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Unit 2
Reasoning in propositional logic

Special types of sentences

• A sentence that has a satisfying assignment is satisfiable.
– Some  row in the truth table ends with True.
– Example: B → A

• Sentence is a contradiction (unsatisfiable):  
– All assignments are falsifying.
– All rows end with False. 
– Example:  𝐴 ∧ ¬ 𝐴

• Sentence is a tautology: 
– All assignments are satisfying 
– All rows end with True.
– Example: B → A ∨ 𝐵
– We will see later that to check if an argument is correct

need to see if a corresponding formula is a tautology

A B B → A

True True True

True False True

False True False

False False True

A B A ∨ 𝑩 B → A ∨ 𝑩

True True True True

True False True True

False True True True

False False False True

A A ∧ ¬A

True False

False False

Determining formula type

• How long does it take to check if a formula is satisfiable?
– If somebody gives you a satisfying assignment, then in time roughly 

the size of the formula. 
• On a m-symbol formula, take time proportional to m 

• What if you don’t know a satisfying assignment? How hard it is 
to find it? 
– Using a truth table:  in time proportional to 𝑚 ∗ 2𝑛 on a length m n-

variable formula.   

– Is it fast?...  

Complexity of computation

• Would you still consider a problem really solvable if it takes a very 
long time? 
– Say 10n steps on an n-symbol string?  

– At a billion (109) steps per second (~1GHz)?    

– To process a string of length 100…  

– will take 10100/109 seconds, or ~3x1072 centuries.    

– Age of the universe: about 1.38x1010 years. 

– Atoms in the observable universe:  1078-1082. 

Complexity of computation

• What strings do we work with in real life?

•

– Human DNA has about 3.2 ×109 base pairs

– A secure key in cryptography:  256 bits

– Number of Walmart transactions per day: 109.

– URLs searched by Google in 2012: 3x1012  with 3.5x109  searches per day now 
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Determining formula type

• How long does it take to check if a formula is satisfiable? 

– Using a truth table:  about 𝑚 ∗ 2𝑛 steps 

– Is it efficient?  

• Not really! Formula with 100 variables is already too big! 

• In software verification: millions of variables! 

– Can we do better? 

The million dollar question

• In Russian, called “perebor” (перебор) problem. 

– “perebor”  translates as  “exhaustive search”. 

– Question: is it always possible to avoid looking through nearly 
all potential solutions to find an answer? 

• Such as  all truth assignments for a formula with a truth table.  

– Are there situations when exhaustive search is unavoidable? 

The million dollar question

• In English, known as  “P vs. NP” problem 

– P stands for “polynomial time” (efficiently)  computable”. 

– NP is “polynomial time checkable” 

• non-deterministic polynomial-time computable

– Question: is everything efficiently checkable also efficiently 
computable?  

• Or do we need to go through nearly all potential solutions? 
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• A formula is like a basket of apples. 

formula is a tautology

=

All apples in the basket are good.

• Can you check that all apples in a basket 
are good without looking at every single 
one?

• Can you do it for every possible basket 
of apples?

Smell test?

Logical equivalence

• Two formulas F and G are logically equivalent  (𝐹 ⇔ 𝐺 or 𝐹 ≡ 𝐺)
if they have the same value for every row in the truth table on 
their variables. 

– 𝐴 ∧ ¬𝐴 ≡ 𝐹𝐴𝐿𝑆𝐸

• (same as saying it is a contradiction)

– ¬𝐴 ∨ 𝐵 ≡ (𝐴 → 𝐵 )

– 𝐴 ↔ 𝐵 ≡ 𝐴 → 𝐵 ∧ 𝐵 → 𝐴

• Useful fact: to prove 𝐹 ≡ 𝐺, prove that  𝐹 ↔ 𝐺 is a tautology 

A B ¬𝑨 ∨ 𝑩 𝑨 → 𝑩

True True True True

True False False False

False True True True

False False True True
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Logical equivalence

Even more useful fact: 

• If 𝐹 ≡ 𝐺, and 𝐹 is a subformula of 𝐻, then replacing 𝐹 with 𝐺 in 𝐻
results in a formula logically equivalent to 𝐻.
– Recall that a subformula corresponds to a node in a syntax tree. 

• So we can replace a subtree with another for a logically equivalent formula without 
changing the value of the whole formula. 

– B ∧ 𝐴 → 𝐵 ∨ 𝐶 ≡ 𝐵 ∧ ¬𝐴 ∨ 𝐵 ∨ 𝐶,
• because ¬𝐴 ∨ 𝐵 ≡ (𝐴 → 𝐵 )

– 𝐵 ∧ 𝐴 → 𝐶 ∨ 𝐴 ≡ ¬ 𝐵 ∧ 𝐴 ∨ 𝐶 ∨ 𝐴
• Do two replacements: one is renaming variables in ¬𝐴 ∨ 𝐵 ≡ (𝐴 → 𝐵 ) to some other 

names (say ¬𝐹 ∨ 𝐺 ≡ 𝐹 → 𝐺 ) 

• And the other putting 𝐵 ∧ 𝐴 instead of 𝐹, and 𝐶 instead of G.

Smoking ban puzzle

• Alice says:   

“I refuse to vote against 
repealing the ban on smoking in 

public. “

Does Alice like 
smoking or hate it? 

Smoking ban puzzle

• Alice says:   

“I refuse to vote against 
repealing the ban on smoking in 

public. “

Does Alice like 
smoking or hate it? 

Negating a formula

• Often given a formula 𝐴 we want to say that it is not true, that is, 
write a formula equivalent to ¬𝐴

– “It’s sunny and cold today”!                     -- No, it’s not!  

• For our brain, hard to understand multiple negations: 

– “I refuse to vote against repealing the ban on smoking in public. “ 

• How can we simplify such formulas with nested negations? 

Double negation

• Double negations cancel each other: Law of Excluded Middle.

– ¬¬𝐴 ≡ 𝐴

– “I do not disagree with you”  = “I agree with you” 

≡ ¬¬¬ ≡

≡ ¬¬¬ ≡
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A double negative 
gives a positive. 

But double positive is 
not a negative! 

Yeah, right… 

De Morgan’s Laws

• De Morgan’s law for AND: 

¬ 𝑨 ∧ 𝑩 is  equivalent to ¬𝑨 ∨ ¬𝑩

• De Morgan’s law for OR: 

¬ 𝑨 ∨ 𝑩 is equivalent to  ¬𝑨 ∧ ¬𝑩

De Morgan’s laws: examples

– Let A be “it’s sunny” and B “it’s cold”.  
• “It’s sunny and cold today”!  -- No, it’s not!  

• That could mean
– No, it’s not sunny.  

– No, it’s not cold.   

– No, it’s neither sunny nor cold. 

• In all of these scenarios, “It’s not sunny or not cold” is true. 

– Let A be “x < 2”, B be “x > 4”. 
• “Either 𝑥 < 2 or 𝑥 > 4“ – No, it is not! 

• Then  2 ≤ 𝑥 ≤ 4

0    1     2      3    4     5    6

Negating “if .. then”

– Let A be “I play” and B “I win”.

• 𝐴 → 𝐵: “If I play, then I win”   

• Equivalent to ¬𝐴 ∨ 𝐵: “Either I do not play, or I win”.   

– Negation: ¬(𝐴 → 𝐵): “It is not so that if I play then I win”.

• By de Morgan’s law:   ¬ ¬𝐴 ∨ 𝐵 ≡ ¬¬𝐴 ∧ ¬𝐵

• By double negation: ¬¬𝐴 ∧ ¬𝐵 ≡ (𝐴 ∧ ¬𝐵)

• So negation of “If I play then I win” is “I play and I don’t win”. 

