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Analysis of algorithms 

• Putting it all together:  
– Using logic to describe what an algorithm is doing 

 
– and  induction to show that it does that correctly 

 
– Using recurrence relations to see how long it takes in 

the worst case.  
• With O-notation to talk about the time.  

 
– and probabilities/expectation to try to see how long 

it might take on average.  



Example: search in an array 

• Given:   
– an array A containing n elements,  
– and a specific item x 

 
• Goal: find the index of x in A, if x is in A.   

– Which box contains        ?   Box 4.      
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Example: search in an array 

• Precondition:  what should be true before a piece 
of code (or the whole algorithm) starts 
– E.g.: A is an array of numbers and  A is not empty and  

x is a number.  
 

• Postcondition:  what should be true after a 
program (piece of code) finished.   
– E.g.  If the program returned value k, then A[k]=x 

• or  k=-1,  if x is not in A.  
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Example: search in an array 

• Precondition: A is an array containing x 
 
 
 

• Postcondition: Returned k such that A[k]=x  
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Example: search in an array 

• Precondition: A is an array containing x 
 
 
 
 
 
 
 

• Postcondition: Returned k such that A[k]=x  
 

 

Algorithm arraySearch(A, x)  
Input array A of n integers, number x 
Output k such that A[k]=x 
 
i = 0 
out = -1 
 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i  
  i = i+1 
 
return out 
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arraySearch algorithm 
• A = [5,10,8,7] 
• x = 8  
• out = 2 

 
 
 
 
 

 

Algorithm arraySearch(A, x)  
Input array A of n integers, number x 
Output k such that A[k]=x 
 
∃𝑖 ∈ 0 …𝑛 − 1   𝐴 𝑖 = 𝑥  
 
i = 0 
out = -1  
 
∃𝑖 ∈ 0 …𝑛 − 1   𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 𝑜𝑜𝑜 = −1  
 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i  
         i = i+1 
 
𝐴 𝑜𝑜𝑜 = 𝑥   
 
return out 
 
Program returned k such that A[k]=x 
 



Loop invariant 
• Loop invariant: a condition that is true on each iteration of the loop 

– Implied by loop precondition 
– Implies the loop postcondition 
– Implies next loop iteration is correct  

 
• I(k):  𝑖 = 𝑘 ∧ ( 𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖  𝐴 𝑗 = 𝑥))  

 
• Guard condition:  condition in the while loop 

– G= “out <0” 
 

• Loop is correct when:  
– precondition  → I(0)  
– for all k,  G ∧ I k → I k + 1  
–  If k0 is the smallest number such that ¬𝐺,  
      then ¬𝐺 ∧ 𝐼 𝑘0 → postcondition 
 

•  Termination: proof that ∃ k0 such that after 
         k0 iterations G becomes false 
 

∃𝑖 ∈ 0 …𝑛 − 1   𝐴 𝑖 = 𝑥 ∧  
∧  𝑖 = 0 ∧ 𝑜𝑜𝑜 = −1  
 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i     
 i = i+1 
 
𝐴 𝑜𝑜𝑜 = 𝑥   



Proving the loop invariant 
∃𝑖 ∈ 0 …𝑛 − 1   𝐴 𝑖 = 𝑥 ∧  
∧  𝑖 = 0 ∧ 𝑜𝑜𝑜 = −1  
 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i  
         i = i+1 
 
𝐴 𝑜𝑜𝑜 = 𝑥   

• By induction on i: 
• Base case: I(0) 

– ∃𝑖 ∈ 0 …𝑛 − 1   𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 
∧ 𝑜𝑜𝑜 = −1 

                          Implies  I(0)   
 
– 𝑖 = 0 ∧ ( 𝑜𝑜𝑜 = 0 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖  𝐴 𝑗 = 𝑥))  

 
• Assume I(k):  𝑖 = 𝑘 ∧ ( 𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖  𝐴 𝑗 = 𝑥)) 

 
• Show:  if 𝐺,  then I(k+1):  𝑖 = 𝑘 + 1 ∧ ( 𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖  𝐴 𝑗 = 𝑥)) 

• i=k+1 because of “i=i+1” statement 
• If A[i]=x, then 𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥  holds 
• Otherwise, (∃𝑗 > 𝑖  𝐴 𝑗 = 𝑥) holds.  

