inconsistent! : :

Inconsistent premises

- What if the premises are inconsistent, that is, they contradict each other?
- Then anything can be a conclusion!
- In particular, a contradiction (such as the constant FALSE) can be a conclusion of a valid argument if and only if its premises are inconsistent

Today is Sunday
Today is not Sunday
$\therefore 2+2=5$

$p \vee q$
$p \vee \neg q$
$\neg p$
\therefore FALSE

bears are black or bears are white
bears are black or bears are not white
bears are not black bears are not black
\therefore it is cold outside

- Any argument with inconsistent premises is valid (and useless)

91

Natural deduction vs. Truth tables

- It was faster to solve the puzzle using natural deduction than writing a truth table.
- But is it always better?
- The answer is...

Nobody knows!

- It is a very closely related to the question of how fast can one check if something is a tautology.

And that's a million dollar question!

93

Converting any formula to CNF

- Rewrite it with only \wedge, \vee, \neg using equivalences
$A \rightarrow B \equiv \neg A \vee B$ as well as $A \leftrightarrow B \equiv(\neg A \vee B) \wedge(A \vee \neg B)$
- Propagate negations to variables, getting rid of double negations.
- Convert each $F \vee(G \wedge H)$ to $(F \vee G) \wedge(F \vee H)$.
- Example: $\mathrm{p} \rightarrow q \wedge r$
$\equiv \neg p \vee(q \wedge r)$
$\equiv(\neg p \vee q) \wedge(\neg p \vee r)$
- Special cases:
- An empty clause () is FALSE.
- An empty CNF is TRUE.

96

CNFs in resolution proofs vs. canonical CNFs

- For proofs, get a formula (much smaller than the truth table)
- and want to get some information about its truth table (is it all false?) without writing the truth table out.
- CNFs on which we do resolution are tiny in comparison to their truth tables, and we hope to find out if they are contradictions faster than writing their truth tables.
- For canonical CNFs, get a truth table, and want a formula computing it.
- We have the truth table (and so can figure out if f is 0 everywhere) before even starting to write a canonical CNF!
- If f is 0 everywhere, its canonical CNF has as many clauses as lines in the truth table.

97

Resolution rule revisited

- Suppose the premises are clauses $(C \vee x),(D \vee \neg x)$
- Where C, D are both V of literals, possibly empty
- Now, use the following special form of the resolution rule:

$\begin{aligned} & C \vee x \\ & D \vee \neg x \end{aligned}$	$\begin{gathered} y \vee \neg z \vee w \\ u \vee \neg w \end{gathered}$	$\begin{array}{r} y \vee w \vee \neg Z \\ \neg Z \vee \neg w \end{array}$	$\begin{aligned} & w \\ & \neg w \end{aligned}$
$\therefore C \vee D$	$\therefore y \vee \neg z \vee u$	$\therefore y \vee \neg z$	\therefore FALSE

99

Finding inconsistencies: resolution refutation

- Remember that a list of logic statements A_{1}, \ldots, A_{n} is inconsistent if and only if
$-A_{1} \wedge A_{2} \wedge \cdots \wedge A_{n}$ is unsatisfiable (contradiction)
- From A_{1}, \ldots, A_{n} as premises can derive FALSE as conclusion.
- When A_{1}, \ldots, A_{n} are all CNFs,
- can check that A_{1}, \ldots, A_{n} are inconsistent by repeatedly applying the resolution rule to (the clauses in) A_{1}, \ldots, A_{n} until FALSE (empty clause) is derived.

100

Resolution refutation

- Resolution refutation: a proof that a CNF $A_{1} \wedge \cdots \wedge A_{n}$ is a contradiction by applying resolution rule repeatedly to get FALSE

> - If FALSE (empty clause) is derived

- then $A_{1} \wedge \cdots \wedge A_{n}$ is unsatisfiable (contradiction).
- Any scenario makes at least one clause (and so $A_{1} \wedge \cdots \wedge A_{n}$) false
- If reached the point when there are no more clauses to derive by the resolution rule
- Then $A_{1} \wedge \cdots \wedge A_{n}$ is not a contradiction (satisfiable).

Resolution refutation

- Start with $A_{1} \wedge \cdots \wedge A_{n}$ (viewed as a list of clauses)
- At every step
- pick two clauses (original or derived) sharing a variable
- In one clause negated and in another not negated, such as $(C \vee x),(D \vee \neg x)$
- Derive a new clause ($C \vee D$) and add it to the list
- Nothing ever goes away! No cancellations!
- Repeat until FALSE is derived
- or cannot derive anything new

Resolution refutation	$C \vee x$ $D \vee \neg x$ $\therefore C \vee D$
- Start with $A_{1} \wedge \cdots \wedge A_{n}$ (viewed as a list of clauses)	
- At every step	
- pick two clauses (original or derived) sharing a variable	
• In one clause negated and in another not negated, such as $(C \vee x),(D \vee \neg x)$	
- Derive a new clause ($C \vee D)$ and add it to the list	
• Nothing ever goes away! No cancellations!	
- Repeat until FALSE is derived	
- or cannot derive anything new	

103

Resolution refutation

- Start with $A_{1} \wedge \cdots \wedge A_{n}$ (viewed as a list of clauses)
- At every step
- pick two clauses (original or derived) sharing a variable
- In one clause negated and in another not negated, such as $(C \vee x),(D \vee \neg x)$
- Derive a new clause ($C \vee D$) and add it to the list
- Nothing ever goes away! No cancellations!
- Repeat until FALSE is derived
- or cannot derive anything new

