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Unit 1
Intro to propositional logic

Logic is Everywhere!

• In the computer systems that reason 
and make decisions

• In the hardware circuits on which 
these systems are in built

• In the specifications describing 
precisely what these systems should 
and should not do 

• In proofs that they are secure
• In the communication protocols                                  

on which Internet runs…  

2

Do we ourselves think logically?
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Do We Think Logically?
Let’s try to solve this card puzzle 

You see the following cards. Each has a letter on one side and a number on the other. 

Which cards do you have to turn to check that for the cards in front 
of you if a card has a J on it then it has a 5 on the other side? 
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Card puzzle

Which cards do we have to flip to verify this: 
- If a card has a J then it has a 5 on the other side 

We do need to turn the card with J,  since if there is no 5 on the other side, 
then “if J then 5 on the other side” would be false. 
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Card puzzle

Suppose we turn the card with 5 on it and find a C. This does not tell us 
anything about cards with J having 5 on the other side. 
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Which cards do we have to flip to verify this: 
- If a card has a J then it has a 5 on the other side 

Card puzzle

Suppose we turn a card with 2 on it, and see an J.   

Then we got a card with a J, but without 5! 

So “If a card has a J then it has to have a 5”  would not be true.
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Which cards do we have to flip to verify this: 
- If a card has a J then it has a 5 on the other side 

Card puzzle

- All cards where J is visible

- And all cards with numbers other than 5 visible.
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Which cards do we need to flip to verify this: 
- If a card has a J then it has a 5 on the other side 

“If … Then” in Logic
The sentence in this puzzle has a logical structure: 

“if A then B”    

What circumstances make this true? 

A is true and B is true

A is true and B is false

A is false and B is true

A is false and B is false
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If A then B

• Sometimes people  think that “if ... then” goes both ways...

– But usually it doesn’t!

• If you live in NL, you must pay HST tax.  

– John  lives in BC. 

– Does John pay HST? 

• A politician says: “ If I am elected I will build a regional transit system”

– When  would you say that she did not deliver on her promise? 

– Would you hold her accountable if she is not elected? 
12
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Why not just use English?

• Natural languages are ambiguous.  

• For example, the word “any” can have different 
meanings depending on the context:

• Any = some
– Can I solve  any puzzle? 

– Can I solve some (even one) puzzle? 

• Any = all 
– Any student knows this. 

– Every student knows this.

14

• Any student can get an A
• Would any student get  an A?

What is Logic?

• Very informally, a logic system has the following parts: 
–A language (syntax): what symbols are allowed, and how 

to combine them into correctly built statements

–The meaning (semantics):  what are possible values of 
symbols (here, true and false), and how they combine to 
give values to statements. 

–The reasoning (rules of inference):  rules for deriving new 
statements: constructing arguments and proofs 

Logic is ancient! 

• Already known in Babylon, 11 century BC

– Esagil-kin-apli’s “Sakikkū” (“Symptoms”) 

• Several schools of logic in India in 6th – 5th century BC

• Mohism in China 

– And then politics interfered… 

• Aristotle, etc in ancient Greece

– This is considered the origin of western formal logic. 

Soon after humans started to make sense of the world,  
they started inventing the rules of logic.

Shapes and colours puzzle 

• I like one of the shapes.
•

• I like one of the colours.

• I like a figure if it has my favourite shape or my favourite colour.   

• I like           .  What can you say about the rest?  
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Language of logic: propositions

• Proposition: A sentence stating a fact that can be true or false.
– “Ice is colder than water”

– “MUN is a university” 

– “2+2=7”  

– But not “Hi!” or “what is x?” or “Open this book!”  

When we say “proposition”, we usually mean a sentence stating a single fact, 
rather than a “compound proposition” such as “Sky is blue and snow is white”.

For the first two weeks, we will study the logic which operates with 
propositions and their combinations:  propositional logic. 

Propositional variables

• Propositional variables: 
– A, B, C ( or p, q, r)

– Variables that stand for propositions, and  evaluate to TRUE or FALSE 
depending whether the corresponding proposition is true or false. 

Similar to arithmetic variables:

– If you weight 𝑥 kg on Earth, then you weight 𝑥/6 kg on the Moon.  
• Here, the arithmetic variable 𝑥 stands for your weight on Earth in kg.  

• If you weight 60kg, then the value of  𝑥 is 60

• In this case,  arithmetic expression 𝑥/6 evaluates to 10: 
– you weight 10kg on the Moon.

Language of logic: connectives

Pronunciation Notation Meaning

Not A 
(negation) 

¬ A Opposite of A is true, ¬A  is true 
when A is false  

A  and B 
(conjunction)

A  ∧ B  True if both A and B are true

A or B 
(disjunction)

A  ∨ B True if either A or B are true 
(or both)

If A then B 
(implication) 

A  → B True whenever if A is true, then B is
also true

Language of logic: connectives

• A:  “It is sunny” 

• B:  “it is cold”

Pronunciation Notation Meaning

Not A (negation) ¬ A Opposite of A is true, ¬A  is true when A is false  

A  and B (conjunction) A  ∧ B  True if both A and B are true

A or B (disjunction) A  ∨ B True if either A or B are true (or both)

If A then B (implication) A  → B True whenever if A is true, then B is also true

▪ ¬ A:     It is not sunny 

▪ A ∧ B:  It is sunny and cold

▪ A ∨ B:  It is sunny or cold

▪ A → B: If it is sunny, then it is cold

Building logic formulas

• In arithmetic you build formulas out of numbers, variables and operations 

▪ 𝑥 + 3 ∗ 𝑧

• In logic we build formulas out of propositions, TRUE, FALSE and connectives.

