Propositional statement: expression that has a truth value (true/false). It is a tautology if it is always true, contradiction if it is always false.

Logic connectives: negation (“not”) \(\neg p \), conjunction (“and”) \(p \land q \), disjunction (“or”) \(p \lor q \), implication \(p \rightarrow q \) (equivalent to \(\neg p \lor q \)), biconditional \(p \leftrightarrow q \) (equivalent to \((p \rightarrow q) \land (q \rightarrow p) \)). The order of precedence: \(\neg \) strongest, \(\land \) next, \(\lor \) next, \(\rightarrow \) and \(\leftrightarrow \) the same, weakest.

If \(p \rightarrow q \) is an implication, then \(\neg q \rightarrow \neg p \) is its contrapositive, \(q \rightarrow p \) a converse and \(\neg p \rightarrow \neg q \) an inverse. An implication is equivalent to its contrapositive, but not to converse/inverse or their negations. A negation of an implication \(p \rightarrow q \) is \(p \land \neg q \) (it is not an implication itself!)

A truth assignment is a string of values of variables to the formula, usually a row with values of first several columns in the truth table (number of columns = number of variables). A truth assignment is satisfying the formula if the value of the formula on these variables is T, otherwise the truth assignment is falsifying. A formula is satisfiable if it has a satisfying assignment, otherwise it is unsatisfiable (a contradiction). A truth assignment can be encoded by a formula that is a \(\land \) of variables and their negations, with negated variables in places that have F (false) in the assignment, and non-negated that have T (true). For example, \(x = T, y = F, z = F \) is encoded as \((x \land \neg y \land \neg z) \). It is an encoding in a sense that this formula is true only on this truth assignment and nowhere else.

A truth table has a line for each possible values of propositional variables \((2^k \) lines if there are \(k \) variables), and a column for each variable and subformula, up to the whole statement. Its cells contain T and F depending whether the (sub)formula is true for the corresponding scenarios.

Finding a method for checking if a formula has a satisfying assignment that is always significantly faster than using truth tables (that is, better than brute-force search) is a one of Clay Mathematics Institute millenium prize problems, known as “P vs. NP”.

Two formulas are logically equivalent, written \(A \equiv B \), if they have the same truth value in all scenarios (truth assignments). \(A \equiv B \) if and only if \(A \leftrightarrow B \) is a tautology.

There are several other important pairs of logically equivalent formulas, called logical identities or logic laws. We will talk more about them when we talk about Boolean algebras. The most famous example of logically equivalent formulas is \(\neg(p \lor q) \equiv (\neg p \land \neg q) \) (with a dual version \(\neg(p \land q) \equiv (\neg p \lor \neg q) \)) where \(p \) and \(q \) can be arbitrary (propositional, here) formulas. These pairs of logically equivalent formulas are called DeMorgan’s law. Here, remember that \(\text{FALSE} \land p \equiv p \land \text{FALSE} \equiv \text{FALSE} \), \(\text{FALSE} \lor p \equiv \text{TRUE} \land p \equiv p \) and \(\text{TRUE} \lor p \equiv p \lor \neg p \equiv \text{TRUE} \).

A set of logic connectives is called complete if it is possible to make a formula with any truth table out of these connectives. For example, \(\neg, \land \) is a complete set of connectives, and so is the Sheffer’s stroke \(\mid (\text{where } p \mid q \equiv \neg(p \land q)) \), also called NAND for “not-and”. But \(\lor, \land \) is not a complete set of connectives since then it is impossible to express a truth table with 0 when all variables are 1.

An argument consists of several formulas called premises and a final formula called a conclusion. If we call premises \(A_1 \ldots A_n \) and conclusion \(B \), then an argument is valid iff premises imply the conclusion, that is, \(A_1 \land \cdots \land A_n \rightarrow B \). We usually write them in the following format:
Today is either Thursday or Friday
On Thursdays I have to go to a lecture
Today is not Friday (alternatively, On Friday I have to go to the lecture)

∴ I have to go to a lecture today

- A valid form of argument is called rule of inference. The most prominent such rule is called modus ponens.

\[
p \rightarrow q \\
p \quad \therefore q
\]

- We studied three methods for proving that a formula is a tautology: truth tables, natural deduction and resolution (where resolution proves that a formula is a tautology by proving that its negation is a contradiction).

- A natural deduction proof consists of a sequence of applications of modus ponens (and other rules of inference) until a desired conclusion is reached, or there is nothing new left to derive. Example: treasure hunt, where "desired conclusion" is a statement that the treasure is in a specific location.

