

Do we ourselves think logically?

Language of logic: connectives City . Pronunciation Notation Meaning Opposite of A is true, $\neg A$ is true Not A ¬ A when A is false (negation) A and B ΑΛΒ True if both A and B are true (conjunction) True if either A or B are true A or B ΑVΒ (disjunction) (or both) If A then B True whenever if A is true, then B is $A \rightarrow B$ (implication) also true

21

Language of logic: connectives				
Pronunciation	Notation	Meaning		
Not A (negation)	¬ A	Opposite of A is true, $\neg A$ is true when A is false		
A and B (conjunction)	АЛВ	True if both A and B are true		
A or B (disjunction)	AVB	True if either A or B are true (or both)		
If A then B (implication)	$A \to B$	True whenever if A is true, then B is also true		
 A: "It is sunny" :: B: "it is cold" [¬ A: It is not sunny A ∧ B: It is sunny and cold A ∨ B: It is sunny or cold A → B: If it is sunny, then it is cold 		

Twins Puzzle

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

33

Twins puzzle

- · Let us look at how different questions get answered in all possible scenarios.
- You could be talking to Jim (or not), and Jim could be the liar (or not) - Gives us 4 possible scenarios.

This is Jim	Jim is a liar	Question	
Yes	Yes	Answer	
Yes	No	Answer	
No	Yes	Answer	
No	No	Answer	

34

Twins puzzle

- Suppose you ask directly "Are you Jim?"
 - In this case both Jim and Dave can say "yes" and can say "no".
 - So you cannot find out who you are talking to, but you do learn something:
 - If the answer is "Yes", then Dave is the liar

This is Jim	Jim is a liar	Are you Jim?
Yes	Yes	No
Yes	No	Yes
No	Yes	No
No	No	Yes

Twins puzzle					
 Suppose you ask "Is 2+2=4?" 					
 Again both Jim and Dave can say "yes" and can say "no", so you cannot find out who you are talking to But again you do learn something: if the answer is "No", then you are talking to the liar 					
This is Jim	Jim is a liar	Is 2+2=4?			
Yes	Yes	No			
Yes	No	Yes			
No	Yes	Yes			

No

No

No

No

Twins puzzle

- How about asking "Is Dave a liar?"
 - Now, you can see from the table that Jim would have to say "yes" no matter if he is a liar or not. And Dave would always say "No".
 - So if the answer is "Yes", you are talking to Jim, and if "No", to Dave.

This is Jim	Jim is a liar	Is Dave a liar?
Yes	Yes	Yes
Yes	No	Yes
No	Yes	No
No	No	No

37

Twins puzzle 🔗				
 So "Is Dave a liar?" lets you determine who you are talking to. But 				
this time you only learn the name, not who is the liar.				
 This is unavoidable: you need two questions to single out each specific scenario out of 4. 				
 If you are allowed to ask any two questions we looked at, you would know both who is the liar and who you are talking to. 				
This is Jim	Jim is a liar	Are you Jim?	Is 2+2=4?	Is Dave a liar?
This is Jim Yes	Jim is a liar Yes	Are you Jim? No	ls 2+2=4? No	Is Dave a liar? Yes
This is Jim Yes Yes	Jim is a liar Yes No	Are you Jim? No Yes	Is 2+2=4? No Yes	Is Dave a liar? Yes Yes
This is Jim Yes Yes No	Jim is a liar Yes No Yes	Are you Jim? No Yes No	Is 2+2=4? No Yes Yes	Is Dave a liar? Yes No

Į.	Knig	hts and knave	es 🧕	
• Arnold says "Either I am a knave, or Bob is a knight". - A: True when Arnold is a knight, false when Arnold is a knave - B: True when Bob is a knight, false when Bob is a knave. - Arnold said: $\neg A \lor B$: "Either Arnold is a knave, or Bob is a knight" - By rules of what it means to be a knight or a knave • $(\neg A \lor B) \leftrightarrow A$ must be true - Let's try to see when this happens.				
A B				
True Tru	e		7 B	
True Fal	se		A	
False Tru	e			
False Fal	se			

92

Constructing a formula from a truth table

- For every formula (or circuit) there is a truth table.
- But also from every truth table we can construct a formula

 and every formula can be directly converted into a circuit.
- So for every Boolean function we can construct a formula which is true exactly in the scenarios when this function is supposed to output 1.
- Moreover, we can construct formulas of a special form:

 If we use only the second trick to represent them (multi-input V,A)
 Then the resulting generalized syntax trees have at most four layers

- To write a formula encoding the whole Boolean function *f*, write a formula encoding every assignment that makes *f* output 1.
 - Say f(1,0,0) = 1, f(1,0,1) = 1, and for any other input f(x, y, z) = 0
- Then the corresponding assignments are $A \land \neg B \land \neg C$ and $A \land \neg B \land C$
- And finally take an OR of these formulas.
 - So the resulting formula would say "Either the formula is true because we are in the first scenario where *f* outputs 1, or the second, etc..." – $(A \land \neg B \land \neg C) \lor (A \land \neg B \land C)$

 $\mathbf{r} = \mathbf{v} = f(\mathbf{x}, \mathbf{y})$

