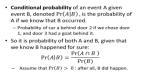


COMP 1002

Logic for Computer Scientists

Lecture 29



Conditional probabilities

- Conditional probability of an event A given event B, denoted Pr(A|B), is the probability of A if we know that B occurred.
 - Probability of car a behind door 2 if we chose door
 1, and door 3 had a goat behind it.
- So it is probability of both A and B, given that we know B happened for sure:

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

- Assume that Pr(B) > 0: after all, B did happen.

Bayes theorem

- Consider a medical test that
 - Has false positive rate of 3% (healthy labeled as sick)
 - Specificity 97%
 - Has false negative rate of 1% (sick labeled as healthy).
 - Sensitivity 99%
- What is the probability that a person has the disease given that the test came positive?
 - Let A: person tested positive, B: person is sick. Pr(B|A)?
 - $\Pr(A|B) = 0.99, \Pr(\overline{A}|B) = 0.01...$
- Not enough information!

Bayes theorem

- **Bayes theorem** allows us to get Pr(B|A) from Pr(A|B), if we know probabilities of A and B: $Pr(B|A) = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A)} = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A|B) Pr(B) + Pr(A|\overline{B})Pr(\overline{B})}$
- Proof:
 - $-\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}. \quad \Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}.$ $-\Pr(A \cap B) = \Pr(A|B)\Pr(B) = \Pr(B|A)\Pr(A)$ $-\operatorname{So}\Pr(B|A) = \frac{\Pr(A|B)\Pr(B)}{\Pr(A)}$

Bayes theorem

- Consider a medical test that
 - Has false positive rate of 3% (healthy labeled as sick).
 - Has false negative rate of 1% (sick labeled as healthy).
 - Tests for a disease that occurs in 5 in 1000 people.
- What is the probability that a person has the disease given that the test came positive?
 - Let A: person tested positive, B: person is sick. Pr(B|A)?
 - $Pr(A|B) = 0.99, Pr(\overline{A}|B) = 0.01$. $Pr(\overline{A}|\overline{B}) = 0.97, Pr(A|\overline{B}) = 0.03$
 - Pr(B) = 0.005.
 - $\operatorname{Pr}(A) = \operatorname{Pr}(A|B)\operatorname{Pr}(B) + \operatorname{Pr}(A|\overline{B})\operatorname{Pr}(\overline{B}) = 0.0348$
 - By Bayes theorem, $Pr(B|A) = \frac{Pr(A|B) Pr(B)}{Pr(A)} = 0.1422$
- So the probability that a person who tested positive has the disease is just 0.1422, that is, 14.22%.
 - By a similar argument, probability that a person who tested negative does not have a disease is whopping 0.99995 = 99.995%.

Hat-check problem

- Suppose n men came to an event, and checked in their hats at the door.
 - On the way out, in a hurry, they each picked up a random hat.
 - On average, how many men picked their own hat?

Expectations

• Often we are interested in what outcome we would see "on average".

– How fast does this program run "on average"?

- Suppose that possible outcomes of an experiment are numbers a₁, ..., a_n
 - E.g., time a program takes to sort n elements
- Its expected value (mean) is $\sum_{k=1}^{n} a_k \Pr(a_k)$
 - Often phrased in terms of a "random variable" X, where X is a *function* from outcomes to numbers.
 - Write E(X) to mean the expectation of X.

Random variables

- Random variable X: a function from outcomes to numbers. $X: S \rightarrow \mathbb{R}$
 - Number of heads in 3 coin tosses
 - X(HHH)=3,
 - X(HHT)=X(HTH)= H(THH)=2,
 - X(THT)=X(TTH)=X(HTT)=1,
 - X(TTT)=0
 - Number of steps until a program crashes
 - Number of items in a hash table until collision
- Distribution of X: set of pairs (r, Pr(X = r))
 - Number of heads in 3 coin tosses: distribution of X is
 - (0,1/8), (1,3/8), (2,3/8), (3,1/8)
- Expectation of X: $E(X) = \sum_{r \in range(X)} r \cdot \Pr(X = r)$
 - X: number of heads in 3 coin tosses. Range(X) ={0,1,2,3}

$$- E(X) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{3}{2}$$

Expected win in a lottery

- Rules of Lotto 6/49:
 - A player chooses 6 numbers, 1 to 49.
 - During a draw, 6 randomly generated numbers are revealed.
 - If all 6 numbers chosen by the player match 6 numbers in the draw, the player gets the jackpot of \$5,000,000 or more.
 - There are also smaller prizes; let's ignore them for simplicity.
 - A ticket costs \$3.
 - According to Atlantic Lotto Corporation, chances of winning the jackpot are roughly 1/14,000,000.