▪ The simplest formulas are propositions, propositional variables, TRUE and FALSE:  

“sky is blue”, 𝐴, 𝐵, 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸 …

▪ If 𝐴 and 𝐵 are logic formulas, then so are 

¬𝐴 𝐴 ∧ 𝐵 𝐴 ∨ 𝐵 𝐴 → 𝐵

Connective Notation

A  and B A  ∧ B

A or B A  ∨ B

If A then B A  → B 

Not A ¬A 

Translating logic formulas

• Let  A be “It is sunny” ,  B be “it is cold”,  C  be “It’s snowing”

▪ (𝐵 ∧ 𝐶) → (¬𝐴)
▪ If it is cold and snowing, then it is not sunny

▪ 𝐵 → 𝐶 ∨ 𝐴
▪ If it is cold, then it is  snowing or sunny

▪ ((¬𝐴) ∧ 𝐴) → 𝐶
▪ If it is not sunny, and also sunny, then it is snowing. 

Connective Notation

A  and B A  ∧ B

A or B A  ∨ B

If A then B A  → B 

Not A ¬A 

THENANDIF ( ) NOT

THEN ORIF ( )

THENANDIF ( )NOT

19 20

21 22

23 24
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We now know how to 
write logic sentences

But what do they 
actually mean? 

• A sentence can be true or false when the values of all its 
propositions are known.
– To know whether it is sunny and cold outside, need to know both 

whether it is sunny, and whether it is cold. 

• Truth assignment:  setting all propositional variables to either 
true or false. 
– Is it sunny? – Yes!              A=true 
– Is it cold? – No! ,                B=false
– Is it snowing? – Yes!          C= true
– Truth assignment:   A=true         ,  B=false , C= true

The truth

• Satisfying assignment for a sentence:  assignment to 
propositions that makes this sentence true. 
– Otherwise, falsifying assignment.

–Truth assignment A=true, B=true   satisfies A ∧ B  
• Is it both sunny and cold? – Yes! 

–Truth assignment A=true, B=false   falsifies A ∧ B
• Is it both sunny and cold? – No! 

The truth

• Truth assignment A=true, B=false   falsifies A ∧ B
– Is it both sunny and cold? – No! Because it is not cold. 
–The only way to satisfy 𝐴 ∧ 𝐵 is for both A and B to be 

true.  

• But A=true, B=false  satisfies 𝐴 ∨ 𝐵
– Is it either sunny or cold? – Yes! Because it is sunny. 
–The only way to falsify 𝐴 ∨ 𝐵 is for both 𝐴 and 𝐵 to be 

false.

Truth value of a sentence

• Note: the “or”  we use in  logic, ∨, is not 
exclusive. 
–A=true, B=true assignment satisfies 𝐴 ∨ 𝐵

–Is it cold or snowing outside (and so I need a 
jacket)? 
•Yes, it is actually both cold and snowing outside, 

so you definitely need a jacket! 

Truth of  “or”

25 26
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When is “if ... then” true? 

• Recall the cards puzzle:  If there is J on one side, then there is 5 on the other

“if A then B”    

• What circumstances (truth assignments) make this true? 

– A is true and B is true

– A is true and B is false

– A is false and B is true

– A is false and B is false

J 5

J 5
J 2

K 5
K 2

Falsifying

Satisfying

Satisfying

Satisfying

Twins Puzzle

• There are two identical twin 
brothers, Dave and Jim. 

• One of them always lies; another 
always tells the truth. 

• Suppose you see one of them and 
you want to find out his name. 

• How can you learn if you met Dave 
or Jim by asking just one short yes-
no question? You don’t know which 
one of them is the liar. 

33

Twins puzzle

• Let us look at how different questions get answered in all possible 
scenarios. 

• You could be talking to Jim (or not), and Jim could be the liar (or not)

– Gives us 4 possible scenarios. 

This is Jim Jim is a liar Question

Yes Yes Answer

Yes No Answer

No Yes Answer

No No Answer

Twins puzzle

• Suppose you ask directly “Are you Jim?” 

– In this case both Jim and Dave can say “yes” and can say “no”.

– So you cannot find out who you are talking to,  but you do learn something:

– If the answer is “Yes”, then Dave is the liar

This is Jim Jim is a liar Are you Jim?

Yes Yes No

Yes No Yes

No Yes No

No No Yes

Twins puzzle

• Suppose you ask “Is 2+2=4?” 

– Again both Jim and Dave can say “yes” and can say “no”, so you cannot find 
out who you are talking to

– But again you do learn something:  if the answer is “No”, then you are talking 
to the liar

This is Jim Jim is a liar Is 2+2=4?

Yes Yes No

Yes No Yes

No Yes Yes

No No No

31 32

33 34

35 36
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Twins puzzle

• How about asking “Is Dave a liar?”  

– Now, you can see from the table that Jim would have to say “yes” no matter 
if he is a liar or not. And Dave would always say “No”.  

– So if the answer is “Yes”, you are talking to Jim, and if “No”, to Dave. 

This is Jim Jim is a liar Is Dave a liar?

Yes Yes Yes

Yes No Yes

No Yes No

No No No

Twins puzzle

• So “Is Dave a liar?” lets you determine who you are talking to.  But 
this time you only learn the name, not who is the liar.  

– This is unavoidable: you need two questions to single out each specific 
scenario out of 4. 

– If you are allowed to ask any two questions we looked at, you would know 
both who is the liar and who you are talking to. 

This is Jim Jim is a liar Are you Jim? Is 2+2=4? Is Dave a liar?

Yes Yes No No Yes

Yes No Yes Yes Yes

No Yes No Yes No

No No Yes No No

Truth tables

• Write down truth value for every possible scenario (assignment)

– All combinations of true/false values of propositions: one per table line

– Every new variable doubles table size. 

• With 2 variables, have 4 lines. With 3 variables, 8, etc. 

