

COMP 1002

Intro to Logic for Computer Scientists

Lecture 3

 On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

 Puzzle 1: You meet two people on the island, Arnold and Bob. Arnold says "Either I am a knave, or Bob is a knight". Is Arnold a knight or a knave? What about Bob?

Knights and knaves

- Puzzle 1: You meet two people on the island, Arnold and Bob. Arnold says "Either I am a knave, or Bob is a knight". Is Arnold a knight or a knave? What about Bob?
 - A: Arnold is a knight
 - B: Bob is a knight
 - Formula: $\neg A \lor B$: "Either Arnold is a knave, or Bob is a knight"
 - Want: scenarios where either both A is a knight and the formula is true, or A is a knave and the formula is false. Use "if and only if" notation: $(\neg A \lor B) \leftrightarrow A$. True if both formulas have same value

Α	В	$\neg A$	$\neg A \lor B$	$(\neg A \lor B) \leftrightarrow A$
True	True	False	True	True
True	False	False	False	False
False	True	True	True	False
False	False	True	True	False

Special types of sentences

- A sentence that has a satisfying assignment is **satisfiable**.
 - Some row in the truth table ends with True.
 - Example: $B \rightarrow A$
- Sentence is a **contradiction**:
 - All assignments are falsifying.
 - All rows end with False.
 - Example: $A \land \neg A$
- Sentence is a **tautology**:
 - All assignments are satisfying
 - All rows end with True.
 - Example: $B \rightarrow A \lor B$

Α	В	$B \rightarrow A$	
True	True	True	
True	False	True	
False	True	False	
False	False	True	

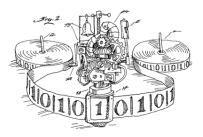
Α	$A \land \neg A$	
True	False	
False	False	

Α	В	A ∨ B	$B \to A \lor \boldsymbol{B}$
True	True	True	True
True	False	True	True
False	True	True	True
False	False	False	True

Determining formula type

- How long does it take to check if a formula is satisfiable?
 - If somebody gives you a satisfying assignment, then in time roughly the size of the formula.
 - On a m-symbol formula, take time O(m) = constant * m, for some constant depending on the computer/software.
 - What if you don't know a satisfying assignment? How hard it is to find it?
 - Using a truth table: in time $O(m * 2^n)$ on a length m n-variable formula.
 - Is it efficient?...

Complexity of computation



- Would you still consider a problem really solvable if it takes very long time?
 - Say 10ⁿ steps on an n-symbol string?
 - At a billion (10⁹) steps per second (~1GHz)?
 - To process a string of length 100...
 - will take $10^{100}/10^9$ seconds, or ~3x10⁷² centuries.

- Age of the universe: about 1.38x10¹⁰ years.
- Atoms in the observable universe: 10⁷⁸-10⁸².

Complexity of computation

- What strings do we work with in real life?
 - A DNA string has 3.2×10^9 base pairs
 - A secure key in crypto: 128-256 bits
 - Number of Walmart transactions per day: 10⁶.
 - URLs searched by Google in 2012: $3x10^{12}$.

Determining formula type

- How long does it take to check if a formula is satisfiable?
 - Using a truth table: in time $O(m * 2^n)$ on a length m n-variable formula.
 - Is it efficient?
 - Not really!

- Formula with 100 variables is already too big!
- In software verification: millions of variables!
- Can we do better?

A million-dollar question!

Formula simplification

- Equivalent formulas:
 - Have the same truth table.
- If two formulas F and G are equivalent, then can substitute F for G (and vice versa) in any formula H.
 - $A \wedge C \rightarrow (\neg B \vee C)$
 - We know: $(p \rightarrow q)$ is equivalent to $(\neg p \lor q)$

 $-A \wedge C \rightarrow (\neg B \vee C)$ is equivalent to: $\neg (A \wedge C) \vee (\neg B \vee C)$

• But now it looks inconvenient, with that negation on the outside... Can we make it simpler?

Negation example

- "It's sunny and cold today"! -- No, it's not!
- That could mean
 - No, it's not sunny.
 - No, it's not cold.
 - No, it's neither sunny nor cold.
- In all of these scenarios, "It's either not sunny or not cold" is true.

The law of excluded middle

- In classical logic, the law of excluded middle say that either a statement or its opposite must be true.
- But here by the opposite we really mean a negation
 - A: It is sunny.

- ¬A: It is not sunny
- A: Today is Tuesday.
- ¬A : Today is not Tuesday
- A: John votes for NDP.
 - A: John does not vote for NDP
- A: You are with us
- ¬A : You are not with us.

De Morgan's Laws

- What is the negation of a longer logic statement?
 Take a truth table column and flip all the values.
- Some useful simplifications: De Morgan's laws. – For AND: $\neg (A \land B)$ is equivalent to $(\neg A \lor \neg B)$ – For OR: $\neg (A \lor B)$ is equivalent to $(\neg A \land \neg B)$
- Example:

- $\neg (\neg A \lor B)$ is $\neg \neg A \land \neg B$, same as $A \land \neg B$ - So, since $(A \rightarrow B)$ is equivalent to $(\neg A \lor B)$, $\neg (A \rightarrow B)$ is equivalent to $A \land \neg B$

- On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.
- Puzzle 2: You see three islanders talking to each other, Arnold, Bob and Charlie.
 - You ask Arnold "Are you a knight?", but can't hear what he answered.
 - Bob pitches in: "Arnold said that he is a knave!"
 - and Charlie interjects "Don't believe Bob, he's lying".
 - Out of Bob and Charlie, who is a knight/knave?