

COMP 1002

Intro to Logic for Computer Scientists

Lecture 5

Puzzle 4

I like one of the shapes.

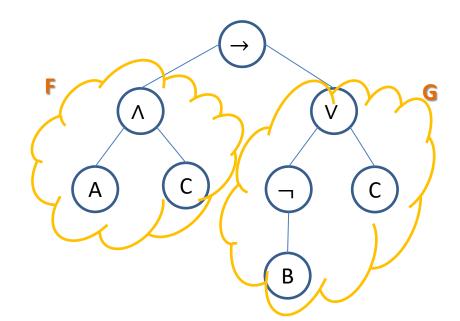
I like one of the colours.

 I like a figure if it has either my favourite shape or my favourite colour.

- I like . What can you say about the rest?
- I might like triangles, or blue things, or both.
- There is one figure I don't like, but not enough information to say which one it is. I might still like

Simplifying formulas

- $A \wedge C \rightarrow (\neg B \vee C)$
 - Order of precedence: \rightarrow is the outermost, that is, the formula is of the form $F \rightarrow G$, where F is $(A \land C)$, and G is $(\neg B \lor C)$.



Simplifying formulas

- $A \wedge C \rightarrow (\neg B \vee C)$
 - $\blacksquare \operatorname{By}(F \to G) \equiv (\neg F \lor G)$
 - equivalent to $\neg (A \land C) \lor (\neg B \lor C)$
 - De Morgan's law
 - $\blacksquare \neg (A \land C)$ is equivalent to $(\neg A \lor \neg C)$
 - So the whole formula becomes
 - $\neg A \lor \neg C \lor \neg B \lor C$
 - But $\neg C \lor C$ is always true!
 - So the whole formula is a tautology.

More useful equivalences

- For any formulas A, B, C:
 - $-TRUE \lor A \equiv TRUE.$ $TRUE \land A \equiv A$
 - $-FALSE \lor A \equiv A.$ $FALSE \land A \equiv FALSE$
 - $A \lor A \equiv A \land A \equiv A$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for Λ .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic
 - $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

Longer example of negation

- Start with the outermost connective and keep applying de Morgan's laws and double negation. Stop when all negations are on variables.
- $\neg ((A \lor \neg B) \rightarrow (\neg A \land C))$
 - $(A \lor \neg B) \land \neg (\neg A \land C)$ (negating \rightarrow)
 - $(A \lor \neg B) \land (\neg \neg A \lor \neg C)$ (de Morgan)
 - $(A \lor \neg B) \land (A \lor \neg C)$ (removing $\neg \neg$)
- Can now simplify further, if we want to.
 - $A \lor (\neg B \land \neg C)$ (taking A outside the parentheses)

Knights and knaves

 On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

 Puzzle 5: You hear a person from the island of knights and knaves say "if I am a knight, then it will rain tomorrow". What can you conclude from this?