A B not A
¬𝑨

A and B 
𝑨 ∧ 𝑩

A or B 
𝑨 ∨ 𝑩

if A then B 
𝑨 → 𝑩

True True False True True True

True False False False True False

False True True False True True

False False True False False True

• Let 

• A be “It’s sunny”

• B be “it’s cold”

• When it is true that it’s sunny and true that it’s cold, it is true that it’s sunny or cold.

• When A is true,  B is true, then  𝐴 ∨ 𝐵 is true 

• When it’s sunny is true, but it’s cold is false, then “it is both sunny and cold” is false. 

• When A is true, B is false, then 𝐴 ∧ 𝐵 is false. 

A B not A
¬𝑨

A and B 
𝑨 ∧ 𝑩

A or B 
𝑨 ∨ 𝑩

if A then B 
𝑨 → 𝑩

True True False True True True

True False False False True False

False True True False True True

False False True False False True

Knights and knaves

• On a mystical island, there are two 
kinds of people: knights and 
knaves. 

• Knights always                                           
_                         tell the truth.  

• Knaves always lie.
Raymond Smullyan

37 38

39 40

41 42



2020-12-01

8

• On a mystical island, there are two kinds of people: knights and knaves.  
Knights always tell the truth.  Knaves always lie.

Knights and knaves

• Puzzle 1:  

–You meet two people on the island, Arnold and Bob. 

–Arnold says “I am a knave, or Bob is a knight”.  

– Is Arnold a knight or a knave? 

–What about Bob? Is Bob a knight or a knave?

Evaluating longer formulas

• We now know how to determine 
when ¬𝐴, 𝐴 ∨ 𝐵, 𝐴 ∧ 𝐵, and 𝐴 →
𝐵 are true
– As long as we know what are the 

truth values of 𝐴 and 𝐵

• What if we have a longer formula? 

𝐴 ∧ ¬ 𝐵 ∨ ¬(𝐶 → 𝐴) → 𝐴

Pronunciation Notation True when

Not A ¬ A Opposite of A is true

A  and B A  ∧ B Both A and B are true

A or B A  ∨ B Either A or B  is  true (or both)

If A then B A  → B if A is true, then B is also true; 
Also true when  A is false, for any B. 

In what order should we 
apply the connectives? 

Order of precedence

• Remember arithmetic: PEMDAS/BODMAS… 
– 6 +  -5  *  7 + 8  = (6+ ((-5)* x)) + 8 

• First negate 5, then multiply -5 and x, then add this to 6, add result to 8. 
• Order:  parentheses, unary -, then *, then +. 

• In logic formulas 
1. Parentheses as in arithmetic formulas     
2. Then negation (¬) : like unary minus
3. then AND (∧): like  times (*)
4. then OR (∨): like plus (+)
5. Only then "if … then" (→)
6. When several of the same, go from left to right 

• except →, which is right to left

Pronunciation Notation True when

Not A ¬ A Opposite of A is true

A  and B A  ∧ B Both A and B are true

A or B A  ∨ B Either A or B  is  true (or both)

If A then B A  → B if A is true, then B is also true; 
Also true when  A is false, for any B. 

Order of precedence

𝐴 ∧ ¬ 𝐵 ∨ ¬ 𝐶 → 𝐴 → 𝐴

𝐴 ∧ ¬ 𝐵 ∨ ¬(𝐶 → 𝐴) → 𝐴

– Get the second formula by 

fully parenthesizing first 

• Make sure to keep track of  parentheses and order of operations!!! 
– 𝐴 ∨ 𝐵 ∧ 𝐶 is not the same as 𝐴 ∨ 𝐵 ∧ 𝐶

• Just like   2 + 3 ∗ 4 ≠ 2 + 3 ∗ 4

– When A is true, but both B and C are false,  
• 𝐴 ∨ (𝐵 ∧ 𝐶) is true, 

• but (𝐴 ∨ 𝐵) ∧ 𝐶 is false. 

Pronunciation Notation True when

Not A ¬ A Opposite of A is true

A  and B A  ∧ B Both A and B are true

A or B A  ∨ B Either A or B  is  true (or both)

If A then B A  → B if A is true, then B is also true; 
Also true when  A is false, for any B. 

43 44

45 46

47 48
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Better way: syntax trees

• Syntax tree:  visualize a formula
– The last operation on top

– The numbers/variables at the bottom.

– Branch points (nodes) marked by operations. 

To compute a value at a node

– compute all values below it

– then apply the operation marking the node.

When computed the value at the top, done

2+3*4 is a sum of two formulas
• 2 and 3*4 
• 3*4 is a product of two formulas 

• 3 and 4. 

Better way: syntax trees

2+3*4 is a sum of two formulas
• 2 and 3*4 
• 3*4 is a product of two formulas 

• 3 and 4. 

+

∗2 
4 3 

• Syntax tree:  visualize a formula
– The last operation on top

– The numbers/variables at the bottom.

– Branch points (nodes) marked by operations. 

To compute a value at a node

– compute all values below it

– then apply the operation marking the node.

When computed the value at the top, done

Better way: syntax trees

(2 + 3) * 4

(2+3)*4 is a product of 
• 2+3 and 4 
• 2+3 is a  sum of  

• 2 and 3. 

∗

+ 4 
3 2 

2 + 3 * 4 = 2 + (3 * 4) 

2+3*4 is a sum of 
• 2 and 3*4 
• 3*4 is a product of

• 3 and 4. 

+

∗2 
4 3 

2 * 3 + 4  = (2 * 3) + 4

2*3+4 is a sum of 
• 2*3 and 4 
• 2*3 is a product of  

• 2 and 3. 

