

COMP 1002

Intro to Logic for Computer Scientists

Lecture 4

Admin stuff

- Labs starting next week:
 - Section 1: Thursday 9am, CS-1019
 - Section 2: Tuesday 9am, CS-1019
 - If you are on a waiting list, come to Tuesday lab.

- Assignment 1 is posted, due Sep 25th, 10pm
 - Type it up and submit on D2L
 - If you'd like to try setting it in LaTeX, the source is available

Knights and knaves

- On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.
- Puzzle 2: You see three islanders talking to each other, Arnold, Bob and Charlie. You ask Arnold "Are you a knight?", but can't hear what he answered. Bob pitches in: "Arnold said that he is a knave!" and Charlie interjects "Don't believe Bob, he's lying". Out of Bob and Charlie, who is a knight and who is a knave?

Knights and knaves

- Puzzle 2: You see three islanders talking to each other, Arnold, Bob and Charlie.
 - You ask Arnold "Are you a knight?", but can't hear what he answered.
 - Bob pitches in: "Arnold said that he is a knave!" and
 - Charlie interjects "Don't believe Bob, he's lying".
 - Out of Bob and Charlie, who is a knight and who is a knave?
- Look at the sentence "I am a knave". Who of the knights/ knaves can say this?
- If A is "Arnold is a knight" and S is "I am a knave", when is S ↔
 A (what Arnold said is true if and only if he is a knight).
- But also "I am a knave" is the same as saying $\neg A$
- $A \leftrightarrow \neg A$ is a contradiction: it is false no matter what A is.
- So Bob must be lying: Bob is a knave. And Charlie is a knight.

Logical equivalence

- Two formulas F and G are **logically equivalent** $(F \Leftrightarrow G \text{ or } F \equiv G)$ if they have the same value for every row in the truth table on their variables.
 - $-A \land \neg A \equiv False$ (same as saying it is a contradiction)
 - $(\neg A \lor B) \equiv (A \to B)$
 - $-(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$
 - ↔ is sometimes called the "biconditional"
 - ↔ often pronounced as "if and only if", or "iff"
- Useful fact: proving that $F \equiv G$ can be done by proving that $F \leftrightarrow G$ is a tautology

Double negation

- Negation cancels negation
 - $-\neg\neg A \equiv A$
 - "I do not disagree with you" = "I agree with you"
- For a human brain, harder to parse a sentence with multiple negations:
 - Alice says: "I refuse to vote against repealing the ban on smoking in public."
 - Does Alice like smoking in public or hate it?

De Morgan's Laws

- Simplifying negated formulas
 - For AND: $\neg (A \land B)$ is equivalent to $(\neg A \lor \neg B)$
 - For OR: $\neg (A \lor B) \equiv (\neg A \land \neg B)$

Example:

- $-\neg (\neg A \lor B)$ is $\neg \neg A \land \neg B$, same as $A \land \neg B$
- So, since $(A \rightarrow B)$ is equivalent to $(\neg A \lor B)$, $\neg (A \rightarrow B)$ is equivalent to $A \land \neg B$

De Morgan's laws: examples

- Let A be "it's sunny" and B "it's cold".
 - "It's sunny and cold today"! -- No, it's not!
 - That could mean
 - No, it's not sunny.
 - No, it's not cold.
 - No, it's neither sunny nor cold.

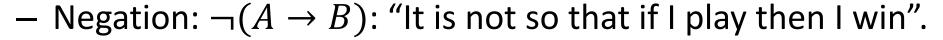
- In all of these scenarios, "It's either not sunny or not cold" is true.
- Let A be "x < 2", B be "x > 4".



- "Either x < 2 or x > 4" No, it is not!
- Then $2 \le x \le 4$

More examples

- Let A be "I play" and B "I win".
 - $A \rightarrow B$: "If I play, then I win"
 - Equivalent to $\neg A \lor B$: "Either I do not play, or I win".



- By de Morgan's law: $\neg(\neg A \lor B) \equiv (\neg \neg A \land \neg B)$
- By double negation: $(\neg \neg A \land \neg B) \equiv (A \land \neg B)$
- So negation of "If I play then I win" is "I play and I don't win".

Longer example of negation

- Start with the outermost connective and keep applying de Morgan's laws and double negation.
- Stop when all negations are on variables.

- $\neg ((A \lor \neg B) \rightarrow (\neg A \land C))$
 - $(A \lor \neg B) \land \neg (\neg A \land C)$ (negating \rightarrow)
 - $(A \lor \neg B) \land (\neg \neg A \lor \neg C)$ (de Morgan)
 - $(A \lor \neg B) \land (A \lor \neg C)$ (removing $\neg \neg$)

Simplifying formulas

- $A \wedge C \rightarrow (\neg B \vee C)$
 - $\blacksquare \operatorname{By}(F \to G) \equiv (\neg F \lor G)$
 - equivalent to $\neg (A \land C) \lor (\neg B \lor C)$
 - De Morgan's law
 - $\neg (A \land C)$ is equivalent to $(\neg A \lor \neg C)$
 - So the whole formula becomes
 - $\neg A \lor \neg C \lor \neg B \lor C$
 - But $\neg C \lor C$ is always true!
 - So the whole formula is a tautology.

More useful equivalences

For any formulas A, B, C:

$$- A \lor \neg A \equiv True$$

$$A \wedge \neg A \equiv False$$

$$- True \lor A \equiv True.$$

$$True \land A \equiv A$$

$$-$$
 False $\vee A \equiv A$.

$$False \land A \equiv False$$

$$- A \lor A \equiv A \land A \equiv A$$

- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for Λ .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic
 - $-(A \wedge B) \vee C \equiv (A \vee C) \wedge (B \vee C)$

Longer example of negation

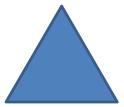
- Start with the outermost connective and keep applying de Morgan's laws and double negation. Stop when all negations are on variables.
- $\neg ((A \lor \neg B) \rightarrow (\neg A \land C)$
 - $(A \lor \neg B) \land \neg (\neg A \land C)$ (negating \rightarrow)
 - $(A \lor \neg B) \land (\neg \neg A \lor \neg C)$ (de Morgan)
 - $(A \lor \neg B) \land (A \lor \neg C)$ (removing $\neg \neg$)
- Can now simplify further, if we want to.
 - $A \lor (\neg B \land \neg C)$ (taking A outside the parentheses)

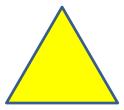
Puzzle 4

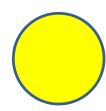
I like one of the shapes.

I like one of the colours.

 I like a figure if it has either my favourite shape or my favourite colour.







• I like ____. What can you say about the rest?