

1

Team selection puzzle

- Imagine that your friend is a project manager, and her eam consist of great programmers - if only she could mit an in two shill
-She decides smaller teams
- To minimize fighting within each team.
- She knows who fights with whom (the "CONFLICT
relation"), but how can she do the splitting?
relation"), but how can she do the splitting?
- And is it possible at all to eliminate at least half
the conflicts? If not, why bother...
- Do you think it is possible to split any group into two teams
- to eliminate all conflicts?
- How about eliminating half the conflicts?
- How would you do the splitting?

Suppose this is the graph of the CONFLICT relation for a group. - Here, lines are double-direction arrows, since CONFLICT is symmetric.
 - What do you think is the best split?

3
4

5

Team selection puzzle

Do you think it is possible to split any group into two teams

- How about eliminating half the conflicts?

In terms of the CONFLICT graph

- Is there a way to split vertices into two groups so that at least half of the edges go between groups?

Graph of the CONFLICT relation - Symmetric and anti-reflexive

- Drawn as an undirected graph

6

Team selection puzzle

- Is there a way to split vertices into two groups so that at least half of the edges go between groups?
- Suppose that the probability of every person to be on Team Orange vs. Team Green is $1 / 2$.
- Then the probability for each edge (conflict) to be between people assigned to different teams is: $1 / 2$
- Expected number of edges to go between different colours: $1 / 2$ - total number of edges.
- Therefore, there exists a way to split any group into two teams so that at least half of the conflicts are between people on different teams!

7
Graph of the CONFLICT relation - Symmetric and anti-reflexive

- Drawn as an undirected graph

9

Team selection puzzle
 4

- There exists a way to split any group into two teams so that at least half of the conflicts are between people on different teams

Graph of the CONFLICT relation - Symmetric and anti-reflexive - Drawn as an undirected graph

- But how would we do this split?
- Let's do something random!
- Just assign each person to team Green or team Orange at random with probability $1 / 2$
- So this proof not only tells us that such a split exists, but also gives a (randomized) algorithm that finds it.

- Can prove that it finds it with decent probability
- Can be even made deterministic (that is, it is possible to make
the choices without randomness).

8

10

How else does it all relate to programming?

You will be using logic to describe what a program should be doing
and proofs, in particular induction to show that it does that correctly

- And occasionally to get algorithms

Sets, relations and especially graphs to model problems and optimize performance.
Recurrence relations to give a guarantee on long it takes in the worst case. With O-notation to talk about the time.

- And combinatorics to calculate possible options.
and probabilities/expectation to estimate how long it might take on average. - And what is a probability of success of a randomized algorithm

Example: search in an array

- Given:
- an array A containing n elements,
- and a specific item x ?
- Goal: find the index of x in A, if x is in A.
- Which box contains ${ }_{3}$? Box 4 .
- Precondition: A is an array containing x

Algorithm arraySearch (A, x)

Input array \boldsymbol{A} of \boldsymbol{n} integers, number x
Output k such that $A[k]=x$
$i=0$
out $=-1$
while out <0 do if $A[i]=x$ then out $=i$ $i=i+1$
return out

- Postcondition: Returned k such that $\mathrm{A}[\mathrm{k}]=\mathrm{x}$

Logic: specifications

- Precondition: what should be true before a piece of code (or the whole algorithm) starts
- E.g.: A is an array of numbers and A is not empty and x is a number.
- Postcondition: what should be true after a program (piece of code) finished.
- E.g. If the program returned value k, then $A[k]=x$
- or $\mathrm{k}=-1$, if x is not in A .

15

99
The good news about computers is that they do what you tell them to do. The bad news is that they do what you tell them to do.

Ted Nelson

Correctness of algorithms

- Prove that if the program starts with precondition being true, it ends with postcondition being true
- If x is in the array, then the program should return its index.
- If there is a loop, prove its correctness by induction - Called loop invariant
- If the program is recursive, prove its correctness by strong induction
- If all recursive calls return correct answers, the program returns a correct answer.