+

∗ 4 
3 2 

Evaluating formulas with syntax trees

(2 + 3) * 4

∗

+ 4 
3 2 

2 + 3 * 4 = 2 + (3 * 4) 

+

∗2 
4 3 

12

2014

5

2 * 3 + 4  = (2 * 3) + 4

+

∗ 4 
3 2 

10

6

• To compute a value at a node,  compute all values below it, 
• then apply the operation marking the node.

• When reached the top, done. 

Building syntax trees 

• Find the last operation to do
– Such as  the rightmost + 

• outside of parentheses 

• If no + outside, rightmost outside * 

• Split the formula into left and 
right of that operation. 
– Build syntax trees for left and right 

formulas separately. 

– Connect the last operation (top) to 
syntax trees for left and right 
formulas. 

• 6 +  -5  *  x + 8

Building syntax trees 

• Find the last operation to do
– Such as  the rightmost + 

• outside of parentheses 

• If no + outside, rightmost outside * 

• Split the formula into left and 
right of that operation. 
– Build syntax trees for left and right 

formulas separately. 

– Connect the last operation (top) to 
syntax trees for left and right 
formulas. 

• 6 +  -5  *  x + 8  = (6+ ((-5)* x)) + 8 

+

∗

x 

5 

6 

+

−

8 

49 50

51 52

53 54
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Building syntax trees 

• Find the last operation to do

– Such as  the rightmost + 

• outside of parentheses 

• If no + outside, rightmost outside * 

• Split the formula into left and right 
of that operation. 

– Build syntax trees for left and right 
formulas separately. 

• A single variable or constant is the 
smallest tree that cannot be split further

– Connect the last operation (top) to 
syntax trees for left and right formulas. 

• 4* 6 +  (-5  + x) * 8

Building syntax trees 

• Find the last operation to do

– Such as  the rightmost + 

• outside of parentheses 

• If no + outside, rightmost outside * 

• Split the formula into left and right 
of that operation. 

– Build syntax trees for left and right 
formulas separately. 

– Connect the last operation (top) to 
syntax trees for left and right formulas. • 4* 6 +(-5  + x) * 8= (4*6)+ (( (-5)+ x)* 8) 

∗

64 

+

+

x 

5 

8 

−

∗

Syntax trees for logic formulas

• Precedence: 
– ¬ first, then ∧, then ∨,→ last 
– ¬ is like a unary minus, ∧ like * and ∨ like +

• Syntax tree: 
– The last operation on top
– Variables on the bottom. 
– Branch points marked by connectives.

• 𝐴 ∨ 𝐵 ∧ 𝐶 is 𝐴 ∨ 𝐵 ∧ 𝐶
– which is different  from 𝐴 ∨ 𝐵 ∧ 𝐶
– Like 2+3*4 is different from (2+3)*4 

𝐴 ∨ 𝐵 ∧ 𝐶

(𝐴 ∨ 𝐵) ∧ 𝐶

Syntax trees for logic formulas

• Precedence: 
– ¬ first, then ∧, then ∨,→ last 
– ¬ is like a unary minus, ∧ like * and ∨ like +

• Syntax tree: 
– The last operation on top
– Variables on the bottom. 
– Branch points marked by connectives.

• 𝐴 ∨ 𝐵 ∧ 𝐶 is 𝐴 ∨ 𝐵 ∧ 𝐶
– which is different  from 𝐴 ∨ 𝐵 ∧ 𝐶

∨

∧

∧

∨

A 

A 

C B 

B 

C 

2+3*4=14

(𝐴 ∨ 𝐵) ∧ 𝐶

+

∗2 

4 3 

∗

+ 4 

3 2 

𝐴 ∨ 𝐵 ∧ 𝐶

(2+3)*4=20

Syntax trees for logic formulas

• Precedence: 

– Parentheses 

– then ¬ (like unary -)

– then ∧ (like *) 

– then ∨ (like +)

– Finally →

– Left to right for ∨,∧

• right to left for → 𝐴 ∧ ¬ 𝐵 ∨ ¬𝐶 → ¬(𝐴 ∨ 𝐶)

55 56

57 58

59 60
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Syntax trees for logic formulas

∨

∧

A 

B 

C 

→

¬

¬

¬

𝐴 ∧ ¬ 𝐵 ∨ ¬𝐶 → ¬(𝐴 ∨ 𝐶)

C 

∨

A 

• Precedence: 

– Parentheses 

– then ¬ (like unary -)

– then ∧ (like *) 

– then ∨ (like +)

– Finally →

– Left to right for ∨,∧

• right to left for →

Evaluating logic formulas       
with trees

• Let A be true,  B false, C false

∨

∧A 

C B 

𝐴 ∨ 𝐵 ∧ 𝐶

True

Symbol True when

¬ A A is false

A  ∧ B Both A and 
B are true

A  ∨ B At least one 
of A, B  true 

A  → B A false or B 
true or both 

1. 𝐵 and C are both false, “false and false” is 
false,  so 𝐵 ∧ 𝐶 is false                                                       

2. 𝐴 is true, 𝐵 ∧ 𝐶 is false.  True or false is true. 
3. So 𝐴 ∨ 𝐵 ∧ 𝐶 is true

Evaluating logic formulas       
with trees

• Let A be true,  B false, C false

∨

∧

∧

∨

A 

A

C B B 

C 

(𝐴 ∨ 𝐵) ∧ 𝐶𝐴 ∨ 𝐵 ∧ 𝐶

True False

Symbol True when

¬ A A is false

A  ∧ B Both A and 
B are true

A  ∨ B At least one 
of A, B  true 

A  → B A false or B 
true or both 

1. 𝐴 is true,  𝐵 is false. True or false is true.
2. . 𝐴 ∨ 𝐵 is true, but 𝐶 is false.  True and false is 

false. 
3. So 𝐴 ∨ 𝐵 ∨ 𝐶 is false 

False

Evaluating logic formulas       
with trees

• Let A be true,  B false, C false

∨

∧

∧

∨

A

A

CB B

C 

(𝐴 ∨ 𝐵) ∧ 𝐶𝐴 ∨ 𝐵 ∧ 𝐶

∨

∧

A 

B 

C 

→

¬

¬

¬

𝐴 ∧ ¬ 𝐵 ∨ ¬𝐶 → ¬(𝐴 ∨ 𝐶)

C 

∨

A 

True

False

Symbol True when

¬ A A is false

A  ∧ B Both A and 
B are true

A  ∨ B At least one 
of A, B  true 

A  → B A false or B 
true or both 

• On a mystical island, there are two kinds of people: knights and knaves.  
Knights always tell the truth.  Knaves always lie.

