DEFINITION

PROOF PROCEDURE

A *proof procedure* is a combination of an inference rule and an algorithm for applying that rule to a set of logical expressions to generate new sentences.

We present proof procedures for the *resolution* inference rule in Chapter 12.

DEFINITION

LOGICALLY FOLLOWS, SOUND, and COMPLETE

A predicate calculus expression X *logically follows* from a set S of predicate calculus expressions if every interpretation and variable assignment that satisfies S also satisfies X.

An inference rule is *sound* if every predicate calculus expression produced by the rule from a set S of predicate calculus expressions also logically follows from S.

An inference rule is *complete* if, given a set S of predicate calculus expressions, the rule can infer every expression that logically follows from S.

DEFINITION

MODUS PONENS, MODUS TOLLENS, AND ELIMINATION, AND INTRODUCTION, and UNIVERSAL INSTANTIATION

If the sentences P and $P \rightarrow Q$ are known to be true, then *modus ponens* lets us infer Q.

Under the inference rule *modus tollens*, if $P \rightarrow Q$ is known to be true and Q is known to be false, we can infer $\neg P$.

And elimination allows us to infer the truth of either of the conjuncts from the truth of a conjunctive sentence. For instance, $P \land Q$ lets us conclude P and Q are true.

And introduction lets us infer the truth of a conjunction from the truth of its conjuncts. For instance, if P and Q are true, then $P \land Q$ is true.

Universal instantiation states that if any universally quantified variable in a true sentence is replaced by any appropriate term from the domain, the result is a true sentence. Thus, if a is from the domain of X, \forall X p(X) lets us infer p(a).

Resolution in predicate logic

- When are predicate instances the same?
 - is P(x) same as P(y)?
 - Can we resolve P(x) with $\neg P(5)$?
- **Substitution**: when a variable name is replaced by another variable or element of the domain.
 - Notation [x/a] means replacing all occurrences of x with a in the formula.
 - Example: substitution [x/5] in $P(x) \lor Q(x, y)$ results in $P(5) \lor Q(5, y)$
- Unification: matching literals and doing substitution so that resolution can be applied.

4

Resolution in predicate logic

- When are predicate instances the same?
 - If premises are $\forall x P(x)$ and $\forall y \neg P(y)$, can we resolve P(x) with $\neg P(y)$?
- **Substitution**: a variable name is replaced by another variable name or an element of the domain.
 - [Y/X]: change occurrences of X to Y.
 - [z/x]: $P(x) \lor Q(x, y)$ becomes $P(z) \lor Q(z, y)$
 - [a/X]: change occurrences of X to element a.
 - $[5/x]: P(x) \lor Q(x, y)$ becomes $P(5) \lor Q(5, y)$
- Unification: doing substitutions so that resolution could be applied.

Unification

- It is an algorithm for determining the substitutions needed to make two predicate logic expressions match.
- A variable cannot be unified with a term containing that variable. The test for it is called the occurs check.
 - e.g., cannot substitute X for X+Y in P(X + Y)
 - Most applicable when rather than having variables we have whole expressions (terms) evaluating to elements of the domain.
 - eg: x+y is a term: when x, y ∈ Z, x + y ∈ Z. With terms, can write formulas such as P(x + y) ∨ Q(y 2)

ALGORITHM TO CONVERT TO CLAUSAL FORM (1)

1. Eliminate conditionals \rightarrow , using the equivalence

$$P \rightarrow Q = \neg P \lor Q$$

e.g, (∃X) (p(X) ∧(∀Y) (f(Y) → h(X,Y))) becomes
(∃X) (p(X) ∧(∀Y) (¬f(Y) ∨h(X,Y)))

2. Eliminate negations or reduce the scope of negation to one atom. e.g., $\neg \neg P = P$ $\neg(P \land Q) = \neg P \lor \neg Q$

$$\neg (\exists X) p(X) = (\forall X) \neg p(X)$$
$$\neg (\forall X) p(X) = (\exists X) \neg p(X)$$

3. Standardize variables within a well-formed formula so that the bound or dummy variables of each quantifier have unique names.
e.g., (∃ X) ¬ p(X) ∨ (∀ X) p(X) is replaced by

e.g.,
$$(\exists X) \neg p(X) \lor (\forall X) p(X)$$
 is replaced by
 $(\exists X) \neg p(X) \lor (\forall Y) p(Y)$

ALGORITHM TO CONVERT TO CLAUSAL FORM (2)

4. ADVANCED STEP: if you have existential quantifiers, eliminate them by using Skolem functions, named after the Norwegian logician Thoralf Skolem.

5. Convert the formula to prenex form which is a sequence of quantifiers followed by a matrix.

e.g.,
$$(\exists X) (p(X) \land (\forall Y) (\neg f(Y) \lor h(X,Y)))$$
 becomes

 $(\forall Y) (p(a) \land (\neg f(Y) \lor h(a,Y)))$

6. Convert the matrix to conjunctive normal form, which is a conjunctive of clauses. Each clause is a disjunction.

e.g.,
$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

7. Drop the universal quantifiers.

e.g., the formula above becomes $p(a) \land (\neg f(Y) \lor h(a, Y))$

ALGORITHM TO CONVERT TO CLAUSAL FORM (3)

8. Eliminate the conjunctive signs by writing the formula as a set of clauses

e.g., $p(a) \land (\neg f(Y) \lor h(a,Y))$ becomes $p(a), (\neg f(Y) \lor h(a,Y))$

9. Rename variables in clauses, if necessary, so that the same variable name is only used in one clause.
e.g., p(X) ∨ q(X) ∨ k(X,Y) and ¬p(X) ∨ q(Y) become p(X) ∨ q(X) ∨ k(X,Y) and ¬p(X1) ∨ q(Y1)

Anyone passing his history exams and winning the lottery is happy.

\forall X (pass (X,history) \land win (X,lottery) \rightarrow happy (X))

Anyone who studies or is lucky can pass all his exams.

\forall X \forall Y (study (X) \lor lucky (X) \rightarrow pass (X,Y))

John did not study but he is lucky.

```
\neg study (john) \land lucky (john)
```

Anyone who is lucky wins the lottery.

\forall X (lucky (X) \rightarrow win (X,lottery))

These four predicate statements are now changed to clause form (Section 12.2.2):

- 1. \neg pass (X, history) $\lor \neg$ win (X, lottery) \lor happy (X)
- 2. \neg study (Y) \lor pass (Y, Z)
- 3. \neg lucky (W) \lor pass (W, V)
- 5. lucky (john)
- 6. \neg lucky (U) \lor win (U, lottery)

Into these clauses is entered, in clause form, the negation of the conclusion:

7. – happy (john)

Unification, Edited By John Shieh