∧

¬

¬

∨

→

¬

¬

∧

¬

∨

¬

¬

∧

¬

¬

¬

De Morgan

Double negation

Negation rules
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Negating long formulas. 

• Start with the syntax tree.  

• Starting from the top, keep applying De 
Morgan’s laws and double negation rules.   

• Stop when all negations are on variables.

• ¬ ( 𝐴 ∨ ¬𝐵 → ¬𝐴 ∧ 𝐶 )

∨

𝐴

B 

→

¬ C 

∧

¬

¬

A 

Negating long formulas. 

• Start with the syntax tree.  

• Starting from the top, keep applying De 
Morgan’s laws and double negation rules.   

• Stop when all negations are on variables.

• ¬ ( 𝐴 ∨ ¬𝐵 → ¬𝐴 ∧ 𝐶 )

• 𝐴 ∨ ¬𝐵 ∧ ¬ ¬𝐴 ∧ 𝐶 (negating →)

∨

𝐴

B 

¬

¬ C 

∧

¬

∧

A 

Negating long formulas. 

• Start with the syntax tree.  

• Starting from the top, keep applying De 
Morgan’s laws and double negation rules.   

• Stop when all negations are on variables.

• ¬ ( 𝐴 ∨ ¬𝐵 → ¬𝐴 ∧ 𝐶 )

• 𝐴 ∨ ¬𝐵 ∧ ¬ ¬𝐴 ∧ 𝐶 (negating →)

• 𝐴 ∨ ¬𝐵 ∧ ¬¬𝐴 ∨ ¬𝐶 (de Morgan) 

∨

𝐴

B 

∨

¬ C 

¬

¬

∧

A 

¬

Negating long formulas. 

• Start with the syntax tree.  

• Starting from the top, keep applying De 
Morgan’s laws and double negation rules.   

• Stop when all negations are on variables.

• ¬ ( 𝐴 ∨ ¬𝐵 → ¬𝐴 ∧ 𝐶 )

• 𝐴 ∨ ¬𝐵 ∧ ¬ ¬𝐴 ∧ 𝐶 (negating →)

• 𝐴 ∨ ¬𝐵 ∧ ¬¬𝐴 ∨ ¬𝐶 (de Morgan) 

∨

𝐴

B 

∨

¬ C 

¬

¬

∧

A 

¬

Negating long formulas. 

• Start with the syntax tree.  

• Starting from the top, keep applying De 
Morgan’s laws and double negation rules.   

• Stop when all negations are on variables.

• ¬ ( 𝐴 ∨ ¬𝐵 → ¬𝐴 ∧ 𝐶 )

• 𝐴 ∨ ¬𝐵 ∧ ¬ ¬𝐴 ∧ 𝐶 (negating →)

• 𝐴 ∨ ¬𝐵 ∧ ¬¬𝐴 ∨ ¬𝐶 (de Morgan) 

• 𝐴 ∨ ¬𝐵 ∧ 𝐴 ∨ ¬𝐶 (removing ¬¬)

∨

𝐴

B 

∨

¬ C 

¬

∧

A 
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Negating long formulas. 

• Start with the syntax tree.  

• Starting from the top, keep applying De 
Morgan’s laws and double negation rules.   

• Stop when all negations are on variables.

• ¬ ( 𝐴 ∨ ¬𝐵 → ¬𝐴 ∧ 𝐶 )

• 𝐴 ∨ ¬𝐵 ∧ ¬ ¬𝐴 ∧ 𝐶 (negating →)

• 𝐴 ∨ ¬𝐵 ∧ ¬¬𝐴 ∨ ¬𝐶 (de Morgan) 

• 𝐴 ∨ ¬𝐵 ∧ 𝐴 ∨ ¬𝐶 (removing ¬¬)

∨

𝐴

B 

∨

¬ C 

¬

∧

A 

Negation rules

∧

¬

¬

∨

→

¬

¬

∧

¬

∨

¬

¬

∧

¬

¬

¬

De Morgan

Double negation

Knights and knaves again

• On a mystical island, there are two kinds of people: knights and 
knaves.  Knights always tell the truth.  Knaves always lie.

• Puzzle:  You see  three islanders talking to each other,  Arnold, Bob 
and Charlie. 
– You ask Arnold “Are you a knight?”, but can’t hear what he answered.  
– Bob pitches in: “Arnold said that he is a knave!” 
– and Charlie interjects “Don’t believe Bob, he’s lying”.  
– Out of Bob and Charlie, who is a knight/knave? 

Knights and knaves again

• On a mystical island, there are two kinds of people: knights and 
knaves.  Knights always tell the truth.  Knaves always lie.

• Puzzle:  You see  three islanders talking to each other,  Arnold, Bob 
and Charlie. 
– You ask Arnold “Are you a knight?”, but can’t hear what he answered.  
– Bob pitches in: “Arnold said that he is a knave!” 
– and Charlie interjects “Don’t believe Bob, he’s lying”.  
– Out of Bob and Charlie, who is a knight/knave? 

Knights and knaves again

• Puzzle:  You see  three islanders talking to each other,  Arnold, Bob and Charlie. 
– You ask Arnold “Are you a knight?”, but can’t hear what he answered.  
– Bob pitches in: “Arnold said that he is a knave!” and 
– Charlie interjects “Don’t believe Bob, he’s lying”.  
– Out of Bob and Charlie, who is a knight and who is a knave? 

• Look at the sentence “I am a knave”.  Who of the knights/ knaves can say this? 
• If A is “Arnold is a knight” and S is “I am a knave”, when is S↔ 𝐴 (what Arnold 

said is true if and only if he is a knight).  
• But also “I am a knave” is the same as saying  ¬ 𝐴
• 𝐴 ↔ ¬ 𝐴 is a contradiction: it is false no matter what  A is. 
• So Bob must be lying:  Bob is a knave. And Charlie is a knight.    
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Simplifying formulas

• 𝐴 ∧ 𝐶 → ¬𝐵 ∨ 𝐶

▪ By (F → 𝐺) ≡ (¬𝐹 ∨ 𝐺)
▪ equivalent to ¬ 𝐴 ∧ 𝐶 ∨ ¬𝐵 ∨ 𝐶

▪ De Morgan’s law

▪ ¬ 𝐴 ∧ 𝐶 is equivalent to ¬𝐴 ∨ ¬𝐶

▪ Can we simplify this formula further?

→

∧ ∨

A C ¬ C

B

∨

∨ ∨

¬ C

B

¬

C

¬

A

Repeated operations: Associativity rule

• Now get (¬𝐴 ∨ ¬𝐶) ∨ (¬𝐵 ∨ 𝐶)

– When you have 3+4+5+6, the result is the same whether 
you do (3+4)+(5+6) or ((3+4)+5)+6, since all operations are + 

– In fact you’d probably write it without parentheses 
– Similarly,  the order  in  which you do multiplications in 

3*4*5*6 does not matter. 

• The same applies when we have repeated ∨ or 
repeated ∧ (but not the mix of the two!) 
– Can write (¬𝐴 ∨ ¬𝐶) ∨ (¬𝐵 ∨ 𝐶) as ¬𝐴 ∨ ¬𝐶 ∨ ¬𝐵 ∨ 𝐶
– We can draw this on the syntax tree as one big ∨ or ∧

• Just as we saw when we talked about Boolean circuits.