Knights and knaves

• Puzzle 1:  

–You meet two people on the island, Arnold and Bob. 

–Arnold says “Either I am a knave, or Bob is a knight”.  

– Is Arnold a knight or a knave? 

–What about Bob? Is Bob a knight or a knave?
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Knights and knaves

• You meet two people on the island, Arnold and Bob. Arnold says 
“Either I am a knave, or Bob is a knight”.  
– Propositional variable A:  

• True when Arnold is a knight
• False when Arnold is a knave 

– Propositional variable B: 
• True when Bob is a knight, 
• False when Bob is a knave.  

– Statement ¬𝐴 ∨ 𝐵 : “Either Arnold is a knave, or Bob is a knight” 

• Want: scenarios where 
– either both Arnold is a knight and what he said, ¬𝐴 ∨ 𝐵, is true 
– or Arnold is a knave and  ¬𝐴 ∨ 𝐵 is false.  

• Want: scenarios where 
– either both Arnold is a knight and what he said, ¬𝐴 ∨ 𝐵, is true 
– or Arnold is a knave and  ¬𝐴 ∨ 𝐵 is false.  

• Can write this using “if and only if” (“iff”) notation:  ¬𝐴 ∨ 𝐵 ↔ 𝐴.
• 𝐺 ↔ 𝐻 is true when G and H have same value

– Either both G and H are true, 
– Or both G and H are false 

• Note: we do not use “=“ between logic formulas! 

• The symbol ↔ is called “biconditional” 
• Precedence order of ↔ is even lower than →

G H G if and only if H 
𝑮↔ 𝑯

True True True

True False False

False True False

False False True

Iff (if and only if): a new connective

Knights and knaves

• Arnold says “Either I am a knave, or Bob is a knight”.  
– A: True when Arnold is a knight, false when Arnold is a knave 

– B: True when Bob is a knight, false when Bob is a knave.  

– Arnold said: ¬𝐴 ∨ 𝐵 : “Either Arnold is a knave, or Bob is a knight” 

– By rules of what it means to be a knight or a knave
• ¬𝐴 ∨ 𝐵 ↔ 𝐴 must be true 

– Let’s try to see when this happens.

∨

¬

A 

B 

↔

A 

Knights and knaves

• Arnold says “Either I am a knave, or Bob is a knight”.  
– A: True when Arnold is a knight, false when Arnold is a knave 

– B: True when Bob is a knight, false when Bob is a knave.  

– Arnold said: ¬𝐴 ∨ 𝐵 : “Either Arnold is a knave, or Bob is a knight” 

– By rules of what it means to be a knight or a knave
• ¬𝐴 ∨ 𝐵 ↔ 𝐴 must be true 

– Let’s try to see when this happens.

A B

True True

True False

False True

False False

∨

¬

A 

B 

↔

A 

Knights and knaves

• Arnold says “Either I am a knave, or Bob is a knight”.  
– A: True when Arnold is a knight, false when Arnold is a knave 

– B: True when Bob is a knight, false when Bob is a knave.  

– Arnold said: ¬𝐴 ∨ 𝐵 : “Either Arnold is a knave, or Bob is a knight” 

– By rules of what it means to be a knight or a knave
• ¬𝐴 ∨ 𝐵 ↔ 𝐴 must be true 

– Let’s try to see when this happens.

A B ¬𝑨

True True False

True False False

False True True

False False True

∨

¬

A 

B 

↔

A 

Knights and knaves

• Arnold says “Either I am a knave, or Bob is a knight”.  
– A: True when Arnold is a knight, false when Arnold is a knave 

– B: True when Bob is a knight, false when Bob is a knave.  

– Arnold said: ¬𝐴 ∨ 𝐵 : “Either Arnold is a knave, or Bob is a knight” 

– By rules of what it means to be a knight or a knave
• ¬𝐴 ∨ 𝐵 ↔ 𝐴 must be true 

– Let’s try to see when this happens.

A B ¬𝑨 ¬𝑨 ∨ 𝑩

True True False True

True False False False

False True True True

False False True True

∨

¬

A 

B 

↔

A 
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Knights and knaves

• Arnold says “Either I am a knave, or Bob is a knight”.  
– A: True when Arnold is a knight, false when Arnold is a knave 

– B: True when Bob is a knight, false when Bob is a knave.  

– Arnold said: ¬𝐴 ∨ 𝐵 : “Either Arnold is a knave, or Bob is a knight” 

– By rules of what it means to be a knight or a knave
• ¬𝐴 ∨ 𝐵 ↔ 𝐴 must be true 

– Let’s try to see when this happens.

A B ¬𝑨 ¬𝑨 ∨ 𝑩 ¬𝑨 ∨ 𝑩 ↔ 𝑨

True True False True True

True False False False False

False True True True False

False False True True False

∨

¬

A 

B 

↔

A 

Knights and knaves

• Arnold says “Either I am a knave, or Bob is a knight”.   

– By rules of what it means to be a knight or a knave

• ¬𝐴 ∨ 𝐵 ↔ 𝐴 must be true 

– The only scenario when the rules of the puzzle are satisfied is the 
very first one, when both A and B are true. 

