

COMP 1002

Intro to Logic for Computer Scientists

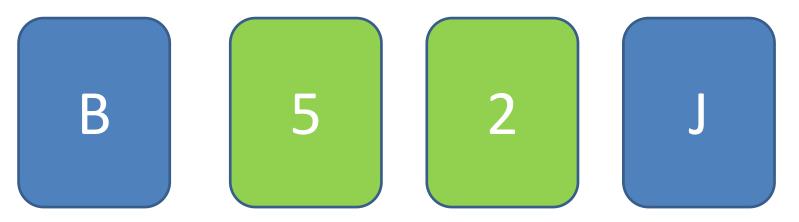
Lecture 6

 On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

 Puzzle 5: You hear a person from the island of knights and knaves say "if I am a knight, then it will rain tomorrow". What can you conclude from this?

More on if..then..

• You see the following cards. Each has a letter on one side and a number on the other.



• Which cards do you need to turn to check that **if** a card **has a J** on it **then** it **has a 5** on the other side?

Contrapositive

- Let $A \rightarrow B$ be an **implication** (if A then B).
 - If a card has a J on one side, it has 5 on the other.
- Its contrapositive is $\neg B \rightarrow \neg A$.
 - If a card does not have 5 on one side, then it cannot have J on the other.
- Contrapositive is equivalent to the original implication: $A \rightarrow B \equiv \neg B \rightarrow \neg A$.
 - This is why we need to check cards with numbers other than 5!
 - $\neg B \rightarrow \neg A \equiv \neg \neg B \lor \neg A$

 $\equiv B \lor \neg A \equiv \neg A \lor B$

Proof vs. disproof

- To prove that something is (always) true:
 - Make sure it holds in every scenario
 - $\neg B \rightarrow \neg A$ is equivalent to $A \rightarrow B$, because

 $\neg B \to \neg A \equiv \neg \neg B \lor \neg A \equiv B \lor \neg A \equiv \neg A \lor B \equiv A \to B$

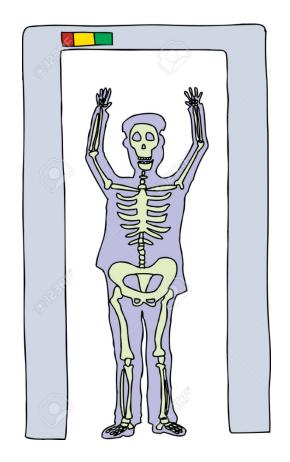
- So $(\neg B \rightarrow \neg A) \leftrightarrow (A \rightarrow B)$ is a tautology.
- I have classes every day that starts with T. I have classes on Tuesday and Thursday (and Monday, but that's irrelevant).
- Or assume it does not hold, and then get something strange as a consequence:
 - To show A is true, enough to show $\neg A \rightarrow FALSE$.
 - Suppose there are finitely many prime numbers. What divides the number that's a product of all primes +1?

Converse and inverse

- Let $A \rightarrow B$ be an **implication** (if A then B).
- Its **converse** is $B \rightarrow A$
 - If a card has 5 on one side, then it has J on the other.
- Converse is **not equivalent** to the original implication! - For $A = true, B = false, A \rightarrow B$ is false, $B \rightarrow A$ is true.
- Converse is **not equivalent** to the negation of $A \to B$ $-\neg(A \to B) \equiv A \land \neg B$.
 - For A=true, B=true, B $\rightarrow A$ is true, but $\neg(A \rightarrow B)$ is false.
- Converse is equivalent to the inverse ¬A → ¬ B of A → B
 - If a card does not have J on one side, it cannot have 5 on the other.

Contrapositive vs. Converse

- "If a person is carrying a weapon, then airport metal detector will ring".
 - Same as "If the airport metal detector does not ring, then the person is not carrying a weapon".
 - Not the same as: "If the airport metal detector rings, then the person is carrying a weapon."
- "If the person is sick, then the test is positive".
- "If he is a murderer, his fingerprints are on the knife".



Contrapositive vs. Converse

- Let A = "person carries a weapon", B = "metal detector rings.
- In statistics, talk about **sensitivity** vs. **specificity**:
 - Sensitivity: percentage of correct positives
 - probability that $A \rightarrow B$
 - that if a person has a weapon, then detector rings:
 - that if the person is sick, then the test is positive
 - 100% sensitive test: catches all weapons/sick (maybe some innocent/healthy, too)
 - Specificity: percentage of correct negatives
 - Probability that $B \rightarrow A$
 - that if the detector rings, then the person has a weapon
 - that if the person is not sick, then the test is negative
 - 100% specific test: catches only weapons/sick (no innocent/healthy, but maybe not all weapons/sick)

If and only if

- A ↔ B ("A if and only if B") is true exactly when both the implication A → B and its converse
 B → A (equivalently, inverse ¬A → ¬B) are true
 - Come to EN-1049 for the lab if and only if you have a time conflict at 11am.
 - If you have a time conflict at 11am,
 - then come to EN-1049
 - And if you don't have a time conflict at 11am,
 - then come to CS-1019 (not to EN-1049)

Proof vs. disproof

- To disprove that something is always true, enough to give just one scenario where it is false (find a falsifying assignment).
 - To disprove that $A \rightarrow B \equiv B \rightarrow A$
 - Take A = true, B = false,
 - Then $A \rightarrow B$ is false, but $B \rightarrow A$ is true.
 - To disprove that $B \rightarrow A \equiv \neg (A \rightarrow B)$
 - Take A=true, B=true
 - Then $B \to A$ is true, but $\neg(A \to B)$ is false.
 - I have classes every day! No, you don't have classes on Saturday
 - Women don't do Computer Science! Me?

Treasure hunt

 In the back of an old cupboard you discover a note signed by a pirate famous for his bizarre sense of humor and love of logical puzzles. In the note he wrote that he had hidden a treasure somewhere on the property. He listed 5 true statements and challenged the reader to use them to figure out the location of the treasure

Treasure hunt

- 1. If this house is next to a lake, then a treasure is not in the kitchen
- 2. If the tree in the font yard is an elm, then the treasure is in the kitchen
- 3. This house is next to a lake
- 4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
- 5. If the tree in the back yard is an oak, then the treasure is in the garage.