∨

∨ ∨

¬ C

B

∨

¬ C

B

¬

C

¬

A

¬

C

¬

A

Changing the order: commutativity rule

• We simplified 𝐴 ∧ 𝐶 → ¬𝐵 ∨ 𝐶 to  ¬𝐴 ∨ ¬𝐶 ∨ ¬𝐵 ∨ 𝐶
– Can we go any further? 

– In arithmetic,  3+4+5 = 4+5+3, etc
– The answer remains the same if you change order
– As long as terms are part of the same “big” sum or product

• In logic, also can change the order of subformulas in a big ∨ or big ∧
– Let’s rewrite ¬𝐴 ∨ ¬𝐶 ∨ ¬𝐵 ∨ 𝐶 as ¬𝐴 ∨ ¬𝐵 ∨ ¬𝐶 ∨ 𝐶

– But ¬𝐶 ∨ 𝐶 is always true! So the whole formula is a tautology.

∨

¬ C

B

¬

C

¬

A

Logical equivalences 

• For any logic formulas A, B, C, 

– like in arithmetic (with ∨ as +, ∧ as *)

𝐴 ∨ 𝐵 ≡ 𝐵 ∨ 𝐴 𝐴 ∧ 𝐵 ≡ 𝐵 ∧ 𝐴

𝐴 ∨ 𝐵 ∨ 𝐶 ≡ 𝐴 ∨ 𝐵 ∨ 𝐶 𝐴 ∧ 𝐵 ∧ 𝐶 ≡ 𝐴 ∧ 𝐵 ∧ 𝐶

𝐴 ∨ 𝐵 ∧ 𝐶 ≡ 𝐴 ∧ 𝐶 ∨ 𝐵 ∧ 𝐶

– And unlike arithmetic 𝐴 ∧ 𝐵 ∨ 𝐶 ≡ 𝐴 ∨ 𝐶 ∧ (𝐵 ∨ 𝐶)

• Properties of 𝑇𝑅𝑈𝐸 and 𝐹𝐴𝐿𝑆𝐸
𝑇𝑅𝑈𝐸 ∨ 𝐴 ≡ 𝑇𝑅𝑈𝐸. 𝑇𝑅𝑈𝐸 ∧ 𝐴 ≡ 𝐴

𝐹𝐴𝐿𝑆𝐸 ∨ 𝐴 ≡ 𝐴. 𝐹𝐴𝐿𝑆𝐸 ∧ 𝐴 ≡ 𝐹𝐴𝐿𝑆𝐸

𝐴 ∨ ¬𝐴 ≡ 𝑇𝑅𝑈𝐸 𝐴 ∧ ¬𝐴 ≡ 𝐹𝐴𝐿𝑆𝐸

A ∨ 𝐴 ≡ 𝐴 𝐴 ∧ 𝐴 ≡ 𝐴

Commutativity  
Associativity

Distributivity (2)

• Double negation:  ¬¬𝐴 ≡ 𝐴

• De Morgan’s laws:  
¬ A ∨ 𝐵 ≡ ¬𝐴 ∧ ¬𝐵
¬ A ∧ 𝐵 ≡ ¬𝐴 ∨ ¬𝐵

Simplification with distributivity example

• ¬ 𝐴 ∨ ¬𝐵 → ¬𝐴 ∧ 𝐶

≡ 𝐴 ∨ ¬𝐵 ∧ ¬ ¬𝐴 ∧ 𝐶 (negating →)

≡ 𝐴 ∨ ¬𝐵 ∧ ¬¬𝐴 ∨ ¬𝐶 (de Morgan’s law) 

≡ 𝐴 ∨ ¬𝐵 ∧ 𝐴 ∨ ¬𝐶 (double negation)

• Can now simplify further, if we want to. 

≡ 𝐴 ∨ (¬𝐵 ∧ ¬𝐶) (distributivity: factor out A) 

Laws of logic can prove equivalence 

• Every Boolean function can be written as a formula.   
– Moreover, as a CNF or DNF formula, using only ∨,∧, ¬

• So for every Boolean function we can build a formula to compute it just out of ∨,∧, ¬
• Connectives → and ↔ are syntactic sugar. 

– Though there are many formulas with the same truth table, for each truth table 
there is just one canonical CNF and one canonical DNF. 

• So the logic equivalences (laws of logic) can be used to find out whether 
any two formulas are equivalent.  
– Use laws of logic to convert both formulas to their canonical CNFs (or canonical 

DNFs).
– Check if you got the same answer.   

43 44
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Complete set of connectives

• CNFs only use  ¬,∨,∧, yet any formula can be converted into a CNF
– Any truth table can be coded as a CNF

• Call a set of connectives which can be used to express any truth 
table  a functionally complete set of connectives.  
– So ¬,∨,∧,  is a complete set of connectives. 

• Is this as small as complete sets of connectives can be? 

∨

𝑟¬

q

¬

p

∨

∧

𝑞¬

r

∨

𝑝

q

¬

Complete set of connectives

• In fact, ¬,∨ is already complete. So is ¬,∧ .

– By DeMorgan’s, 𝐴 ∨ 𝐵 ≡ ¬(¬𝐴 ∧ ¬𝐵) No need for ∨! 

• But ∧,∨ is not complete:  cannot do ¬ with just ∧,∨.

– Because  when both inputs have the same value, 

– both ∧,∨ leave them unchanged. 

• 𝐴 ∧ 𝐴 ≡ 𝐴 ∨ 𝐴 ≡ 𝐴

∨

𝑟¬

q

¬

p

∨

𝑞¬

r

∨

𝑝

q

¬

∨

¬¬ ¬

¬

∨

𝑟¬

q

¬

p

∨

∧

𝑞¬

r

∨

𝑝

q

¬

Complete set of connectives

• There is a complete set with just one connective: NAND  
(NotAND) 
– Also called  Sheffer stroke, written | and defined by this truth table: 

• To show that NAND is enough, show how to simulate
a complete set of connectives (say ¬,∨ ) using only |

1. ¬ 𝐴 ≡ 𝐴 | 𝐴
2. 𝐴 ∨ 𝐵 ≡ ¬ ¬𝐴 ∧ ¬𝐵 ≡ ¬𝐴 ¬ 𝐵) ≡ 𝐴 𝐴 | (𝐵 |𝐵))

– In practice, most often stick to  ∧,∨, ¬ (called De Morgan basis)

A B A | B

True True False

True False True

False True True

False False True

Ways to say 𝐴 → 𝐵 in English

• Lots of ways to say 𝐴 → 𝐵.
– “If A, then B” (“If A, B”)        

– “A implies B” 

– “A only if B” 

– “B unless ¬A”

– “B if A” (“B when(ever) A”)

– “B follows from A” 

– “A is sufficient for B” 

– “B is necessary for A” 

• 𝐴: “it’s wet”, B: “it’s slippery”. 𝐴 → 𝐵

– If it’s wet, it’s slippery

– It’s wet implies that it’s slippery

– It’s wet only if it’s slippery. 

– It’s slippery unless it is not wet. 

– It’s slippery when it’s wet.

– Being slippery follows from being wet

– Being wet is sufficient (to make it) slippery

– It must be slippery when it is wet

49 50
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More on if… then…

• You see the following cards. Each has a letter on one side and a 
number on the other. 

• Which cards do you need to turn to check that if a card has a J 
on it then it has a 5 on the other side? 

B J25

Contrapositive 

• Let  𝐴 → 𝐵 be an implication (if A then B, A implies B). 
– If a card has a J on one side, then it has 5 on the other.

• Its contrapositive is ¬𝐵 → ¬𝐴.   
– If a card does not have 5 on one side, then it cannot have J on the other. 

