

Lecture 30

COMP 1002

Logic for Computer Scientists

B J 2 5

Analysis of algorithms

• Putting it all together:
– Using logic to describe what an algorithm is doing

– and induction to show that it does that correctly

– Using recurrence relations to see how long it takes in

the worst case.
• With O-notation to talk about the time.

– and probabilities/expectation to try to see how long

it might take on average.

Example: search in an array

• Given:
– an array A containing n elements,
– and a specific item x

• Goal: find the index of x in A, if x is in A.

– Which box contains ? Box 4.

0 1 2 3 4 5 n-1

Example: search in an array

• Given:
– an array A containing n elements,
– and a specific item x

• Goal: find the index of x in A, if x is in A.

– Which box contains ? Box 4.

0 1 2 3 4 5 n-1

Example: search in an array

• Precondition: what should be true before a piece
of code (or the whole algorithm) starts
– E.g.: A is an array of numbers and A is not empty and

x is a number.

• Postcondition: what should be true after a
program (piece of code) finished.
– E.g. If the program returned value k, then A[k]=x

• or k=-1, if x is not in A.

0 1 2 3 4 5 n-1

Example: search in an array

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x

0 1 2 3 4 5 n-1

Example: search in an array

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do
 if A[i] = x then
 out = i
 i = i+1

return out

0 1 2 3 4 5 n-1

arraySearch algorithm
• A = [5,10,8,7]
• x = 8
• out = 2

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

∃𝑖 ∈ 0 …𝑛 − 1 𝐴 𝑖 = 𝑥

i = 0
out = -1

∃𝑖 ∈ 0 …𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 𝑜𝑜𝑜 = −1

while out < 0 do
 if A[i] = x then
 out = i
 i = i+1

𝐴 𝑜𝑜𝑜 = 𝑥

return out

Program returned k such that A[k]=x

Loop invariant
• Loop invariant: a condition that is true on each iteration of the loop

– Implied by loop precondition
– Implies the loop postcondition
– Implies next loop iteration is correct

• I(k): 𝑖 = 𝑘 ∧ (𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Guard condition: condition in the while loop

– G= “out <0”

• Loop is correct when:
– precondition → I(0)
– for all k, G ∧ I k → I k + 1
– If k0 is the smallest number such that ¬𝐺,
 then ¬𝐺 ∧ 𝐼 𝑘0 → postcondition

• Termination: proof that ∃ k0 such that after
 k0 iterations G becomes false

∃𝑖 ∈ 0 …𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑜𝑜 = −1

while out < 0 do
 if A[i] = x then
 out = i
 i = i+1

𝐴 𝑜𝑜𝑜 = 𝑥

Proving the loop invariant
∃𝑖 ∈ 0 …𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑜𝑜 = −1

while out < 0 do
 if A[i] = x then
 out = i
 i = i+1

𝐴 𝑜𝑜𝑜 = 𝑥

• By induction on i:
• Base case: I(0)

– ∃𝑖 ∈ 0 …𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧
∧ 𝑜𝑜𝑜 = −1

 Implies I(0)

– 𝑖 = 0 ∧ (𝑜𝑜𝑜 = 0 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Assume I(k): 𝑖 = 𝑘 ∧ (𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Show: if 𝐺, then I(k+1): 𝑖 = 𝑘 + 1 ∧ (𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• i=k+1 because of “i=i+1” statement
• If A[i]=x, then 𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 holds
• Otherwise, (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥) holds.

– Otherwise, if ¬𝐺, postcondition holds:

• in this case, 𝑜𝑜𝑜 = 𝑖 ∧ 𝐴 𝑜𝑜𝑜 = 𝑥 should have been true in I(k), for i=k.
• So A[out]=x

Correctness of recursive programs
Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x, -1 if no such k

if A[0] = x then
 return 0

else if n > 1 then
 first = arraySearch(A[0..𝒏

𝟐
− 𝟏],𝒙)

 second = arraySearch(A[n/2, 𝒏 − 𝟏],𝒙)

 if second > 0 then
 return second+𝒏/𝟐
 else
 return first
else
 return -1

arraySearch([9,3,5,8] ,5)

arraySearch([9,3] ,5) arraySearch([5,8] ,5)

arraySearch([9] ,5) arraySearch([5] ,5) arraySearch([8] ,5) arraySearch([3] ,5)

Use strong induction!
Assume both calls return correct value
Show that the program returns correct value

0 -1 -1 -1

-1 0

2

Running time: worst case

• Precondition: A is an
array containing x
– Therefore, in the worst

scenario need to check
all n boxes A[i]

– Running time: O(n)

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do
 if A[i] = x then
 out = i
 i = i+1
return out

0 1 2 3 4 5 n-1

Running time: average case

• What is the expected
number of steps before x
is found?
– Depends on the probability

of x being in each cell.
– Or whether there is only

one x, or can be many

0 1 2 3 4 5 n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do
 if A[i] = x then
 out = i
 i = i+1
return out

Bernoulli trials and
repeated experiments

• Suppose an experiment has two outcomes, 1 and 0 (success/failure), with
Pr(1) = p.
– Such experiment is called a Bernoulli trial.

• What happens if the experiment is repeated multiple times (independently
from each other?)

– A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples
of elements in {0,1} (or {success, fail}).

– Number of n-tuples with k 1s is 𝑛
𝑘

– Probability of getting 1 in any given trial is p, of getting 0 is (1-p).
– Probability of getting exactly k 1s (successes) out of n trials is 𝑛

𝑘 𝑝𝑘 1− 𝑝 𝑛−𝑘
• Called binomial distribution

– Probability of getting the first success on exactly the 𝑘𝑡ℎ trial is 𝑝 1 − 𝑝 𝑘−1

• How many trials do we need, on average, to get a success?

Running time: average case

• Suppose probability of x being in
any cell is p
– Can have many x in A

• Then probability of finding x in k
steps is 𝑝 1 − 𝑝 𝑘−1

• Let random variable X denote
the number of loop iterations
till x is found

• E(X) = Σ𝑖∈ℕ 𝑖 ∗ Pr 𝑋 = 𝑖 = 1
𝑝

• Expect to find x in O(1/p) steps

0 1 2 3 4 5 n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do
 if A[i] = x then
 out = i
 i = i+1
return out

Running time: average case

• Suppose there is just one x in A
• Probability of finding x in each step is 1

𝑛

• Let random variable X denote the

number of loop iterations till x is found
• E(X) = Σ𝑖=𝑛 𝑖 ∗ Pr 𝑋 = 𝑖 = 1

𝑛
Σ𝑖=1𝑛 𝑖

= (𝑛 + 1)/2

• Expect to find x in the middle of A
• Running time O(n)

0 1 2 3 4 5 n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do
 if A[i] = x then
 out = i
 i = i+1
return out

More to come…

• You will see a lot of algorithm analysis and use of the
concepts we developed in COMP 2002 and beyond.
– Logic, sets, relations and graphs for specification, modeling

problems and describing what you are doing.
– Logic, induction and models of computation for proving

program correctness and analysis of problem complexity.
– Recursive definitions of algorithms, counting and probability for

algorithm performance and problem solving.
• With the million dollar problem rearing its head every now and then

	COMP 1002��Logic for Computer Scientists�
	Analysis of algorithms
	Example: search in an array
	Example: search in an array
	Example: search in an array
	Example: search in an array
	Example: search in an array
	arraySearch algorithm
	Loop invariant
	Proving the loop invariant
	Correctness of recursive programs
	Running time: worst case
	Running time: average case
	Bernoulli trials and �repeated experiments
	Running time: average case
	Running time: average case
	More to come…

