COMP 1002

Logic for Computer Scientists

Lecture 30

i
E’-l-;i_

ye

T

Analysis of algorithms

e Putting it all together:
— Using logic to describe what an algorithm is doing

— and induction to show that it does that correctly

— Using recurrence relations to see how long it takes in
the worst case.

e With O-notation to talk about the time.

— and probabilities/expectation to try to see how long
it might take on average.

Example: search in an array

4

¢ A

lb'f J
n-1

* Given:
— an array A containing n elements, ‘ ‘
d ific it , w v
and a specific item x @Qg

VY

w

e Goal: find the index of x in A, if x is in A.
— Which box contains%g? Box 4. @
-~

Example: search in an array

4

¢ A

lb'f J
n-1

* Given:
— an array A containing n elements, ‘ ‘
d ific it , w v
and a specific item x @Qg

VY

w

e Goal: find the index of x in A, if x is in A.
— Which box contains%g? Box 4. @
-~

Example: search in an array

Ssg ig
P8 B S -

3 4 5 n-1

* Precondition: what should be true before a piece
of code (or the whole algorithm) starts

— E.g.: Ais an array of numbers and A is not empty and
X is @ number.

e Postcondition: what should be true after a
program (piece of code) finished. %)

— E.g. If the program returned value k, then A[k]=x
e or k=-1, if xis notin A. ‘

Example: search in an array

.y
) 1%3@‘ 2B B @D @
5,,) i..-:# E..a ; F o = |

4 5 n-1

* Precondition: A is an array containing x

e Postcondition: Returned k such that A[k]=x

-

i@ Example: search in an array

53@‘053 %—1 % s Py Q%J

v‘
0 1 3

. Precond/t/on. A s an array containing X

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

out=-1
while out <0 do
if A[l] = x then
out =i
I=i+1
return out

e Postcondition: Returned k such that A[k]=x

arraySearch algorithm

Algorithm arraySearch(A, x)

Input array A of n integers, number x
Output k such that A[k]=x
Jie{0..n—1} Ali] =x

i=0
out=-1

Jie{0..n—1} Ali]=x Ai=0Aout =-1
while out <0 do
If A[i] = x then
out =i
I=1+1
Alout] = x

return out

Program returned k such that A[k]=x

e A=[510,8,7]
e x=8
e out=2

Loop invariant

Loop invariant: a condition that is true on each iteration of the loop

— Implied by loop precondition
— Implies the loop postcondition
— Implies next loop iteration is correct

I(k): i =k A((out =i ANAlout] =x)Vv (3j > i Alj] = x))

Guard condition: condition in the while loop
— G= “out <0”

Loop is correct when:
— precondition — 1(0)
— forallk, GAI(k) » I(k+ 1)
— If kg is the smallest number such that =G,
then =G A I(ky) — postcondition

Termination: proof that 3 k such that after

k, iterations G becomes false

Jie{0..n—1} Ali] =x A
ANil=0Aout =-1

while out <0 do
if A[i] = x then
out =1
I=1+1

Alout] = x

Proving the loop invariant

Jie{0..n—1} Ali]=x A
.) i ANil=0Aout=-1
By induction on i:
Base case: 1(0) while out <0 do
if Ali] = x th
_ 3i€{0.n—1}Ali]=xAi=0A ! ['Lut’;ie”
Aout = —1 i = i+1
Implies 1(0)
Alout] = x

— i=0A((out =0 AAJout] =x)v (@j >i Alj] =x))
Assume I(k): i = k A ((out =i ANAlout] =x) Vv (3] >1 Alj] = x))

Show: if G, then I(k+1): i =k + 1 A ((out =i AAlout] =x)Vv (3j > i Alj] = x))
e i=k+1 because of “i=i+1” statement

e If Ali]=x, then (out =i A Alout] = x) holds

e Otherwise, (3j > i Alj| = x) holds.