16

*

- Precondition: A is an array containing x: $\exists i A[i]=x$

[^0]```
Algorithm arraySearch(A,x)
 Input array }\boldsymbol{A}\mathrm{ of }\boldsymbol{n}\mathrm{ integers, number x
 Output k such that A[k]=x
\existsi\in{0\ldotsn-1} A[i]=x
i=0
i=0
\existsi\in{0\ldotsn-1} A[i]=x\wedgei=0^out = - 1
while out < 0 do
 if }A[i]=x\mathrm{ then
 c
 out] = x
return out
```

Program returned $k$ such that $\mathrm{A}[\mathrm{k}]=\mathrm{x}$

18

- Loop invariant: a condition that is true on each iteration of the loop
- Implied by loop precondition
- Implies the loop postcondition
- Implies next loop iteration is correct
- $\mathrm{I}(\mathrm{k}): i=k \wedge(($ out $=i \wedge A[$ out $]=x) \vee(\exists j>i A[j]=x))$
- Guard condition: condition in the while loop - G= "out <0"

Loop is correct when:
Termination: proof that $\exists \mathrm{k}_{0}$ such that after $\mathrm{k}_{0}$ iterations G becomes false

- for all $\mathrm{k}, \mathrm{G} \wedge \mathrm{I}(\mathrm{k}) \rightarrow \mathrm{I}(\mathrm{k}+1)$
- If $\mathrm{k}_{0}$ is the smallest number such that $\neg G$,
- then $\neg G \wedge I\left(k_{0}\right) \rightarrow$ postcondition

19

Proving the loop invariant by induction on i :

- Base case: I(0)

$$
\begin{aligned}
& -\exists i \in\{0 \ldots n-1\} A[i]=x \wedge i=0 \wedge \text { out }=-1 \\
& \quad \text { Implies } 1(0) \\
& -i=0 \wedge((\text { out }=0 \wedge A[\text { out }]=x) \vee(\exists j>i A[j]=x))
\end{aligned}
$$

```
Mhile out< < do
 i=i+I
A[out] = x
\(4[\) out \(]=x\)
```

- Assume I(k): $i=k \wedge((o u t=i \wedge A[$ out $]=x) \vee(\exists j>i A[j]=x))$
- Show: if $G$, then $\mathrm{I}(\mathrm{k}+1): i=k+1 \wedge(($ out $=i \wedge A[$ out $]=x) \vee(\exists j>i A[j]=x))$
- $i=k+1$ because of " $i=i+1$ " statement

If $\mathrm{A}[\mathrm{i}]=\mathrm{x}$, then (out $=i \wedge A[$ out $]=x$ ) holds

- Otherwise, $(\exists j>i \quad A[j]=x)$ holds.
- Otherwise, if $\neg G$, postcondition holds:
- in this case, (out $=i \wedge A[o u t]=x$ ) should have been true in $\mathrm{l}(\mathrm{k})$, for $\mathrm{i}=\mathrm{k}$.
- So A[out]=x

20


21


22

## Running time: worst case

- Precondition: A is an array containing x
- Therefore, in the worst scenario need to check all $n$ boxes A[i]
- Running time: $O(n)$
- Ignoring how many steps exactly are inside of the loop, as long as it is constant.


Algorithm array Search $(A, x)$
Input array $A$ of $n$ inte
Agorinm arraysearch $(A, x)$
Input array $A$ of $n$ integers, number $x$
Output $k$ s. Output k such that $A[k]=$
$i=0$
out $=-1$
out $=-1$
while out $<\theta$ do
if $A[i]=x$ then
out $=i$ ${ }_{i=i+1}^{\text {out }}$

- Suppose there is just one $x$ in $A$
- Probability of finding $x$ in each step is $\frac{1}{n}$
- Let random variable X denote the number of loop iterations till $x$ is found
- $E(X)=\sum_{i=1}^{n} i * \operatorname{Pr}(X=i)=\frac{1}{n} \sum_{i=1}^{n} i=(n+1) / 2$
- Expect to find $x$ roughly in the middle of $A$
- Running time $O(n)$


25


[^0]:    Algorithm arraySearch(A, $x$ )
    Input array $\boldsymbol{A}$ of $\boldsymbol{n}$ integers, number x
    Output k such that $\mathrm{A}[\mathrm{k}]=\mathrm{x}$
    $i=0$
    out $=-1$
    while out $<0$ do
    if $A[i]=x$ then
    out $=i$
    $i=i+1$
    return out

    - Postcondition: Returned k such that $\mathrm{A}[\mathrm{k}]=\mathrm{x}: A[k]=x$

