
2020-12-16

1

Unit 10
Logic and algorithms

Probabilistic method

• Idea: if a probability of an event is strictly greater than 0, this event
can happen.
– So to show that there is a scenario where it happens, show that its

probability is > 0.
– Non-constructive existence proof.

• Example:
– Expected number of heads when flipping 3 fair coins is 1.5
– So there is a way to flip 3 coins to get ≥1.5 heads
– The number of heads is an integer.
– Therefore, there is a way to flip 3 coins to get at least 2 heads.

• Tells us nothing about what this outcome might look like.

Team selection puzzle
• Imagine that your friend is a project manager, and her

team consist of great programmers – if only she could
get them to stop fighting among each other!
– She decides to split them in two smaller teams

• To minimize fighting within each team.
– She knows who fights with whom (the “CONFLICT

relation”), but how can she do the splitting?
• And is it possible at all to eliminate at least half

the conflicts? If not, why bother…

• Do you think it is possible to split any group
into two teams
– to eliminate all conflicts?
– How about eliminating half the conflicts?
– How would you do the splitting?

• Suppose this is the graph of the
CONFLICT relation for a group.

– Here, lines are double-direction
arrows, since CONFLICT is symmetric.

– What do you think is the best split?

Al

Beth

Cora

Eli Dan

Team selection puzzle

Do you think it is possible to split any group
into two teams

– to eliminate all conflicts?

– How about eliminating half the conflicts?

– How would you do the splitting?

• Look at the graph of the CONFLICT relation.

– Assume that CONFLICT is symmetric and anti-
reflexive, and let’s draw a single line for each
double-direction arrow, to keep it less messy
• This kind of drawing is called an undirected graph

• Suppose this is the graph of the
CONFLICT relation for a group.

Al

Beth

Cora

Eli Dan

Team selection puzzle

Do you think it is possible to split any group
into two teams

– to eliminate all conflicts?

– What if we only have Al, Beth and Cora?

– Counterexample! No way to split 

• Graph of the CONFLICT relation

– Symmetric and anti-reflexive

– Drawn as an undirected graph

Al

Beth

Cora

Eli Dan

Al

Beth

Cora

Team selection puzzle

Do you think it is possible to split any group

into two teams

– How about eliminating half the conflicts?

In terms of the CONFLICT graph:

– Is there a way to split vertices into two groups so
that at least half of the edges go between groups?

• Graph of the CONFLICT relation

– Symmetric and anti-reflexive

– Drawn as an undirected graph

Al

Beth

Cora

Eli Dan

1 2

3 4

5 6

2020-12-16

2

Team selection puzzle

• Is there a way to split vertices into two
groups so that at least half of the edges go
between groups?

– Suppose that the probability of every person to
be on Team Orange vs. Team Green is ½.

– Then the probability for each edge (conflict) to be
between people assigned to different teams is: ½

– Expected number of edges to go between
different colours: ½ ⋅ total number of edges.

– Therefore, there exists a way to split any group
into two teams so that at least half of the conflicts
are between people on different teams!

• Graph of the CONFLICT relation

– Symmetric and anti-reflexive

– Drawn as an undirected graph

Al

Beth

Cora

Eli Dan

Team selection puzzle
• There exists a way to split any group into two

teams so that at least half of the conflicts are
between people on different teams

• But how would we do this split?
– Let’s do something random!
– Just assign each person to team Green or team Orange

at random with probability ½

• So this proof not only tells us that such a split
exists, but also gives a (randomized) algorithm
that finds it.
– Can prove that it finds it with decent probability
– Can be even made deterministic (that is, it is possible to make

the choices without randomness).

• Graph of the CONFLICT relation

– Symmetric and anti-reflexive

– Drawn as an undirected graph

Al

Beth

Cora

Eli Dan

Team selection puzzle
• This algorithm finds a split with at least half of

the edges

– But not necessarily the split across maximum
possible number of conflicts.

• Is there a similarly fast algorithm to find the
best split?

– If such an algorithm exists, then P=NP,

– And can check if a formula is a tautology just as fast!

Al

Beth

Cora

Eli Dan

How else does it all relate to programming?

• You will be using logic to describe what a program should be doing

• and proofs, in particular induction to show that it does that correctly
– And occasionally to get algorithms

• Sets, relations and especially graphs to model problems and optimize performance.

• Recurrence relations to give a guarantee on long it takes in the worst case.
– With O-notation to talk about the time.
– And combinatorics to calculate possible options.

• and probabilities/expectation to estimate how long it might take on average.
– And what is a probability of success of a randomized algorithm

Example: search in an array

• Given:
– an array A containing n elements,

– and a specific item x

• Goal: find the index of x in A, if x is in A.
– Which box contains ? Box 4.

