DEFINITION
PROOF PROCEDURE

A proof procedure 1s a combination of an inference rule and an algorithm for
applving that rule to a set of logical expressions to generate new sentences.

We present proof procedures tor the resolution inference rule i Chapter 12,
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DEFINITION
LOGICALLY FOLLOWS, SOUND, and COMPLETE

A predicate calculus expression X logically follows from a set S of predicate calculus
expressions 1f every interpretation and variable assignment that satisfies S also
satisfies X.

An inference rule 1s sound 1f every predicate calculus expression produced by the
rule from a set S of predicate calculus expressions also logically follows from S.

An inference rule 1s complete 1f, given a set S of predicate calculus expressions, the
rule can infer every expression that logically follows from S.
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DEFINITION

MODUS PONENS, MODUS TOLLENS. AND ELIMINATION, AND
INTRODUCTION, and UNIVERSAL INSTANTIATION

[f the sentences P and P — Q are known to be true, then modus ponens lets us
infer Q.

Under the inference rule modus tollens, it P — Q 1s known to be true and Q 1s
known to be false, we can infer = P.

And elimination allows us to infer the truth of either of the conjuncts from the
truth of a conjunctive sentence. For instance, P A Q lets us conclude P and Q are

frue.

And introduction lets us infer the truth of a conjunction from the truth of its
conjuncts. For instance. if P and Q are true, then P A Q 1s true.

Universal instantiation states that if any universallv quantified variable n a true
sentence 1s replaced by any appropriate term from the domain, the result is a
true sentence. Thus, if a 1s from the domain of X, ¥V X p(X) lets us infer p(a).
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Resolution in predicate logic

When are predicate mstances the same?
— 1s P(x) same as P(y)?
— Can we resolve P(x) with =P(5)?

Substitution: when a variable name is replaced by another
variable or element of the domain.

— Notation [x/a] means replacing all occurrences of x with a in the
formula.

— Example: substitution [x/5] in P(x) V Q(x, y) results in
P(5)vVQ(5,y)
Unification: matching literals and doing substitution so
that resolution can be applied.
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Resolution in predicate logic

* When are predicate instances the same?

— If premises are Vx P(x) and Vy =P (y), can we resolve
P(X) with =P (y) ?
e Substitution: a variable name Is replaced by another
variable name or an element of the domain.
— [Y/X]: change occurrences of X to Y.
e [z/X]: P(x)V Q(x,y) becomes P(z) V Q(z,y)
— [a/X]: change occurrences of X to element a.
o [5/X]: P(x)V Q(x,y) becomes P(5) v Q(5,y)
« Unification: doing substitutions so that resolution
could be applied.
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Unification

e |t is an algorithm for determining the substitutions
needed to make two predicate logic expressions
match.

e Avariable cannot be unified with a term
containing that variable. The test for it is called the

occurs check.

— €.g., cannot substitute X for X+Y inP(X +Y)

— Most applicable when rather than having variables we have whole
expressions (terms) evaluating to elements of the domain.

e eg: xtyisaterm: when x,y € Z, x + y € Z. With terms, can write formulas
suchas P(x +y) vQ(y — 2)
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ALGORITHM TO CONVERT TO CLAUSAL FORM (1)

1. Eliminate conditionals —, using the equivalence
P—->Q==-PVvQ
e.g, @X) (pX) AYY) (f(Y) — h(X)Y))) becomes
EX) (P(X) ANYY) (+£(¥) VA(X,Y))

2. Eliminate negations or reduce the scope of negation to one atom.

eg, 7 P=P
A(PAQ)==PV-Q
" (@X) pX) = (VX) = pX)
= (VX) pX) = @X) = pX)

3. Standardize variables within a well-formed formula so that the bound
or dummy variables of each quantifier have unique names.

eg, I X) 2 pX) v (V X) p(X) 1s replaced by
AX) = pX) Vv (VY) p(Y)
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ALGORITHM TO CONVERT TO CLAUSAL FORM (2)

4. ADVANCED STEP: if you have existential quantifiers, eliminate them by
using Skolem functions, named after the Norwegian logician Thoralf Skolem.

e.g,, (3 X) m(X) is replaced by m(a)
(V' X) (AY) kX, Y) is replaced by
(V X) k(X, £X))

5. Convert the formula to prenex form which is a sequence of quantifiers
followed by a matrix.

e.g, @X) pX) AVY) (=£(Y) Vh(X)Y))) becomes
(VY) (p@) A (=£(Y) Vh(a,Y)))

6. Convert the matrix to conjunctive normal form, which 1s a conjunctive of
clauses. Each clause is a disjunction.

eg, PVIQAR) =P v Q) A PVR)

7. Drop the universal quantifiers.
e.g., the formula above becomes p(a) A (=f(Y) Vh(a,Y))
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ALGORITHM TO CONVERT TO CLAUSAL FORM (3)

8. Eliminate the conjunctive signs by writing the formula as a
set of clauses

e.g, p@) A (-f(Y) Vh(a,Y)) becomes p(a), (=f(Y) Vh(a,Y))

9. Rename variables in clauses, if necessary, so that the same
variable name 1s only used in one clause.

e.g., pX) v qX) v k(X,Y) and p(X) v q(Y) become
PX) v qX) v k(X,Y) and =p(X1) v q(Y1)
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Anyone passing his history exams and winning the lottery is happy.
VvV X (pass (X,history) A win (X,lottery) — happy (X))
Anyone who studies or is lucky can pass all his exams.
Vv X VY (study (X) v lucky (X) — pass (X,Y))
John did not study but he is lucky.
— study (john) A lucky (john)
Anyone who is lucky wins the lottery.
V X (lucky (X) — win (X,lottery))
These four predicate statements are now changed to clause form (Section 12.2.2):

1. — pass (X, history) v — win (X, lottery) v happy (X)
— study (Y) v pass (Y, Z)

— lucky (W) v pass (W, V)

— study (john)

lucky (john)

6. — lucky (U) v win (U, lottery)

a e

Into these clauses is entered, in clause form, the negation of the conclusion:

7. — happy (john)
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- pass(X, history) « - win(X, lottery) « happy(X) = lucky (U « win(U, lottery)

- pass(U, history) « happy(U) v = lucky(U - happy(john)

{Jﬂhw

lucky(john) - pass(john, history) + = lucky(john)

T

- pass(john, history) = lucky(V) « pass(V, W)

{iohn/V, hstoryﬂ.ﬂu}\/

= lucky{john) lucky(john)
{}
[l
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