– So Arnold is a knight

– And Bob is also a knight 

A B ¬𝑨 ¬𝑨 ∨ 𝑩 ¬𝑨 ∨ 𝑩 ↔ 𝑨

True True False True True

True False False False False

False True True True False

False False True True False

• List all possible scenarios: All the ways of setting variables to true, false. 

– Each time we add a new variable the number of possible scenarios doubles:  
• We need to look at all possible truth assignments to the previous variables twice: once for the 

new variable being true, and another for the new variable being false. 
• So a truth table has 2 rows for 1 variable, 4 for 2, 8 for 3, and in general 2𝑛 for 𝑛 variables.

• For each of them, find the value of the whole formula by evaluating bottom-up
– Use the syntax tree.

– Write down the value of each subformula (node of the subtree) as a column in the truth table. 
• Label the column with the formula at the subtree. 

• Example: (¬𝐴) ∨ 𝐵

Truth tables

A B ¬𝑨

True True False

True False False

False True True

False False True

∨

¬

A 

B 

Truth tables

A B ¬𝑨 ¬𝑨 ∨ 𝑩

True True False True

True False False False

False True True True

False False True True

∨

¬

A 

B 

• List all possible scenarios: All the ways of setting variables to true, false. 

– Each time we add a new variable the number of possible scenarios doubles:  
• We need to look at all possible truth assignments to the previous variables twice: once for the 

new variable being true, and another for the new variable being false. 
• So a truth table has 2 rows for 1 variable, 4 for 2, 8 for 3, and in general 2𝑛 for 𝑛 variables.

• For each of them, find the value of the whole formula by evaluating bottom-up
– Use the syntax tree.

– Write down the value of each subformula (node of the subtree) as a column in the truth table. 
• Label the column with the formula at the subtree. 

• Example: (¬𝐴) ∨ 𝐵

Logical equivalence

• Example: (¬𝐴) ∨ 𝐵

• Notice: its truth table’s last column  is the same as for A → B

• So (¬𝐴) ∨ 𝐵 and A → B are  logically equivalent. 

A B ¬𝑨 ¬𝑨 ∨ 𝑩 𝑨 → 𝑩

True True False True True

True False False False False

False True True True True

False False True True True
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Logical equivalence

• Two formulas (on the same  variables)  are logically equivalent  if all 
values in the columns of the truth tables labeled by them are the same.
– (¬𝐴) ∨ 𝐵 and A → B are logically equivalent. 

– So are ¬ 𝐴 ∨ 𝐵 and ¬𝐴 ∧ ¬𝐵, as well as ¬ 𝐴 ∧ 𝐵 and ¬𝐴 ∨ ¬𝐵

• The last two equivalences are known as DeMorgan’s laws. 

We will talk a lot more about logical equivalences next week

A B ¬𝑨 ¬𝑩 ¬𝑨 ∧ ¬𝑩 𝑨 ∨ 𝑩 ¬(𝑨 ∨ 𝑩)

True True False False False True False

True False False True False True False

False True True False False True False

False False True True True False True

∧

¬

A 

¬

B 

∨

A 

¬

B 

Logic in hardware

• When you study computer 
architecture, you will hear 
of “logic design”  and 
“combinatorial circuits” 

• So how is all that hardware 
related to the logic we 
talked about? 

Circuits 

• Circuits are a generalization of 
formulas that (can be) smaller.  

– More precisely, a generalization of syntax 
trees for formulas. 

– Main trick: draw a repeated subtree only 
once, connect everywhere it belongs. 

– Second trick: ∧ and ∨ nodes allow for 
more than two connections

• Like summation and product in arithmetic. 
¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ ¬ 𝑟 ∨ ¬ 𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑠

∨

∧

∧s 

∨

¬

∧

𝑝 𝑞 𝑟

¬

s ¬

∧

∧

𝑝 𝑞 𝑟

¬

Circuits 

• Main trick: draw 
a repeated 
subtree only 
once, connect 
everywhere it 
belongs. 

¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ ¬ 𝑟 ∨ ¬ 𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑠

∨

∧

∧s 

∨

¬

∧

𝑝 𝑞 𝑟

¬

s ¬

∧

∧

𝑝 𝑞 𝑟

¬

∨

s 

∨

¬

∧

s ¬

∧

∧

𝑝 𝑞 𝑟

¬

Circuits 

• Second trick: ∧
and ∨ nodes 
allow for more 
than two 
connections

– Like summation 
and product in 
arithmetic. 

¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ ¬ 𝑟 ∨ ¬ 𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑠

∨

∧

∧s 

∨

¬

∧

𝑝 𝑞 𝑟

¬

s ¬

∧

∧

𝑝 𝑞 𝑟

¬

s 

∨

¬ ∧

s ¬

∧

𝑝 𝑞

𝑟

¬

∧

𝑝 𝑞

𝑟

¬
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Circuits 

• Putting them 
together: much 
smaller picture! 

¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ ¬ 𝑟 ∨ ¬ 𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑠

∨

∧

∧s 

∨

¬

∧

𝑝 𝑞 𝑟

¬

s ¬

∧

∧

𝑝 𝑞 𝑟

¬

s 

∨

¬ ∧

¬

∧

𝑝 𝑞 𝑟

¬

Circuits 

¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ ¬ 𝑟 ∨ ¬ 𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑠

∨

∧

∧s 

∨

¬

∧

𝑝 𝑞 𝑟

¬

s ¬

∧

∧

𝑝 𝑞 𝑟

¬s 

∨

¬ ∧

¬

∧

𝑝 𝑞 𝑟

¬

• Every formula’s syntax tree is (essentially) a circuit.

• Just write variables once and connect to 
corresponding places. 