104

105
$(y \vee \neg z) \wedge(\neg y) \wedge \quad(y \vee z)$
$(\neg z) \quad(z)$
FALSE

FALSE

106

107
$(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee \neg z) \wedge(\neg y \vee \neg z) \wedge(x \vee y) \wedge(\neg x \vee z)$

108

109

110

Pens puzzle

- Suppose that nobody in our class carries more than 10 pens.
- There are 148 students in our class.
- Prove that there are at least 2 students in our class who carry the same number of pens.
- In fact, there are at least 14 who do

111
112

Pigeonhole Principle

- Suppose that nobody in our class carries more than 10 pens. There are 148 students in our class.
- Prove that there are at least 2 students in our class who carry the same number of pens.
- In fact, there are at least 14 who do.

114

Pigeonhole Principle

Pigeonhole Principle

- The Pigeonhole Principle:
- If there are n pigeons
- And $n-1$ pigeonholes
- Then if every pigeon is in a pigeonhole
- At least two pigeons sit in the same hole

- It is possible that some holes are empty, and other have more than two pigeons.
- But at least one hole should have more than one pigeon.
- Also works for any $m<n$ holes, with n pigeons

116

Resolution and Pigeons

- It is not that hard to write the Pigeonhole Principle as a tautology
- One evening there was a cat fight in a family consisting of a mother cat, a father cat, and their son and daughter kittens.
- One of these four cats attacked and bit another!
- One of the cats watched the fight.
- The other one hissed at the fighters.
- These are the things we know for sure:
- 1. The watcher and the hisser were not of the same gender.
- 2. The oldest cat and the watcher were not of the same gender.
- 3. The youngest cat and the victim were not of the same gender.

3. The his ing was older than the victim.

- 4. The hissing cat was older than the victim
- 5. The father was the oldest of the four.
- 6 . The attacker was not the youngest of the four.
- Which nasty cat was the attacker?

117
118

Natural deduction vs. resolution

119

Resolution refutations for verifying that an argument is valid

- An argument with premises $P_{1}, P_{2}, \ldots, P_{n}$ and conclusion C is valid if and only if $P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n} \rightarrow C$ is a tautology
- It is invalid if there is a scenario where $P_{1}, P_{2}, \ldots, P_{n}$ are all true, but C is false.
- To verify that an argument is valid
- That $P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n} \rightarrow C$ is a tautology
- Check that $\neg\left(P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n} \rightarrow C\right)$ is a contradiction. - That no scenario makes both $P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n}$ and $\neg C$ true. $\neg\left(P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n} \rightarrow C\right) \equiv P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n} \wedge \neg C$

1. Convert all premises and $\neg C$ to CNFs
2. Then do resolution on $P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n} \wedge \neg C$
3. If could derive FALSE, then the argument was valid.
4. If this house is next to a lake, then a treasure is not in the kitchen
5. If the tree in the front yard is an elm, then the treasure is in the kitchen
6. This house is next to a lake
7. The tree in the front yard is an elm, or the treasure is buried under the flagpole
8. If the tree in the back yard is an oak, then the treasure is in the garage.

123

Verifying validity

1. $A \rightarrow \neg B$

2. $C \rightarrow B$
3. A
$\mathrm{C} \vee \mathrm{D}$
4. $E \rightarrow F$
5. $\neg B$ (from 1. and 3 . by modus ponens)
6. $\neg C$ (from contrapositive of 2 . and 6 . by modus ponens)
7. D (from 7. and 4 converted to $\neg C \rightarrow D$ by modus ponens)

> Let's check that this argument is valid. That is, that $(A \rightarrow \neg B) \wedge(C \rightarrow B) \wedge A \wedge(C \vee D) \wedge(E \rightarrow F) \rightarrow D$ is a tautology

- A: this house is next to a lake.
- B : the treasure is in the kitchen
C. The tree in front is elm flagpole.
- E : The tree in the back is oak
- F : The treasure is in the garage
$A \rightarrow \neg B$
$C \rightarrow B$
A
C
C V D
$E \rightarrow F$
$\therefore D$

124

125

126

127

Verifying validity

1. If this house is next to a lake, then a treasure is not in the kitchen

- A: this house is next to a lake. 2. If the tree in the front yard is an elm, then the treasure is in the kitchen - B: the treasure is in the kitchen 3. This house is next to a lake \quad C: The tree in front is elm

4. The tree in the front yard is an elm, or the treasure is under the flagpole. D: the treasure is under the flagpole. 5. If the tree in the back yard is an oak, then the treasure is in the garage. . F: The tree in the back is oak

128

Deriving conclusions using resolution

- How do we actually derive a conclusion using resolution? - Like finding the treasure.
- Suppose the conclusion is just one clause or a literal
- otherwise derive each clause of the CNF equivalent to the conclusion separately

- Take premises converted to CNF, and keep applying resolution rul until get a conclusion clause
- Such as a clause containing a single The premises by themselves are not inconsistent! We can derive some more clauses: $(\neg B),(B \vee D)$,
$(\neg A \vee D)$, and then we have to stop.

130

Stereotypes puzzle

- Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-pipeline demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

1. a kindergarden teacher
2. works in a bookstore and takes yoga classe an active feminist
a psychiatric social worker
. a member of an outdoors club
3. a bank teller
4. an insurance salesperson
5. a bank teller and an active feminist

