1. **Translations in predicate logic**

 (a) Let \(\text{Parent}(x, y) \) be a relation stating that \(x \) is a parent of \(y \). Write a predicate logic formula stating that \(x \) is an uncle or an aunt of \(y \). Use only predicate \(\text{Parent} \). Hint: variables can take the same value, unless you explicitly tell them not to.

 (b) Now write a formula stating that \(x \) has a sibling. Use predicates \(\text{Parent} \) and \(= \).

2. **Domains and predicates**

 (a) Consider a sentence \(\forall x \exists y \exists z (P(x, y) \land P(x, z) \rightarrow Q(y, z)) \). Let all quantifiers have the same domain, consisting of two elements \(a, b \). Now, give interpretations of \(P \) and \(Q \) over this domain that make this formula true. Finally, give another pair of interpretations of \(P \) and \(Q \) that makes this formula false.

 (b) Suppose that the formula is \(\forall x \exists y \exists z (P(x, y) \land P(x, z) \rightarrow P(y, z)) \), that is, there is no \(Q \). What is the value of this formula on the empty domain? On the domain consisting of only one element (for any interpretation of \(P \))?

3. **Predicate logic reasoning**

 Let the domain be a group of three cats, Tiger, Ashes and Smokey. Consider the following premises:

 - \(\forall x \forall y (\text{Kitten}(x) \land \neg \text{Kitten}(y) \rightarrow \text{Parent}(y, x)) \)
 - \(\forall x \forall y (\text{Parent}(x, y) \rightarrow \neg \text{Kitten}(x)) \)
 - \(\forall x \forall y (\text{Parent}(x, y) \rightarrow \text{Kitten}(y)) \)
 - \(\text{Parent}(\text{Smokey}, \text{Ashes}) \)
 - \(\neg \text{Kitten}(\text{Tiger}) \)

 (a) Use predicate logic natural deduction to figure out the relationship between Tiger and Ashes. Hint: if you have two (or more) universal quantifiers in a row, you can treat them as one quantifier for a pair of elements, and instantiate them together in universal modus ponens. Also, use the rule that from \(A \) and \(B \) you can derive \(A \land B \) in one step.

 (b) Use resolution with unification to confirm that your conclusion follows from premises. Hint: if you run out of letters, you can use \(xx, w_1 \) and such.

4. **Proofs**

 Use direct proof technique to show that product of two odd numbers is odd. Use the definition of an integer \(n \) being odd if there is another integer \(k \) such that \(n = 2k + 1 \).