Otherwise, if =G, postcondition holds:
* inthis case, (out =i A Alout| = x) should have been true in I(k), for i=k.
e So Alout]=x

Correctness of recursive programs

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x, -1 if no such k

if A[0] = x then
return O

else if n> 1 then
first = arraySearch(A[O..g —1],x)
second =arraySearch(A[n/2, n — 1], x)

if second > 0 then
return second+n/2 arraySearch([9] ,5)
else
return first
else
return -1

arraySearch([9,3,5,8] ,5)

arraySearch([3] ,5) arraySearch([5] ,5) arraySearch([8] ,5)

Use strong induction!
Assume both calls return correct value
Show that the program returns correct value

7 Running time: worst case

e 1
2508 B @5
w > w | oo | 2g A
0 4

1 2 3

e Precondition: A is an
array containing x

— Therefore, in the worst
scenario need to check
all n boxes Ali]

— Running time: O(n)

5

-

\v_: !
n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

=0
out=-1
while out <0 do
If A[i] = x then
out =i
i=i+1
return out

,<Q Running time: average case

@9“3%3 %) %‘3@3

o » g
0 1 2 3 4 5

e What is the expected
number of steps before x
is found?

— Depends on the probability
of x being in each cell.

— Or whether there is only
one X, or can be many

-
4

2

n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

=0
out=-1
while out <0 do
If A[i] = x then
out =i
i=i+1
return out

L (P
Bernoulli trials and w‘f b

repeated experiments

e Suppose an experiment has two outcomes, 1 and O (success/failure), with
Pr(1) =

— Such experiment is called a Bernoulli trial.

 What happens if the experiment is repeated multiple times (independently
from each other?)

— A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples
of elements in {0,1} (or {success, fail}).

— Number of n-tuples with k 1s is ()
— Probability of getting 1 in any given trial is p, of getting O is (1-p).

— Probability of getting exactly k 1s (successes) out of n trials is (Z)pk(l —p)nk
e (Called binomial distribution

— Probability of getting the first success on exactly the k" trial is p(1 — p)*~1

e How many trials do we need, on average, to get a success?

XQ Running time: average case

%)@“3%9 %3 %‘)f‘i‘

1 2 3 4 s
Suppose probability of x being in
any cell is p

— Can have many x in A
Then probab///ty of f/nd/ng xin k
steps is p(1 — p)*

Let random variable X denote
the number of loop iterations
till x is found

E(X)=Z;cy i * Pr(X = i) = %
Expect to find x in O(1/p) steps

-

o

™)

n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i=0
out =-1
while out <0 do
If A[i] = x then
out =i
i=i+1
return out

KQ Running time: average case

f @@mgg L

1 2 3 4 5

Suppose there is just one x in A

Probability of finding x in each step is %

Let random variable X denote the
number of loop iterations till x is found

E(X) = S i Pr(X = i) =37,
= (n+1)/2

Expect to find x in the middle of A
Running time O(n)

-

n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

=0
out=-1
while out <0 do
If A[i] = x then
out =i
i=i+1
return out

More to come...’

1 2 wh, g
tf .:j.:

* You will see a lot of algorithm analysis and use of the =
concepts we developed in COMP 2002 and beyond. g

— Logic, sets, relations and graphs for specification, modeling
problems and describing what you are doing.

— Logic, induction and models of computation for proving
program correctness and analysis of problem complexity.

— Recursive definitions of algorithms, counting and probability for
algorithm performance and problem solving.

e With the million dollar problem rearing its head every now and then

~ K y =

	COMP 1002��Logic for Computer Scientists�
	Analysis of algorithms
	Example: search in an array
	Example: search in an array
	Example: search in an array
	Example: search in an array
	Example: search in an array
	arraySearch algorithm
	Loop invariant
	Proving the loop invariant
	Correctness of recursive programs
	Running time: worst case
	Running time: average case
	Bernoulli trials and �repeated experiments
	Running time: average case
	Running time: average case
	More to come…