• Contrapositive is equivalent to the original implication: 
𝐴 → 𝐵 ≡ ¬𝐵 → ¬𝐴.

– This is why we need to check cards with numbers other than 5! 

Proof:   ¬𝐵 → ¬𝐴 ≡ ¬¬𝐵 ∨ ¬𝐴 ≡ 𝐵 ∨ ¬ 𝐴 ≡ ¬𝐴 ∨ 𝐵

Converse and inverse 

• Let  𝐴 → 𝐵 be an implication (if A then B). 
– if a card has a J on one side then it has a 5 on the other

• Its converse is 𝐵 → 𝐴
– If a card has 5 on one side, then it has J on the other. 

• Converse is not equivalent to the original implication! 
– For 𝐴 = 𝑡𝑟𝑢𝑒, 𝐵 = 𝑓𝑎𝑙𝑠𝑒, 𝐴 → 𝐵 is false, B → 𝐴 is true.

• Converse is not equivalent to the negation of 𝐴 → 𝐵
– ¬ 𝐴 → 𝐵 ≡ 𝐴 ∧ ¬𝐵 .  
– For A=true, B=true, B → 𝐴 is true, but ¬ 𝐴 → 𝐵 is false.

• Converse is equivalent to the inverse ¬𝐴 → ¬ 𝐵 of 𝐴 → 𝐵
– If a card does not have J on one side, it cannot have 5 on the other. 

B5

J 2

Contrapositive vs. Converse 

• “If a person is carrying a weapon, then the airport 
metal detector will ring”. 

– Same  as “If the airport metal detector does not ring, 
then the person is not carrying a weapon”.  

– Not the same as: “If the airport metal detector rings, 
then the person is carrying a weapon.”

• “If the person is sick, then the test is positive”.

• “If he is a murderer, his fingerprints are on the 
knife”. 

𝐴 → 𝐵

¬𝐵 → ¬𝐴
Contrapositive of 𝐴 → 𝐵

𝐵 → 𝐴
Converse of 𝐴 → 𝐵

¬𝐴 → ¬𝐵
Inverse of 𝐴 → 𝐵

If and only if 

• 𝐴↔ 𝐵 (“A if and only if B”,  biconditional, also written as “A iff
B”) is true exactly when  both the implication 𝐴 → 𝐵 and its 
converse B → 𝐴 (equivalently, inverse ¬𝐴 → ¬𝐵) are true

– Come to the lab  on Monday if and only if you are in section 2. 

• If you are in section 2, then come to lab on Monday

• If you came to lab on Monday, you better be in section 2
– Equivalently, if you are not in section 2, do not come to Monday lab: come to Wednesday 

lab instead. 

– Arnold is a knight if and only if he what he said is true. 
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Treasure hunt

• In the back of an old cupboard you discover a note signed by a 
pirate famous for his bizarre sense of humour and love of 
logical puzzles. In the note he wrote that he had hidden a 
treasure somewhere on the property.  He listed 5 true 
statements and challenged the reader to use them to figure 
out the location of the treasure 

Treasure hunt

1. If this house is next to a lake, then the treasure is not in the kitchen

2. If the tree in the front yard is an elm, then the treasure is in the kitchen

3. This house is next to a lake

4. The tree in the front yard is an elm, or the treasure is buried under the 
flagpole

5. If the tree in the back yard is an oak, then the treasure is in the garage. 

Treasure hunt

• In the back of an old cupboard you discover a note signed by a 
pirate famous for his bizarre sense of humour and love of 
logical puzzles. In the note he wrote that he had hidden a 
treasure somewhere on the property.  He listed 5 true 
statements and challenged the reader to use them to figure 
out the location of the treasure 

Treasure hunt

1. If this house is next to a lake, then a treasure is not in the 
kitchen

2. If the tree in the front yard is an elm, then the treasure is in 
the kitchen

3. This house is next to a lake

4. The tree in the front yard is an elm, or the treasure  is buried 
under the flagpole

5. If the tree in the back yard is an oak, then the treasure is in 
the garage. 
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Treasure hunt

1. If A then not B
2. If C then B 
3. A
4. C  or D
5. If E then F  

1. 𝐴 → ¬𝐵
2. 𝐶 → 𝐵
3. A
4. C  ∨ D
5. E → F  

Too many variables for a nice 
truth table... 

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

1. If this house is next to a lake, then a treasure 
is not in the kitchen

2. If the tree in the front yard is an elm, then 
the treasure is in the kitchen

3. This house is next to a lake
4. The tree in the front yard is an elm, or the 

treasure  is buried under the flagpole
5. If the tree in the back yard is an oak, then 

the treasure is in the garage. 

Natural deduction

1. 𝐴 → ¬𝐵
2. 𝐶 → 𝐵
3. A
4. C  ∨ D
5. E → F 

• If house is next to the lake then the 
treasure is not in the kitchen 

• The house is next to the lake
• Therefore, the treasure is not in the 

kitchen. 

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

6. ¬𝐵

7. ¬𝐶

8. 𝐷

Arguments and validity 

• An argument, in logic,  is a sequence of propositional statements.  

– Called  argument form when statements are formulas involving variables. 

• The last statement in the sequence is called the conclusion.  All the rest 
are premises.

• An argument is valid if whenever all premises are true, the conclusion 
is also true. 

– So if premises are 𝑃1, … , 𝑃𝑛, and conclusion is C, 

The argument is valid 𝑃1∧ 𝑃2 ∧ ⋯𝑃𝑛 → 𝐶 is a tautology If and only if 

1. If this house is next to a lake, then a treasure 
is not in the kitchen

2. If the tree in the front yard is an elm, then 
the treasure is in the kitchen

3. This house is next to a lake
4. The tree in the front yard is an elm, or the 

treasure  is buried under the flagpole
5. If the tree in the back yard is an oak, then the 

treasure is in the garage. 
6. The treasure is under the flagpole.

Treasure hunt

Conclusion

Premises

Arguments and validity  

• Arguments are often written in this format: 

– Symbol ∴ is pronounced “therefore”

If 𝑥 > 3 , then 𝑥 > 2

If  𝑥 > 2, then 𝑥 ≠ 1

𝑥 > 3

________________  
∴ 𝑥 ≠ 1

𝑃1
𝑃2
⋮
𝑃𝑛

_____
∴ 𝐶

• If house is next to 
the lake then the 
treasure is not in the 
kitchen 

• The house is next to 
the lake

________________     
∴ the treasure is not in
the kitchen
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Invalid argument! 
𝑝 → 𝑞 ∧ 𝑞 → 𝑟 ∧ 𝑟 → 𝑝

is a not a tautology!
False when r is true,  and p 
and q are both false. 

Valid argument:  
𝑝 → 𝑞 ∧ 𝑞 → 𝑟 ∧ 𝑝 → 𝑟

is a tautology

Valid argument:  
( 𝑝 → 𝑞 ∧ 𝑝 → 𝑞
is a tautology

Arguments and validity  

• Valid argument: “AND of premises → conclusion” is a tautology

If 𝑥 > 3 , then 𝑥 > 2

If  𝑥 > 2, then 𝑥 ≠ 1

𝑥 > 3

________________

∴ 𝑥 ≠ 1

If 𝑥 > 3 , then 𝑥 > 2

If  𝑥 > 2, then 𝑥 ≠ 1

𝑥 ≠ 1

________________ 
∴ 𝑥 > 3

– If house is next to the lake then 
the treasure is not in the kitchen 

– The house is next to the lake

_______________________ 
∴ the treasure is not in the kitchen

Natural deduction

• If house is next to the lake then the 
treasure is not in the kitchen 

• The house is next to the lake
• Therefore, the treasure is not in the 

kitchen. 

