COMP 1002

Logic for Computer Scientists

Lecture 30
Analysis of algorithms

• Putting it all together:
 – Using **logic** to describe what an algorithm is doing
 – and **induction** to show that it does that correctly
 – Using **recurrence** relations to see how long it takes in the worst case.
 • With **O-notation** to talk about the time.
 – and **probabilities**/**expectation** to try to see how long it might take on average.
Example: search in an array

- Given:
 - an array A containing n elements,
 - and a specific item x

- Goal: find the index of x in A, if x is in A.
 - Which box contains ? Box 4.
Example: search in an array

• Given:
 – an array A containing n elements,
 – and a specific item x

• Goal: find the index of x in A, if x is in A.
Example: search in an array

- **Precondition**: what should be true before a piece of code (or the whole algorithm) starts
 - E.g.: A is an array of numbers and A is not empty and x is a number.

- **Postcondition**: what should be true after a program (piece of code) finished.
 - E.g. If the program returned value k, then A[k]=x
 - or k=-1, if x is not in A.
Example: search in an array

- **Precondition**: A is an array containing x

- **Postcondition**: Returned k such that A[k]=x
Example: search in an array

- **Precondition**: A is an array containing x

```plaintext
Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do
    if A[i] = x then
        out = i
        i = i+1

return out
```

- **Postcondition**: Returned k such that A[k]=x
arraySearch algorithm

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

∃i ∈ {0 ... n − 1} A[i] = x

i = 0
out = -1

∃i ∈ {0 ... n − 1} A[i] = x ∧ i = 0 ∧ out = -1

while out < 0 do
 if A[i] = x then
 out = i
 i = i+1
 A[out] = x

return out

Program returned k such that A[k]=x

• A = [5,10,8,7]
• x = 8
• out = 2
Loop invariant

- **Loop invariant:** a condition that is true on each iteration of the loop
 - Implied by loop precondition
 - Implies the loop postcondition
 - Implies next loop iteration is correct

- \(I(k): \quad i = k \land ((out = i \land A[\text{out}] = x) \lor (\exists j > i \ A[j] = x)) \)

- **Guard condition:** condition in the while loop
 - \(G = \text{"out <0"} \)

- Loop is correct when:
 - precondition \(\rightarrow I(0) \)
 - for all \(k \), \(G \land I(k) \rightarrow I(k + 1) \)
 - If \(k_0 \) is the smallest number such that \(\neg G \),
 then \(\neg G \land I(k_0) \rightarrow \text{postcondition} \)

- **Termination:** proof that \(\exists k_0 \) such that after \(k_0 \) iterations \(G \) becomes false

\[
\exists i \in \{0 \ldots n-1\} \; A[i] = x \land i = 0 \land out = -1
\]

\[
\text{while } out < 0 \text{ do}
\]
\[
\quad \text{if } A[i] = x \text{ then}
\]
\[
\text{out} = i
\]
\[
\text{i} = i + 1
\]

\(A[\text{out}] = x \)
Proving the loop invariant

• By induction on i:
 • Base case: I(0)
 - \(\exists i \in \{0 \ldots n-1\} \ A[i] = x \land i = 0 \land \)
 - \land out = -1
 - Implies I(0)

 - \(i = 0 \land ((out = 0 \land A[out] = x) \lor (\exists j > i \ A[j] = x)) \)

• Assume I(k): \(i = k \land ((out = i \land A[out] = x) \lor (\exists j > i \ A[j] = x)) \)

• Show: if \(\neg G \), then I(k+1): \(i = k + 1 \land ((out = i \land A[out] = x) \lor (\exists j > i \ A[j] = x)) \)
 • \(i = k + 1 \) because of “i=i+1” statement
 • If \(A[i] = x \), then \((out = i \land A[out] = x) \) holds
 • Otherwise, \((\exists j > i \ A[j] = x) \) holds.