• A circuit can be “unwound” into a syntax tree which can 
be then written as a formula  

• the resulting tree can be much bigger than the circuit. 

• Circuit can be evaluated in same way as a formula

• Start from the bottom, and compute all values below 
a node before computing the value of a node. 

– Label truth table columns with expressions at the 
nodes
• In fact, even for truth tables for formulas we do not recompute 

columns if we already computed them before: so we are 
implicitly using the “main trick” 

Circuits 

• In digital logic circuit design,  change in terminology:  

– Also often write the circuits sideways (left to right)

– Variables are often called inputs; value of the formula is the output. 

s 

∨

¬ ∧

¬

∧

𝑝 𝑞 𝑟

¬
∨ ∧ ¬

Node Edge TRUE FALSE

Gate Wire 1 0AND NOT

OR

OR

𝑝

𝑞

𝑟

𝑠

NOT

AND

NOT

NOT

AND

What do circuits compute?

• We can view evaluating a formula or a circuit as computing a function 
– inputs are values of propositional variables, each of which is true or false. 
– output is either true or false. 

• A variable is Boolean if it takes only values 0 (false) or 1 (true): 
– A Boolean function takes a list of Boolean variables and outputs 0 or 1. 

• Example:  𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 is a Boolean function, with 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 = 1
when at least two out of its inputs 𝑥, 𝑦, 𝑧 are 1, and  0 otherwise. 

• Here, each of 𝑥, 𝑦, 𝑧 must be either 0 or 1.  
• So 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 is 1 when at most one of its inputs is a 0. 

Boolean functions

• A Boolean function is fully described by its truth table

– For every possible combination of values of its inputs,  the truth table 
says what the output is. 

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 = 1

when at least two out of 𝑥, 𝑦, 𝑧 are 1 

and 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 = 0 otherwise.

𝒙 = 𝟏? 𝒚 = 1? 𝒛 = 𝟏? 𝑴𝒂𝒋𝒐𝒓𝒊𝒕𝒚 𝐱, 𝐲, 𝐳 = 𝟏?

True True True True

True True False True

True False True True

True False False False

False True True True

False True False False

False False True False

False False False False

85 86

87 88

89 90



2020-12-01

16

Boolean functions

• A Boolean function is fully described by its truth table

– For every possible values of its inputs,  the truth table says what the 
output is. 

– Changing TRUE to 1 and FALSE to 0

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 = 1

when at least two out of 𝑥, 𝑦, 𝑧 are 1 

and 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 = 0 otherwise.

𝒙 𝒚 𝒛 𝑴𝒂𝒋𝒐𝒓𝒊𝒕𝒚(𝒙,𝒚, 𝒛)

1 1 1 1

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

Computing Boolean functions

• Both formulas and circuits compute Boolean functions 
– that is, can tell what the value of a function is in a given input scenario (assignment of 

Boolean/truth values to variables). 

Though  technically propositional variables and logic formulas have values TRUE/FALSE, 
whereas Boolean variables and functions have values 1/0 (and syntax for connectives is 
different), we will often abuse the notation and use them interchangeably.  

– Formula for 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 :
• Let 𝐴: "𝑥 = 1“, B: “𝑦 = 1“, C: “𝑧 = 1" . 
• Then 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 = 1 if and only if  𝐴 ∧ 𝐵 ∨ 𝐴 ∧ 𝐶 ∨ (𝐵 ∧ 𝐶) is true

– Circuit for 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 is 
• Much more on circuits in other 

computer science courses.

AND

AND

AND

x

y

z

OR

Constructing a formula from a truth table

• For every formula (or circuit) there is a truth table. 

• But also from every truth table we can construct a formula 

– and every formula can be directly converted into a circuit.

• So for every Boolean function  we can construct a formula which is true exactly in 
the scenarios when this function is supposed to output 1. 

• Moreover, we can construct formulas of a special form:
– If we use only the second trick to represent them (multi-input ∨,∧)

– Then the resulting generalized syntax trees have at most four layers

From a Boolean function to a formula

• Suppose there is a Boolean function  𝑓 such that 𝑓 1,0,0 = 1.

– Let’s propositions for its inputs 𝑥, 𝑦, 𝑧 respectively being 1 be 𝐴, 𝐵, 𝐶

• A denotes "𝑥 = 1“, if 𝑥 = 1 then A is true, otherwise A is false; same for B,C

– The input to 𝑓 above is 1, 0, 0

• 𝑥 = 1, 𝑦 = 0, 𝑧 =0, so  A = True, B = False, C=False,

• Then the formula 𝐹𝑓 encoding function 𝑓 above should be true on A=True, 

B=False, C=False. 

– We can now write  a formula which is true only on this assignment:  

• 𝐴 ∧ ¬𝐵 ∧ ¬𝐶

From a Boolean function to a formula

• To write a formula encoding the whole Boolean function 𝑓, write  a 
formula encoding every assignment  that makes 𝑓 output 1.  

– Say 𝑓 1,0,0 = 1, 𝑓 1,0,1 = 1, and for any other input 𝑓 𝑥, 𝑦, 𝑧 = 0

– Then the corresponding assignments are 𝐴 ∧ ¬𝐵 ∧ ¬𝐶 and 𝐴 ∧ ¬𝐵 ∧ 𝐶

• And finally take an OR of these formulas. 