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

How do we get the 
intermediate steps?

1. 𝐴 → ¬𝐵
2. 𝐶 → 𝐵
3. A
4. C  ∨ D
5. E → F 

6. ¬𝐵

7. ¬𝐶

8. 𝐷

Rules of inference

• Just like we used equivalences to simplify 
a formula instead of writing truth tables 

• Can apply tautologies of the form F → 𝐺

– so that if F is an AND of several formulas 
derived so far, then we get G, and add G to 
premises. 

– Such as  ( 𝑝 → 𝑞 ∧ 𝑝) → 𝑞

• Keep going until we get the conclusion.  

• If house is next to the lake 
then the treasure is not in the 
kitchen 

• The house is next to the lake
• Therefore, the treasure is not 

in the kitchen. 

• Here, p is “the house is next 
to the lake”, and q is “the 
treasure is not in the kitchen”. 

Modus ponens

• The main rule of inference, given by the tautology 𝑝 → 𝑞 ∧ 𝑝 → 𝑞,  
is called Modus Ponens. 

• “Method of affirming” in Latin

• If house is next to 
the lake then the 
treasure is not in 
the kitchen 

• The house is next 
to the lake

_______________      
∴ the treasure is not
in the kitchen

• If Socrates is a man, 
then Socrates is 
mortal

• Socrates is a man

_______________ 
∴ Socrates is mortal

• If  𝑥 > 2, then 𝑥 ≠ 1

• 𝑥 > 2

________________        
∴ 𝑥 ≠ 1

Modus ponens and friends        

• There are several rules related to modus ponens

• Technically not modus ponens, but easily equivalent

– Since 𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞 ≡ ¬𝑞 → ¬𝑝

• Most textbooks consider them separate rules; we don’t.

– But if somebody asks you specifically “what is modus ponens”, that’s the first 
rule below.  

• ¬𝑞 → ¬𝑝

• p

__________ 
∴ q

• 𝑝 → 𝑞

• p

________ 
∴ q

• ¬𝑝 ∨ 𝑞

• p

__________ 
∴ q

Modus Ponens                                    Modus Tollens                                              Disjunctive syllogism  
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Resolution rule and friends

• Another group of equivalent rules is the resolution rule (that 
we will see a lot in the next lecture) 

• And its friend  hypothetical syllogism

• ¬𝑝 ∨ 𝑞

• ¬q ∨ 𝑟

________ 
∴¬𝑝 ∨ 𝑟

• 𝑝 → 𝑞

• q → 𝑟

________ 
∴ 𝑝 → 𝑟

• If  𝑥 > 3 then 𝑥 > 2

• If 𝑥 > 2 then 𝑥 > 1

________________        
∴ If 𝑥 > 3 then 𝑥 > 1

Hypothetical syllogismResolution

Auxiliary rules

• These are short “common-sense” rules. You don’t need to know 
them by name, just be able to use them. 

• 𝑝

• q

________ 
∴ 𝑝 ∧ 𝑞

• 𝑝 ∧ 𝑞

________ 
∴ 𝑝

If derived both 
p and q, can 
conclude 𝑝 ∧ 𝑞

If 𝑝 ∧ 𝑞 is true, 
then in particular 
𝑝 is true

• 𝑝

________ 
∴ 𝑝 ∨ 𝑞

If 𝑝 is true, then 
𝑝 ∨ 𝑞 is true for 
any  possible 𝑞

Proof vs. disproof

• To disprove that something is always true, enough to give just one 
scenario where it is false (find a falsifying assignment). 

– To disprove that 𝐴 → 𝐵 ≡ 𝐵 → 𝐴
• Take 𝐴 = 𝑡𝑟𝑢𝑒, 𝐵 = 𝑓𝑎𝑙𝑠𝑒,
• Then  𝐴 → 𝐵 is false, but B → 𝐴 is true.

– To disprove that 𝐵 → 𝐴 ≡ ¬ (𝐴 → 𝐵)
• Take A=true, B=true 
• Then  B → 𝐴 is true, but ¬ 𝐴 → 𝐵 is false.

– I have classes every day! – No, you don’t have classes on Saturday

– Women don’t do Computer Science! – Me? 

False premises

• An argument can still be valid when some of its premises are 
false. 

– Remember, contradiction implies anything. 

• Bertrand Russell: “If 2+2=5, then I am the pope”

Puzzle: can you see how to prove this? 
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False premises

• An argument can still be valid even when some of the premises 
are false.

– Remember, “contradiction implies A” is true for any A. 

• Bertrand Russell: “If 2+2=5, then I am the pope”

Puzzle: can you see how to prove this? 

False premises

• Bertrand Russell: “If 2+2=5, then I am the pope”

• Proof: 

– Suppose 2+2=5

– If 2+2=5, then 1=2  (subtract 3 from both sides).

– So 1=2   (by modus ponens) 

– Me and the pope are two people. 

– Since 1=2,  me and the pope are one person. 

– Therefore, I am the pope! 

Valid and invalid arguments 

• An argument is valid if whenever all premises 𝑃1, … , 𝑃𝑛 are true, 
the conclusion C is also true. 

– That is, 𝑃1 ∧ 𝑃2 ∧ ⋯𝑃𝑛 → 𝐶 is a tautology 
• 𝑃1 ∧ 𝑃2 ∧ ⋯𝑃𝑛 → 𝐶 should be true no matter what values propositional 

variables in premises and conclusion take.

– False premise does not make an argument invalid. 

– Alternatively, there can be an invalid argument 

with true premises and/or conclusion.

– The only impossible combination is a valid argument

with true premises and false conclusion.

if 2 + 2 = 4 𝑡ℎ𝑒𝑛 3 + 3 = 6
3 + 3 = 6
___________________
∴ 2 + 2 = 4

Invalid argument
𝑝 → 𝑞 ∧ 𝑞 → 𝑝

Is not a tautology!

Inconsistent statements

• A list of logic statements that cannot all be true at the same time 
is called inconsistent.

– That is, an AND of these statements is a contradiction (unsatisfiable). 

– 𝑝,¬𝑝 are inconsistent, because 𝑝 ∧ ¬𝑝 is a contradiction

– (p ∨ 𝑞), (𝑝 ∨ ¬𝑞), ¬𝑝 are inconsistent, since  𝑝 ∨ 𝑞 ∧ 𝑝 ∨ ¬𝑞 ∧ ¬𝑝
is unsatisfiable. 

– “I have a lab only on Tuesday.  I don’t have a class on Tuesday. I have a 
class and a lab on the same day.”  

– “If the sky is clear then the sun is shining.  If it is night, then the sky is 
clear.  It is night and the sun is not shining”. 

Inconsistent statements

• From a policy rules : 
– You need to  change your password every 6 month you 

otherwise you will get locked out of your account. 

– If your device tries to access the system unsuccessfully 
several times, you will be locked out of your account. 

• From common sense: 
– While I am changing the password on my computer, my 

phone would be trying to read mail and so will be 
unsuccessfully accessing my account! 

• So the policy rules, common sense and not being 
locked out of my account are inconsistent! 

Inconsistent premises

• What if the premises are inconsistent, that is, they contradict each 
other? 
– Then anything can be a conclusion! 

– In particular, a contradiction (such as the constant FALSE) can be a conclusion 
of a valid argument if and only if its premises are inconsistent

– Any argument with inconsistent premises is valid (and useless). 