0 1 2 3 4 5 n-1

7 8

9 10

11 12

2020-12-16

3

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x

Algorithm arraySearch(A, x)

Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do

if A[i] = x then

out = i

i = i+1

return out

0 1 2 3 4 5 n-1

The good news about computers
is that they do what you tell
them to do. The bad news is that
they do what you tell them to do.

Ted Nelson

Logic: specifications

• Precondition: what should be true before a piece of code (or the
whole algorithm) starts
– E.g.: A is an array of numbers and A is not empty and x is a number.

• Postcondition: what should be true after a program (piece of code)
finished.
– E.g. If the program returned value k, then A[k]=x

• or k=-1, if x is not in A.

0 1 2 3 4 5 n-1

Correctness of algorithms

• Prove that if the program starts with precondition being true, it
ends with postcondition being true
– If x is in the array, then the program should return its index.

• If there is a loop, prove its correctness by induction
– Called loop invariant

• If the program is recursive, prove its correctness by strong
induction
– If all recursive calls return correct answers, the program returns a

correct answer.

• Precondition: A is an array containing x: ∃𝑖 𝐴 𝑖 = 𝑥

• Postcondition: Returned k such that A[k]=x: 𝐴 𝑘 = 𝑥

Algorithm arraySearch(A, x)

Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do

if A[i] = x then

out = i

i = i+1

return out

0 1 2 3 4 5 n-1 • A = [5,10,8,7]

• x = 8

• out = 2

Algorithm arraySearch(A, x)

Input array A of n integers, number x
Output k such that A[k]=x

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥

i = 0
out = -1

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] = x then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

return out

Program returned k such that A[k]=x

13 14

15 16

17 18

2020-12-16

4

• Loop invariant: a condition that is true on each iteration of
the loop
– Implied by loop precondition
– Implies the loop postcondition
– Implies next loop iteration is correct

• I(k): 𝑖 = 𝑘 ∧ (𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Guard condition: condition in the while loop
– G= “out <0”

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] = x then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

Loop is correct when:
• precondition → I(0)
• for all k, G ∧ I k → I k + 1
• If k0 is the smallest number such that ¬𝐺,
• then ¬𝐺 ∧ 𝐼 𝑘0 → postcondition

Termination: proof that ∃ k0 such that
after k0 iterations G becomes false

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] = x then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

Proving the loop invariant by induction on i:
• Base case: I(0)

– ∃𝑖 ∈ 0… 𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1
Implies I(0)

– 𝑖 = 0 ∧ (𝑜𝑢𝑡 = 0 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Assume I(k): 𝑖 = 𝑘 ∧ (𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Show: if 𝐺, then I(k+1): 𝑖 = 𝑘 + 1 ∧ (𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))
• i=k+1 because of “i=i+1” statement
• If A[i]=x, then 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 holds
• Otherwise, (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥) holds.

– Otherwise, if ¬𝐺, postcondition holds:
• in this case, 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 should have been true in I(k), for i=k.
• So A[out]=x

Correctness of recursive programs
Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x, -1 if no such k

if A[0] = x then

return 0

else if n > 1 then

first = arraySearch(A[0..
𝒏

𝟐
−𝟏], 𝒙)

second = arraySearch(A[n/2, 𝒏 − 𝟏],𝒙)

if second > 0 then
return second+𝒏/𝟐

else
return first

else
return -1

arraySearch([9,3,5,8] ,5)

arraySearch([9,3] ,5) arraySearch([5,8] ,5)

arraySearch([9] ,5) arraySearch([5] ,5) arraySearch([8] ,5)arraySearch([3] ,5)

Use strong induction!
Assume both calls return correct value
Show that the program returns correct value

0-1-1 -1

-1 0

2

Running time: worst case

• Precondition: A is an array containing x

– Therefore, in the worst scenario need to
check all n boxes A[i]

– Running time: O(n)

• Ignoring how many steps exactly are inside of the
loop, as long as it is constant.

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do

if A[i] = x then

out = i

i = i+1
return out

0 1 2 3 4 5 n-1

Running time: average case

• Suppose there is just one x in A

• Probability of finding x in each step is
1

𝑛

• Let random variable X denote the number of loop
iterations till x is found

• E(X) = Σ𝑖=1
𝑛 𝑖 ∗ Pr 𝑋 = 𝑖 =

1

𝑛
Σ𝑖=1
𝑛 𝑖 = (𝑛 + 1)/2

• Expect to find x roughly in the middle of A
• Running time O(n)

0 1 2 3 4 5 n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do

if A[i] = x then

out = i

i = i+1
return out

19 20

21 22

23 24

2020-12-16

5

More to come in other courses!

• You will see a lot of algorithm analysis and use of the concepts
we developed in COMP 2002 and beyond.

– Logic, sets, relations and graphs for specifications, modeling
problems and describing what you are doing.

– Logic, induction and models of computation for proving program
correctness and analysis of problem complexity.

– Recursive definitions of algorithms, counting and probability for
algorithm performance and problem solving.

• With the million dollar problem rearing its head every now and then

25 26