– So the resulting formula would say “Either the formula is true because we 
are in the first scenario where 𝑓 outputs 1, or the second, etc…” 

– (𝐴 ∧ ¬𝐵 ∧ ¬𝐶) ∨(𝐴 ∧ ¬𝐵 ∧ 𝐶)
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• Disjunctive Normal Form, or DNF:  formulas that are an OR  of 
ANDs of  (possibly negated) variables. 
– Essentially the same as Sum of Products 

• With yet another notation for connectives: ∨ is +, ∧ is ⋅, 0 is FALSE, 1 is TRUE

– Call a variable or negated variable a 𝐥𝐢𝐭𝐞𝐫𝐚𝐥:  𝑥, ¬𝑦, 𝑝, ¬𝑞, 𝐴,¬𝐵

– Call an ∧ of literals a term:   𝑥 ∧ ¬𝑦 ∧ 𝑧 , ¬𝑝 ∧ ¬𝑞 , 𝐴 , (𝐴 ∧ 𝐵 ∧ 𝐶)

– 𝐴 ∧ ¬𝐶 ∨ ¬𝐵 ∨ 𝐵 ∧ 𝐶 is a DNF 

– A∨ ¬𝐵 ∨ 𝐶 is a DNF. So is A ∧ ¬𝐵 ∧ 𝐶.

– ¬ 𝐴 ∧ ¬𝐵 ∨ 𝐶 is not a DNF

DNF (Sum of Products)

∧

𝑟¬

q

¬

p

∧

∨

𝑞¬

r

∧

𝑝

q

¬

CNF (Product of Sums) 

• Conjunctive Normal Form, or CNF:  formulas that are an AND of 
ORs of  (possibly negated) variables. 

– Also known as Product of Sums (after switching notation) 

– As for DNF, a  variable or negated variable is a 𝐥𝐢𝐭𝐞𝐫𝐚𝐥:  𝑥, ¬𝑦, 𝑝, ¬𝑞, 𝐴, ¬𝐵

– Call an ∨ of literals a clause:   𝑥 ∨ ¬𝑦 ∨ 𝑧 , ¬𝑝 ∨ ¬𝑞 , 𝐴 , (𝐴 ∨ 𝐵 ∨ 𝐶)

– 𝐵 ∨ ¬𝐴 ∧ ¬𝐵 ∧ 𝐵 ∨ 𝐶 is a CNF 

– (𝐴 ∨ ¬𝐵 ∨ 𝐶) is a CNF. So is  𝐴 ∧ ¬𝐵 ∧ 𝐶 .

– 𝐴 ∨ ¬𝐵 ∧ 𝐶 is not a CNF

∨

𝑟¬

q

¬

p

∨

∧

𝑞¬

r

∨

𝑝

q

¬

• The resulting formula would say “Either the formula is true because we are in 
the first scenario where 𝑓 outputs 1, or the second, etc…” 
– (𝐴 ∧ ¬𝐵 ∧ ¬𝐶) ∨(𝐴 ∧ ¬𝐵 ∧ 𝐶)

• This formula is of the form OR of ANDs of literals: it is a DNF

• Such formula is called the canonical DNF of 𝑓 if it has a term for every 
possible list of its input values  (line of the truth table) on which 𝑓 outputs 1. 
– That is, the construction we just did produced canonical DNF for 𝑓

• Every Boolean function 𝑓 has a canonical DNF.
– Can do this construction with any truth table. 

Canonical DNF

∧

𝐴 ¬

C

¬

B

∨

𝐴

∧

𝐶

B

¬

Canonical DNF

• Let’s try with 𝑓(𝑥, 𝑦) which outputs 1 when 

either both 𝑥 = 1 and 𝑦 = 1, or 𝑥 = 0 and 𝑦 = 0

• Let A: “𝑥 = 1", B: "𝑦 = 1"

• Check when 𝑓 𝑥, 𝑦 outputs 1: 
– 𝑥 = 1, 𝑦 = 1, as well as 𝑥 = 0, 𝑦 = 0

– Corresponds to 𝐴 ∧ 𝐵, and ¬𝐴 ∧ ¬𝐵

• Now, state that at least one of these cases happens: 

(𝑨 ∧ 𝑩) ∨ (¬𝑨 ∧ ¬𝑩)

This is the canonical DNF for the 𝑓 𝑥, 𝑦 above. 

𝒙 𝒚 𝒇(𝒙,𝒚)

1 1 1

1 0 0

0 1 0

0 0 1

Canonical CNF

• To construct a canonical CNF for 𝑓

– Take every falsifying assignment (𝑓 𝑥, 𝑦, 𝑧 = 0)

• Say,  A = False, B = True, C=False. 

– Write a formula which is true only on this assignment:  

• ¬𝐴 ∧ 𝐵 ∧ ¬𝐶

– To say that this assignment does not happen, say that at least one of the 
variables takes the opposite value of what it has in this assignment:  

• 𝐴 ∨ ¬𝐵 ∨ 𝐶

– Take an AND of these clauses for all falsifying assignments

• “First bad thing does not happen, and second bad thing does not happen…”

Canonical CNF

• Let’s try with 𝑓(𝑥, 𝑦) which outputs 1 when 
either both 𝑥 = 1 and 𝑦 = 1, or 𝑥 = 0 and 𝑦 = 0

• Let A: “𝑥 = 1", B: "𝑦 = 1"
• First, look at when 𝑓 𝑥, 𝑦 outputs 0: 

– 𝑥 = 1, 𝑦 = 0, as well as 𝑥 = 0, 𝑦 = 1
– Corresponds to 𝐴 ∧ ¬𝐵, and ¬𝐴 ∧ 𝐵

• State that they do not happen
– 𝐴 ∧ ¬𝐵 does not happen: ¬𝐴 ∨ 𝐵
– ¬𝐴 ∧ 𝐵 does not happen: 𝐴 ∨ ¬𝐵

• Finally, say that both do not happen:      ¬𝑨 ∨ 𝑩 ∧ 𝑨 ∨ ¬𝑩
– This is our canonical CNF for 𝑓(𝑥, 𝑦)

𝒙 𝒚 𝒇(𝒙,𝒚)

1 1 1

1 0 0

0 1 0

0 0 1
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