Today is Sunday 

Today is not Sunday

_______

∴ 2+2=5

𝑝 ∨ 𝑞

𝑝 ∨ ¬𝑞

¬𝑝

_______

∴ 𝐹𝐴𝐿𝑆𝐸

𝑏𝑒𝑎𝑟𝑠 𝑎𝑟𝑒 𝑏𝑙𝑎𝑐𝑘 𝑜𝑟 𝑏𝑒𝑎𝑟𝑠 𝑎𝑟𝑒 𝑤ℎ𝑖𝑡𝑒

𝑏𝑒𝑎𝑟𝑠 𝑎𝑟𝑒 𝑏𝑙𝑎𝑐𝑘 𝑜𝑟 𝑏𝑒𝑎𝑟𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑤ℎ𝑖𝑡𝑒

𝑏𝑒𝑎𝑟𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑏𝑙𝑎𝑐𝑘

_______

∴ 𝑖𝑡 𝑖𝑠 𝑐𝑜𝑙𝑑 𝑜𝑢𝑡𝑠𝑖𝑑𝑒
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Proof vs. disproof

• To prove that something is (always) true:
– Make sure it holds in every scenario

• ¬𝐵 → ¬𝐴 ≡ 𝐴 → 𝐵, because  ¬𝐵 → ¬𝐴 ≡ ¬¬𝐵 ∨ ¬𝐴 ≡ 𝐵 ∨ ¬ 𝐴 ≡ ¬𝐴 ∨ 𝐵 ≡ 𝐴 → 𝐵

• So ¬𝐵 → ¬𝐴 ↔ (𝐴 → 𝐵) is a tautology. 

• I have classes every day that starts with T.  I have classes on Tuesday and Thursday (and 
Monday, but that’s irrelevant). 

– Or assume it does not hold, and then get something strange as a consequence:  
• To show A is true, enough to show ¬𝐴 → 𝐹𝐴𝐿𝑆𝐸. 

• Suppose there are finitely many prime numbers. What divides the number that’s a product of 
all primes +1? 

Natural deduction vs. Truth tables

Nobody knows! 

• It was faster to solve the puzzle using natural deduction than writing a 
truth table. 

• But is it always better?   
• The answer is... 

• It is a very closely related to the question of how fast can one check if 
something is a tautology. 

And that’s a million dollar question!

Automated provers

• How to make an automated prover which checks whether a 
formula is a tautology?
– And so can check if an argument is valid, etc.  

• Truth tables: 
– easy to program,  but proofs are huge. 

• Natural deduction:  
– proofs might be smaller than a truth table

• Are they always?  Good question... 

– even if there is a small proof, how can we find one quickly? 
• Nobody knows... 

Automated provers

• Work with the CNF formulas
– ∧ on top  (can have single input,  no inputs, many inputs)

– All children of that ∧ are  ∨ (also any number of inputs)
• Called clauses

– Each child of each ∨ is a literal
• a variable, or 

• single ¬ and then a variable. 

• Use only the resolution rule 
– Basis for many practical provers (SAT solvers) 

– Used in scheduling, verification, etc… 

𝐶 ∨ 𝑥
𝐷 ∨ ¬𝑥

________
∴ 𝐶 ∨ 𝐷

∨

𝑟¬

q

¬

p

∨

∧

𝑞¬

r

∨

𝑝

q

¬

• Rewrite it with only ∧,∨, ¬ using  equivalences 
𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵 as well as  𝐴 ↔ 𝐵 ≡ ¬𝐴 ∨ 𝐵 ∧ 𝐴 ∨ ¬𝐵

• Propagate negations to variables, getting rid of double negations.  
• Convert each 𝐹 ∨ 𝐺 ∧ 𝐻 to 𝐹 ∨ 𝐺 ∧ 𝐹 ∨ 𝐻 .

• Example:   p → 𝑞 ∧ 𝑟
≡ ¬ 𝑝 ∨ (𝑞 ∧ 𝑟)
≡ ¬ 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟

• Special cases:   
– An empty clause () is FALSE. 
– An empty CNF is TRUE. 

Converting any formula to CNF

∨

∧

𝑞¬

𝑝

∨

𝑟

p

¬

𝑝

→

∧

𝑟𝑞 𝑝

∨

∧

𝑟𝑞

¬
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CNFs in resolution proofs vs. canonical CNFs

– For proofs, get a formula (much smaller than the truth table) 

– and want to get some information about its truth table (is it all false?) 
without writing the truth table out.

• CNFs on which we do resolution are tiny in comparison to their truth tables, and we 
hope to find out if they are contradictions faster than writing their truth tables.

– For canonical CNFs, get a truth table, and want a formula computing it.

• We have the truth table (and so can figure out if 𝑓 is  0 everywhere) before even 
starting to write a canonical CNF! 

• If 𝑓 is  0 everywhere,  its canonical CNF has as many clauses as lines in the truth table. 

Resolution rule revisited

• Suppose the premises are clauses 𝐶 ∨ 𝑥 , 𝐷 ∨ ¬𝑥

– Where C, D are both ∨ of literals, possibly empty 

• Now, use the following special form of the resolution rule: 

𝐶 ∨ 𝑥
𝐷 ∨ ¬𝑥

________
∴ 𝐶 ∨ 𝐷

𝑦 ∨ ¬𝑧 ∨ 𝑤
𝑢 ∨ ¬𝑤

___________
∴ 𝑦 ∨ ¬𝑧 ∨ 𝑢

𝑦 ∨ 𝑤 ∨ ¬𝑧
¬𝑧 ∨ ¬𝑤

__________
∴ 𝑦 ∨ ¬𝑧

– Ignore the order of literals in a clause and remove duplicates. 

𝑤
¬𝑤

__________
∴ 𝐹𝐴𝐿𝑆𝐸

Finding inconsistencies: resolution refutation

• Remember that a list of logic statements 𝐴1, … , 𝐴𝑛 is 
inconsistent if and only if
– 𝐴1 ∧ 𝐴2 ∧ ⋯∧ 𝐴𝑛 is unsatisfiable (contradiction) 

– From 𝐴1, … , 𝐴𝑛 as premises can derive 𝐹𝐴𝐿𝑆𝐸 as 
conclusion. 

• When 𝐴1, … , 𝐴𝑛 are all CNFs, 
– can check that 𝐴1, … , 𝐴𝑛 are inconsistent by repeatedly 

applying the resolution rule to (the clauses in) 𝐴1, … , 𝐴𝑛
until  FALSE (empty clause) is derived.  

𝑤
¬𝑤

_______
∴ 𝐹𝐴𝐿𝑆𝐸

𝑝 ∨ 𝑞

𝑝 ∨ ¬𝑞

¬𝑝

_______

∴ 𝐹𝐴𝐿𝑆𝐸

Resolution refutation

• Resolution refutation: a proof that a CNF 𝐴1 ∧⋯∧ 𝐴𝑛 is a 
contradiction by applying resolution rule repeatedly to get FALSE 

– If FALSE (empty clause) is derived

• then 𝐴1 ∧ ⋯∧ 𝐴𝑛 is unsatisfiable (contradiction). 

• Any scenario makes at least one clause (and so 𝐴1 ∧ ⋯∧ 𝐴𝑛 ) false 

– If reached the point when there are no more clauses to derive by the 
resolution rule 

• Then 𝐴1 ∧ ⋯∧ 𝐴𝑛 is not a contradiction (satisfiable).  