 
– Otherwise, if ¬𝐺,  postcondition holds:  

• in this case, 𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥   should have been true in I(k), for i=k.  
• So A[out]=x 

 
 
 



Correctness of recursive programs 
Algorithm arraySearch(A, x)  
Input array A of n integers, number x 
Output k such that A[k]=x, -1 if no such k 
 
if A[0]  =  x  then 
     return 0  
 
else if  n > 1 then  
      first  = arraySearch(A[0..𝒏

𝟐
− 𝟏],𝒙) 

      second  = arraySearch(A[n/2, 𝒏 − 𝟏],𝒙) 
 
      if second > 0 then 
            return second+𝒏/𝟐 
      else 
            return first 
else 
      return -1 
 
 

arraySearch([9,3,5,8] ,5) 

arraySearch([9,3] ,5) arraySearch([5,8] ,5) 

arraySearch([9] ,5) arraySearch([5] ,5) arraySearch([8] ,5) arraySearch([3] ,5) 

Use strong induction!  
Assume both calls return correct value 
Show that the program returns correct value  

0 -1 -1 -1 

-1 0 

2 



Running time: worst case  

• Precondition: A is an 
array containing x 
– Therefore, in the worst 

scenario need to check 
all n boxes A[i]  

– Running time: O(n) 

 
 

Algorithm arraySearch(A, x)  
Input array A of n integers, number x 
Output k such that A[k]=x 
 
i = 0 
out = -1 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i  
  i = i+1 
return out 
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Running time: average case  

• What is the expected 
number of steps before x 
is found?  
– Depends on the probability 

of x being in each cell.  
– Or whether there is only 

one x, or can be many  
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Algorithm arraySearch(A, x)  
Input array A of n integers, number x 
Output k such that A[k]=x 
 
i = 0 
out = -1 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i  
  i = i+1 
return out 



Bernoulli trials and   
repeated experiments 

• Suppose an experiment has two outcomes, 1 and 0 (success/failure), with 
Pr(1) = p.  
– Such experiment is called a Bernoulli trial.  

• What happens if the experiment is repeated multiple times (independently 
from each other?) 

 
 
 
 

– A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples 
of elements in {0,1} (or {success, fail}).   

– Number of n-tuples with k 1s is 𝑛
𝑘  

– Probability of getting 1 in any given  trial is p, of getting 0 is  (1-p). 
– Probability of getting exactly k 1s (successes) out of n trials is 𝑛

𝑘 𝑝𝑘 1− 𝑝 𝑛−𝑘 
• Called binomial distribution 

– Probability of getting the first success on exactly the 𝑘𝑡ℎ trial is 𝑝 1 − 𝑝 𝑘−1 
 

• How many trials do we need, on average, to get a success? 
 

 



Running time: average case  

• Suppose probability of x being in 
any cell is p 
– Can have many x in A 

• Then probability of finding x in k 
steps is 𝑝 1 − 𝑝 𝑘−1 

• Let random variable X denote 
the number of  loop iterations 
till x is found 

• E(X) = Σ𝑖∈ℕ 𝑖 ∗ Pr 𝑋 = 𝑖 = 1
𝑝

  
• Expect to find x in O(1/p) steps 
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Algorithm arraySearch(A, x)  
Input array A of n integers, number x 
Output k such that A[k]=x 
 
i = 0 
out = -1 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i  
  i = i+1 
return out 



Running time: average case  

• Suppose there is just one x in A 
• Probability of finding x in each step is  1

𝑛
 

 
• Let random variable X denote the 

number of  loop iterations till x is found 
• E(X) = Σ𝑖=𝑛 𝑖 ∗ Pr 𝑋 = 𝑖 = 1

𝑛
Σ𝑖=1𝑛 𝑖

= (𝑛 + 1)/2 
 

• Expect to find x in the middle of A  
• Running time O(n) 
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Algorithm arraySearch(A, x)  
Input array A of n integers, number x 
Output k such that A[k]=x 
 
i = 0 
out = -1 
while  out < 0 do 
 if A[i]  =  x  then 
  out  = i  
  i = i+1 
return out 



More to come…  

• You will see a lot of algorithm analysis and use of the 
concepts we developed in COMP 2002 and beyond.  
– Logic, sets, relations and graphs  for specification, modeling 

problems  and describing what you are doing.   
– Logic, induction and models of computation for  proving 

program correctness and analysis of  problem complexity.    
– Recursive definitions of algorithms, counting and probability for 

algorithm performance and problem solving.  
• With the million dollar problem rearing its head every now and then 
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