- There are two main normal forms for the propositional formulas. One is called Conjunctive normal form (CNF, also known as Product-of-Sums) and is an ∧ of ∨ of either variables or their negations (here, by ∧ and ∨ we mean several formulas with ∧ between each pair, as in \((-x \lor y \lor z) \land (-u \lor y) \land x\)). A literal is a variable or its negation (\(x\) or \(\neg x\), for example). A ∨ of (possibly more than 2) literals is called a clause, for example \((-u \lor z \lor x)\), so a CNF is true for some truth assignment whenever this assignment makes each of the clauses is true, that is, each clause has a literal that evaluates to true under this assignment. A Disjunctive normal form (DNF, Sum-of-Products) is like CNF except the roles of ∧ and ∨ are reversed. A ∧ of literals in a DNF is called a term. To construct canonical DNF and a CNF, start from a truth table and then for every satisfying truth assignment ∨ its encoding to a DNF, and for every falsifying truth assignment ∧ the negation of its encoding to the CNF, and apply DeMorgan’s law. This may result in a very large CNFs and DNFs, comparable to the size of the truth table itself (\(2^{\text{number of variables}}\)).

- A resolution proof system is used to find a contradiction in a formula (and, similarly, to prove that a formula is a tautology by finding a contradiction in its negation). Resolution starts with a formula in a CNF form, and applies the rule “from clause \((C \lor x)\) and clause \((D \lor \neg x)\) derive clause \((C \lor D)\) until a falsity F (equivalently, empty clause (\()\)) is reached (so in the last step one of the clauses being resolved contains just one variable and another clause being resolved contains just that variable’s negation.) Note that if a clause has opposing literals (e.g., from resolving \((x \lor y)\) with \((\neg x \lor \neg y)\) then it evaluates to true, and so is useless for deriving a contradiction. Resolution can be used to check the validity of an argument by running it on the ∧ of all premises (converted, each, to a CNF) ∧ together with the negation of the conclusion.

- Pigeonhole principle If \(n\) pigeons sit in \(n - 1\) holes, so that each pigeon sits in some hole, then some hole has at least two pigeons. There is no small resolution proof of the pigeonhole principle.
• **Boolean functions** are functions which take as argument boolean (ie, propositional) variables and return 1 or 0 (or, the convention here is 1 instead of T, and 0 instead of F). Each Boolean function on \(n \) variables can be fully described by its truth table. A size of a truth table of a function on \(n \) variables is \(2^n \). Even though we often can have a smaller description of a function, vast majority of Boolean functions cannot be described by anything much smaller. Every Boolean function can be described by a CNF or DNF, using the above construction.

Predicate logic:

• A **predicate** is like a propositional variable, but with **free variables**, and can be true or false depending on the values of these free variables. A **domain** of a predicate is a set from which the free variables can take their values (e.g., the domain of \(\text{Even}(n) \) can be integers).

• **Quantifiers** For a predicate \(P(x) \), a quantified statement “for all” (“every”, “all”) \(\forall x P(x) \) is true iff \(P(x) \) is true for every value of \(x \) from the domain (also called universe); here, \(\forall \) is called a **universal quantifier**. A statement “exists” (“some”, “a”) \(\exists x P(x) \) is true whenever \(P(x) \) is true for at least one element \(x \) in the universe; \(\exists \) is an existential quantifier. The word “any” means sometimes \(\exists \) and sometimes \(\forall \). A domain (universe) of a quantifier, sometimes written as \(\exists x \in D \) and \(\forall x \in D \) is the set of values from which the possible choices for \(x \) are made. If the domain of a quantifier is empty, then if the quantifier is universal then the formula is true, and if quantifier is existential, false. A **scope** of a quantifier is a part of the formula (akin to a piece of code) on which the variable under that quantifier can be used (after the quantifier symbol/inside the parentheses/until there is another quantifier over a variable with the same name). A variable is **bound** if it is under a some quantifier symbol, otherwise it is free.

• **First-order formula** A predicate is a first-order formula (possibly with free variables). A \(\land, \lor, \neg \) of first-order formulas is a first-order formula. If a formula \(A(x) \) has a free variable (that is, a variable \(x \) that occurs in some predicates but does not occur under quantifiers such as \(\forall x \) or \(\exists x \)), then \(\forall x \ A(x) \) and \(\exists x \ A(x) \) are also first-order formulas. A first-order formula is in **prenex form** when all variables have different names and all quantifiers are in front of the formula.

• An **interpretation** is an assignment of specific values to domains and predicates. A **model** of a formula is an interpretation that makes this formula true. Example: in Tarski world interpretations, the domain is all possible pieces, and interpretation of Square assigns Square(x) to true iff x is a square piece, Blue(x) true to blue pieces, etc. A board which satisfies a given formula is a model of that formula.

• **Negating quantifiers.** Remember that \(\neg \forall x P(x) \equiv \exists x \neg P(x) \) and \(\neg \exists x P(x) \equiv \forall x \neg P(x) \). This is because \(\forall \) is like a big \(\land \) over all scenarios, and \(\exists \) is an \(\lor \).