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

Resolution refutation

• Start with 𝐴1 ∧⋯∧ 𝐴𝑛 (viewed as a list of clauses)

• At every step

– pick two clauses (original or derived) sharing a variable 

• In one clause  negated and in another not negated, such as (𝐶 ∨ 𝑥), (𝐷 ∨ ¬𝑥)

– Derive a new clause 𝐶 ∨ 𝐷 and add it to the list

• Nothing ever goes away! No cancellations! 

• Repeat until FALSE is derived 

– or cannot derive anything new

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷
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Resolution refutation

• Start with 𝐴1 ∧⋯∧ 𝐴𝑛 (viewed as a list of clauses)

• At every step

– pick two clauses (original or derived) sharing a variable 

• In one clause  negated and in another not negated, such as (𝐶 ∨ 𝑥), (𝐷 ∨ ¬𝑥)

– Derive a new clause 𝐶 ∨ 𝐷 and add it to the list

• Nothing ever goes away! No cancellations! 

• Repeat until FALSE is derived 

– or cannot derive anything new

𝑦 ∨ ¬𝑧 ∧ ¬𝑦 ∧ 𝑦 ∨ 𝑧

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

Resolution refutation

• Start with 𝐴1 ∧⋯∧ 𝐴𝑛 (viewed as a list of clauses)

• At every step

– pick two clauses (original or derived) sharing a variable 

• In one clause  negated and in another not negated, such as (𝐶 ∨ 𝑥), (𝐷 ∨ ¬𝑥)

– Derive a new clause 𝐶 ∨ 𝐷 and add it to the list

• Nothing ever goes away! No cancellations! 

• Repeat until FALSE is derived 

– or cannot derive anything new

𝑦 ∨ ¬𝑧 ∧ ¬𝑦 ∧ 𝑦 ∨ 𝑧

¬𝑧

FALSE      

𝑧

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

Resolution refutation

• Start with 𝐴1 ∧ ⋯∧ 𝐴𝑛 (viewed as a list of clauses)
• At every step

– pick two clauses (original or derived) sharing a variable 
• In one clause  negated and in another not negated, such as (𝐶 ∨ 𝑥), (𝐷 ∨ ¬𝑥)

– Derive a new clause 𝐶 ∨ 𝐷 and add it to the list
– Repeat until FALSE is derived 
– or cannot derive anything new

𝑦 ∨ ¬𝑧 ∧ ¬𝑦 ∧ 𝑦 ∨ 𝑧

¬𝑧

FALSE      

𝑧

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

1. 𝑦 ∨ ¬𝑧
2. ¬ 𝑦
3. 𝑦 ∨ 𝑧
4. ¬𝑧 from 1. and 2.  (from 𝑦 ∨ ¬𝑧 and ¬𝑦 )
5. 𝑧 from 2. and 3.     (from 𝑦 ∨ 𝑧 and ¬𝑦 )
6. FALSE from 4. and 5.  (from ¬𝑧 and 𝑧 )

Note that ¬𝑦 was used twice.

Decision trees

• Refutation (deriving FALSE): 

– shows that all clauses cannot be made true at the same time.

• An “upside-down” view: decision tree. 

– For every truth assignment, some clause is false. 

𝑦 ∨ ¬𝑧 ∧ ¬𝑦 ∧ 𝑦 ∨ 𝑧

¬𝑧

FALSE      

𝑧

𝑧

𝑦 𝑦

(¬𝑦) (¬𝑦) (𝑦 ∨ 𝑧)(𝑦 ∨ ¬𝑧)

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

𝑥 ∨ ¬𝑦 ∨ 𝑧 ∧ ¬𝑥 ∨ ¬ 𝑧 ∧ 𝑦 ∨ ¬𝑧 ∧ ¬𝑦 ∨ ¬𝑧 ∧ 𝑥 ∨ 𝑦 ∧ (¬𝑥 ∨ 𝑧)
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𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

(¬𝑧)

(𝑥 ∨ ¬𝑦) (¬𝑥)

(𝑥)

F𝐴𝐿𝑆𝐸

𝑥 ∨ ¬𝑦 ∨ 𝑧 ∧ ¬𝑥 ∨ ¬ 𝑧 ∧ 𝑦 ∨ ¬𝑧 ∧ ¬𝑦 ∨ ¬𝑧 ∧ 𝑥 ∨ 𝑦 ∧ (¬𝑥 ∨ 𝑧)

𝐶 ∨ 𝑥

𝐷 ∨ ¬𝑥

________

∴ 𝐶 ∨ 𝐷

𝑥 ∨ ¬𝑦 ∨ 𝑧 ∧ ¬𝑥 ∨ ¬ 𝑧 ∧ 𝑦 ∨ ¬𝑧 ∧ ¬𝑦 ∨ ¬𝑧 ∧ 𝑥 ∨ 𝑦 ∧ (¬𝑥 ∨ 𝑧)

(¬𝑧)

(𝑥 ∨ ¬𝑦) (¬𝑥)

(𝑥)

F𝐴𝐿𝑆𝐸

Used more than once

Pens puzzle

• Suppose that nobody in our class carries more 
than 10 pens. 

• There are 148 students in our class.

• Prove that there are at least 2 students in our 
class who carry the same number of pens. 

– In fact, there are at least 14 who do

Pens puzzle

• Suppose that nobody in our class carries more than 10 pens. 

• There are 148 students in our class.

• Prove that there are at least 2 students in our class who carry 
the same number of pens. 

– In fact, there are at least 14 who do

Pigeonhole Principle

• The Pigeonhole Principle:
– If there are n pigeons

– And n-1 pigeonholes 

– Then if every pigeon is in a pigeonhole 

– At least two pigeons sit in the same hole 

• Suppose that nobody in our class carries more than 10 pens. There are 148 
students in our class.

• Prove that there are at least 2 students in our class who carry the same 
number of pens. 

– In fact, there are at least 14 who do. 
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Pigeonhole Principle

The Pigeonhole Principle:

If there are n pigeons and n-1 pigeonholes 

Then if every pigeon is in a pigeonhole 

At least two pigeons sit in the same hole 

• Suppose that nobody in our class carries more than 10 pens. There are 148 
students in our class.  Prove that there are at least 2 students in our class 
who carry the same number of pens. 

• Applying to our problem:  
– n-1 = 11 possible numbers of pens 

• (from 0 to 10)

– Even with n=12 people, there would be 2 who have the same number.

– If there were less than 14, say 13 for each scenario, total would be 143.  

– Note that it does not tell us which number or who these people are!

Pigeonhole Principle
• The Pigeonhole Principle:

– If there are n pigeons

– And n-1 pigeonholes 

– Then if every pigeon is in a pigeonhole 

– At least two pigeons sit in the same hole 

• It is possible that some holes are empty, and other 
have more than two pigeons.

– But at least one hole should have more than  one pigeon. 

• Also works for any 𝑚 < 𝑛 holes, with 𝑛 pigeons

Resolution and Pigeons

• It is not that hard to write the Pigeonhole Principle as a tautology

• But we can prove that resolution has  trouble with this kind of reasoning 
– the smallest resolution proof of this tautology is on the order of 2𝑛!  

• By contrast, natural deduction  (and you!) can figure it out fairly quickly 
– though it is not straightforward. 

• So some things resolution cannot prove fast. 
– What can it prove quickly?   Big open problem! 

Meow-stery
• One evening there was a cat fight in a family consisting of  a mother cat, a father 

cat, and their son and daughter kittens. 
• One of these four cats attacked and bit another!  
• One of the cats watched the fight.
• The other one hissed at the fighters.