Expected win in a lottery

- Rules of Lotto 6/49:
 - A player chooses 6 numbers, 1 to 49.
 - During a draw, 6 randomly generated numbers are revealed.
 - If all 6 numbers chosen by the player match 6 numbers in the draw, the player gets the jackpot of \$5,000,000 or more.
 - There are also smaller prizes; let's ignore them for simplicity.
 - A ticket costs \$3.
 - According to Atlantic Lotto Corporation, chances of winning the jackpot are roughly 1/14,000,000.
- What is the expected amount a player would win if the jackpot is 5,000,000?
 - Pr(win) = 1/14,000,000. Pr(loss)=1-Pr(win) = 13,999,999/14,000,000.
 - Let the random variable X encode the amount a player wins.
 - For all but one player, that amount is -3. So Pr(X=-3)=Pr(loss)
 - For the lucky one, the amount is the jackpot minus ticket price. Pr(X=4,999,997)=Pr(win)
 - Expected amount to win is $E(X) = Pr(loss)^{*}(-3) + Pr(win)^{*}(5,000,000-3) = -2.64$
 - If counting smaller prizes , just add their amount*odds to the sum, and adjust Pr(loss)
 - E(X)=Pr(loss)*(-3)+Pr(jackpot)*(4,999,997)+Pr(5/6+bonus)*374,997+Pr(5/6)*312,497...

Expected win in a lottery

- Rules of Lotto 6/49:
 - A player chooses 6 numbers, 1 to 49.
 - During a draw, 6 randomly generated numbers are revealed.
 - If all 6 numbers chosen by the player match 6 numbers in the draw, the player gets the jackpot of \$5,000,000 or more.
 - A ticket costs \$3.
 - According to Atlantic Lotto Corporation, chances of winning the jackpot are roughly 1/14,000,000.
- How large should be the jackpot so that the players expect at least to break even?
 - Let's call the jackpot amount J.
 - Expected amount to win is $E(X) = Pr(loss)^{*}(-3) + Pr(win)^{*}(J-3)$.
 - To break even, want E(X)=0.
 - J = 3 + (E(X) Pr(loss)*(-3))/Pr(win) = 42,000,000

March 25, 2017

FED PRIZE DRAM

-09-14-24-30-35

Expected number until...

- Suppose that Alan insists on buying lottery tickets until he wins. If probability of winning is *p*, how many tickets in expectation ("on average") would he have to buy?
 - Let X be a random variable for how many tickets he has to buy.
 - The probability of winning on exactly i^{th} ticket is $p(1-p)^{i-1}$

$$- E(X) = \sum_{i \in \mathbb{N}} i * \Pr(X = i) = \frac{1}{p}$$

- So for Lotto 6/49 he'd have to buy 14,000,000 tickets (and spend \$42,000,000 -- that's jackpot that would let him break even!)
- Same reasoning applies to other processes, where there is a fixed probability of something happening at each experiment or time step.
 - A system has a 1% probability of hanging in any given hour. How long, on average, will it stay up?
 - 100 hours: a little over 4 days.

Linearity of expectation

• Expectation is a very well-behaved operation:

$$-E(X_1 + X_2 + \dots + X_n) = E(X_1) + \dots + E(X_n)$$

- -E(aX+b) = a E(X) + b
 - Where $X_1 \dots X_n$ are random variables on some sample space S, and $a, b \in \mathbb{R}$
- Proof:

$$-E(X_{1} + X_{2}) = \sum_{s \in S} p(s)(X_{1}(s) + X_{2}(s))$$

= $\sum_{s \in S} p(s)X_{1}(s) + \sum_{s \in S} p(s)X_{2}(s)$
= $E(X_{1}) + E(X_{2})$

- Similar for E(aX + b) = a E(X) + b

• Using the fact that $\sum_{s \in S} p(s) = 1$

Hat-check problem

- Suppose n men came to an event, and checked in their hats at the door.
 - On the way out, in a hurry, they each picked up a random hat.
 - How many men are expected to have picked their own hat?
- For each man, introduce a random variable X_i , where $X_i = 1$ iff he picked his own hat
 - Such random variables are called indicator variables.
 - The quantity we want is $E(X_1 + \cdots + X_n)$
 - Now, for each X_i , $E(X_i) = 1 \cdot Pr(X_i = 1) = \frac{1}{n}$
 - By linearity of expectation, $E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = \frac{1}{n} + \dots + \frac{1}{n} = n \cdot \frac{1}{n} = 1$
- So on average, just one man will go home with his own hat!