 • Otherwise, if \(\neg G \), postcondition holds:
 • in this case, \((out = i \land A[out] = x) \) should have been true in I(k), for \(i = k \).
 • So \(A[\text{out}] = x \)
Correctness of recursive programs

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x, -1 if no such k

if A[0] = x then
 return 0
else if n > 1 then
 first = arraySearch(A[0..n/2−1], x)
 second = arraySearch(A[n/2..n−1], x)
 if second > 0 then
 return second+n/2
 else
 return first
else
 return -1

Use strong induction!
Assume both calls return correct value
Show that the program returns correct value
Running time: worst case

- **Precondition**: A is an array containing \(x \)
 - Therefore, in the worst scenario need to check all \(n \) boxes \(A[i] \)
 - Running time: \(O(n) \)

Algorithm `arraySearch(A, x)`

Input array \(A \) of \(n \) integers, number \(x \)

Output \(k \) such that \(A[k] = x \)

\[
i = 0 \\
\text{out} = -1 \\
\textbf{while } \text{out} < 0 \textbf{ do} \\
\quad \textbf{if } A[i] = x \textbf{ then} \\
\quad\quad \text{out} = i \\
\quad \quad i = i + 1 \\
\textbf{return } \text{out}
\]
Running time: average case

- What is the expected number of steps before x is found?
 - Depends on the probability of x being in each cell.
 - Or whether there is only one x, or can be many

Algorithm $\text{arraySearch}(A, x)$

Input array A of n integers, number x

Output k such that $A[k]=x$

$i = 0$
$out = -1$

while $out < 0$ do
 if $A[i] = x$ then
 $out = i$
 $i = i+1$

return out
Bernoulli trials and repeated experiments

- Suppose an experiment has two outcomes, 1 and 0 (success/failure), with \(\Pr(1) = p \).
 - Such experiment is called a **Bernoulli trial**.
- What happens if the experiment is repeated multiple times (independently from each other?)
 - A sample space after carrying out \(n \) Bernoulli trials is a set of all possible \(n \)-tuples of elements in \{0,1\} (or \{success, fail\}).
 - Number of \(n \)-tuples with \(k \) 1s is \(\binom{n}{k} \)
 - Probability of getting 1 in any given trial is \(p \), of getting 0 is \(1-p \).
 - Probability of getting exactly \(k \) 1s (successes) out of \(n \) trials is \(\binom{n}{k}p^k(1-p)^{n-k} \)
 - Called binomial distribution
 - Probability of getting the first success on exactly the \(k^{th} \) trial is \(p(1-p)^{k-1} \)
- How many trials do we need, on average, to get a success?
Running time: average case

- Suppose probability of x being in any cell is p
 - Can have many x in A
- Then probability of finding x in k steps is $p(1 - p)^{k-1}$
- Let random variable X denote the number of loop iterations till x is found
- $E(X) = \Sigma_{i \in \mathbb{N}} i \cdot \Pr(X = i) = \frac{1}{p}$
- Expect to find x in $O(1/p)$ steps

Algorithm `arraySearch(A, x)`
Input array A of n integers, number x
Output k such that $A[k]=x$

$i = 0$
out = -1
while out < 0 do
 if $A[i] = x$ then
 out = i
 $i = i + 1$
return out
Running time: average case

• Suppose there is just one \(x \) in \(A \)
• Probability of finding \(x \) in each step is \(\frac{1}{n} \)
• Let random variable \(X \) denote the number of loop iterations till \(x \) is found
• \(E(X) = \Sigma_{i=n}^i \cdot Pr(X=i) = \frac{1}{n} \Sigma_{i=1}^n i \)
 \(= (n + 1)/2 \)
• Expect to find \(x \) in the middle of \(A \)
• Running time \(O(n) \)

Algorithm \textit{arraySearch}(A, x)
\begin{align*}
\text{Input} & \quad \text{array } A \text{ of } n \text{ integers, number } x \\
\text{Output} & \quad k \text{ such that } A[k]=x \\
& \text{ } \\
i & = 0 \\
\text{out} & = -1 \\
\text{while} \quad \text{out} < 0 \quad \text{do} \\
& \quad \text{if } A[i] = x \quad \text{then} \\
& \quad \quad \text{out} = i \\
& \quad \quad i = i+1 \\
\text{return} \quad \text{out} \\
\end{align*}
More to come...

• You will see a lot of algorithm analysis and use of the concepts we developed in COMP 2002 and beyond.
 – Logic, sets, relations and graphs for specification, modeling problems and describing what you are doing.
 – Logic, induction and models of computation for proving program correctness and analysis of problem complexity.
 – Recursive definitions of algorithms, counting and probability for algorithm performance and problem solving.
• With the million dollar problem rearing its head every now and then

Have fun!