• These are the things we know for sure:
– 1. The watcher and the hisser were not of the same gender.
– 2. The oldest cat and the watcher were not of the same gender.
– 3. The youngest cat and the victim were not of the same gender.
– 4. The hissing cat was older than the victim.
– 5. The father was the oldest of the four.
– 6. The attacker was not the youngest of the four.

• Which  nasty cat was the attacker?

Natural deduction vs. resolution

• Natural deduction and resolution both can be used to show that a 
formula is a tautology
– For resolution, show that the negation of a formula is a contradiction 
– Both can also be used to derive conclusions from premises. 

• We now know that resolution proofs can be essentially as  big as 
truth tables: Pigeon Hole Principle. 
– For natural deduction,  nobody knows. 

• Somehow, in practice,  it is easier to get resolution to work than 
natural deduction. 
– Why??? Great question.  Not for the lack of trying. 
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Resolution refutations 
for verifying that an argument is valid

• An argument with premises 𝑃1, 𝑃2, … , 𝑃𝑛 and conclusion 𝐶 is valid if and only if 
𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛 → 𝐶 is a tautology
– It is invalid if there is a scenario where 𝑃1, 𝑃2, … , 𝑃𝑛 are all true, but 𝐶 is false. 

• To verify that an argument is valid 
– That 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛 → 𝐶 is a tautology, 

• Check that ¬(𝑃1 ∧ 𝑃2 ∧⋯∧ 𝑃𝑛 → 𝐶) is a contradiction. 
– That no scenario makes both 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛 and ¬𝐶 true.
¬ 𝑃1 ∧ 𝑃2 ∧⋯∧ 𝑃𝑛 → 𝐶 ≡ 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛 ∧ ¬𝐶

1. Convert all premises and ¬𝐶 to CNFs 
2. Then do resolution on 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛 ∧ ¬𝐶
3. If could derive 𝐹𝐴𝐿𝑆𝐸, then the argument was valid. 

Treasure hunt

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the 

flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

1. If this house is next to a lake, then a 
treasure is not in the kitchen

2. If the tree in the front yard is an 
elm, then the treasure is in the 
kitchen

3. This house is next to a lake
4. The tree in the front yard is an elm, 

or the treasure  is buried under the 
flagpole

5. If the tree in the back yard is an 
oak, then the treasure is in the 
garage. 

𝐴 → ¬𝐵
𝐶 → 𝐵
A
C  ∨ D
E → F 
__________
∴ 𝐷

Verifying validity
• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

1. 𝐴 → ¬𝐵
2. 𝐶 → 𝐵
3. A
4. C  ∨ D
5. E → F 
6. ¬𝐵 (from 1. and 3. by modus ponens) 
7. ¬𝐶 (from contrapositive of 2. and 6. by modus ponens)  
8. 𝐷 (from 7. and 4 converted to ¬𝐶 → 𝐷 by modus ponens)

Let’s check that this argument is valid. That is, that
𝐴 → ¬𝐵 ∧ 𝐶 → 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ 𝐸 → 𝐹 → 𝐷

is a tautology

Verifying validity

𝐴 → ¬𝐵
𝐶 → 𝐵
A
C  ∨ D
E → F 
______
∴ 𝐷

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

1. If this house is next to a lake, then a treasure is not in the kitchen
2. If the tree in the front yard is an elm, then the treasure is in the kitchen
3. This house is next to a lake
4. The tree in the front yard is an elm, or the treasure is under the flagpole
5. If the tree in the back yard is an oak, then the treasure is in the garage. 

Argument

𝐴 → ¬𝐵 ∧ 𝐶 → 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ 𝐸 → 𝐹 → 𝐷

Tautology iff argument is valid

Contradiction iff argument is valid

𝐴 → ¬𝐵 ∧ 𝐶 → 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ 𝐸 → 𝐹 ∧ ¬𝐷

Verifying validity

𝐴 → ¬𝐵
𝐶 → 𝐵
A
C  ∨ D
E → F 
______
∴ 𝐷

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

1. If this house is next to a lake, then a treasure is not in the kitchen
2. If the tree in the front yard is an elm, then the treasure is in the kitchen
3. This house is next to a lake
4. The tree in the front yard is an elm, or the treasure is under the flagpole
5. If the tree in the back yard is an oak, then the treasure is in the garage. 

1. ¬𝐴 ∨ ¬𝐵
2. ¬𝐶 ∨ 𝐵
3. A
4. C  ∨ D
5. ¬𝐸 ∨ F
6. ¬𝐷

Argument
Premises and negated 

conclusion in CNF

¬𝐴 ∨ ¬𝐵 ∧ ¬𝐶 ∨ 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ ¬𝐸 ∨ 𝐹 ∧ ¬𝐷

Contradiction iff argument is valid

𝐴 → ¬𝐵 ∧ 𝐶 → 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ 𝐸 → 𝐹 ∧ ¬𝐷

Contradiction iff argument is valid (in CNF)
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Verifying validity

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

1. If this house is next to a lake, then a treasure is not in the kitchen
2. If the tree in the front yard is an elm, then the treasure is in the kitchen
3. This house is next to a lake
4. The tree in the front yard is an elm, or the treasure is under the flagpole
5. If the tree in the back yard is an oak, then the treasure is in the garage. 

¬𝐴 ∨ ¬𝐵 ∧ ¬𝐶 ∨ 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ ¬𝐸 ∨ 𝐹 ∧ ¬𝐷

Verifying validity

• A: this house is next to a lake. 
• B: the treasure is in the kitchen 
• C: The tree in front is elm
• D: the treasure is under the flagpole.
• E: The tree in the back is oak
• F: The treasure is in the garage

1. If this house is next to a lake, then a treasure is not in the kitchen
2. If the tree in the front yard is an elm, then the treasure is in the kitchen
3. This house is next to a lake
4. The tree in the front yard is an elm, or the treasure is under the flagpole
5. If the tree in the back yard is an oak, then the treasure is in the garage. 

¬𝐴 ∨ ¬𝐵 ∧ ¬𝐶 ∨ 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ ¬𝐸 ∨ 𝐹 ∧ ¬𝐷

(¬𝐴 ∨ ¬𝐶)

(¬𝐶)

(𝐶)

𝐹𝐴𝐿𝑆𝐸

Deriving conclusions using resolution
• How do we actually derive a 

conclusion using resolution?
– Like finding the treasure.  

• Suppose the conclusion is just one 
clause or a literal 
– otherwise derive each clause of the 

CNF equivalent to the conclusion 
separately 

• Take premises converted to CNF, 
and keep applying resolution rule 
until get a conclusion clause
– Such as a clause containing a single 

variable stating  “the treasure is here” 

¬𝐴 ∨ ¬𝐵 ∧ ¬𝐶 ∨ 𝐵 ∧ 𝐴 ∧ 𝐶 ∨ 𝐷 ∧ ¬𝐸 ∨ 𝐹

(¬𝐴 ∨ ¬𝐶)

(¬𝐶)

(𝑫)

Note that in this case there is no way to get FALSE: 
The premises by themselves are not inconsistent!

We can derive some more clauses:  (¬𝐵), 𝐵 ∨ 𝐷 , 
¬𝐴 ∨ 𝐷 , and then we have to stop.  

Stereotypes puzzle

• Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a 
student she was deeply concerned with issues of discrimination and social justice and also 
participated in anti-pipeline demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most 
likely.  Susan is: 

1. a kindergarden teacher
2. works in a bookstore and takes yoga classes
3. an active feminist
4. a psychiatric social worker
5. a member of an outdoors club
6. a bank teller
7. an insurance salesperson
8. a bank teller and an active feminist
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