COMP 1002

Logic for Computer Scientists

Lecture 25
Structural induction

• Let $S \subseteq U$ be a recursively defined set, and $F(x)$ is a property (of $x \in U$).

• Then
 – if all x in the base of S have the property,
 – and applying the recursion rules preserves the property,
 – then all elements in S have the property.
Multiples of 3

- Let’s define a set S of numbers as follows.
 - Base: $3 \in S$
 - Recursion: if $x, y \in S$, then $x + y \in S$
- Claim: all numbers in S are divisible by 3
 - That is, $\forall x \in S \exists z \in \mathbb{N} x = 3z$.
- Proof (by structural induction).
 - Base case: 3 is divisible by 3 ($y=1$).
 - Recursion: Let $x, y \in S$. Then $\exists z, u \in \mathbb{N} x = 3z \land y = 3u$.
 - Then $x + y = 3z + 3u = 3(z + u)$.
 - Therefore, $x + y$ is divisible by 3.
 - As there are no other elements in S except for those constructed from 3 by the recursion rule, all elements in S are divisible by 3.
Binary trees

• **Rooted trees** are trees with a special vertex designated as a root.
 – Rooted trees are **binary** if every vertex has at most three edges: one going towards the root, and two going away from the root. Full if every vertex has either 2 or 0 edges going away from the root.

• Recursive definition of full binary trees:
 – Base: A single vertex \(v \) is a full binary tree with that vertex as a root.
 – Recursion:
 • Let \(T_1, T_2 \) be full binary trees with roots \(r_1, r_2 \), respectively. Let \(v \) be a new vertex.
 • A new full binary tree with root \(v \) is formed by connecting \(r_1 \) and \(r_2 \) to \(v \).
 – Restriction:
 • Anything that cannot be constructed with this rule from this base is not a full binary tree.
Height of a full binary tree

- **The height** of a rooted tree, $h(T)$, is the maximum number of edges to get from any vertex to the root.
 - Height of a tree with a single vertex is 0.
- **Claim:** Let $n(T)$ be the number of vertices in a full binary tree T. Then $n(T) \leq 2^{h(T)+1} - 1$
- **Proof (by structural induction)**
 - Base case: a tree with a single vertex has $n(T) = 1$ and $h(T) = 0$. So $2^{h(T)+1} - 1 = 1 \geq 1$
 - Recursion: Suppose T was built by attaching T_1, T_2 to a new root vertex v.
 - Number of vertices in T is $n(T) = n(T_1) + n(T_2) + 1$
 - Every vertex in T_1 or T_2 now has one extra step to get to the new root in T. So $h(T) = 1 + \max(h(T_1), h(T_2))$
 - By the induction hypothesis, $n(T_1) \leq 2^{h(T_1)+1} - 1$ and $n(T_2) \leq 2^{h(T_2)+1} - 1$
 - $n(T) = n(T_1) + n(T_2) + 1$
 \[\leq 1 + (2^{h(T_1)+1} - 1) + (2^{h(T_2)+1} - 1) \]
 \[\leq 2 \cdot \max(2^{h(T_1)+1}, 2^{h(T_2)+1}) - 1 \]
 \[\leq 2 \cdot 2^{\max(h(T_1), h(T_2)) + 1} - 1 \]
 \[= 2 \cdot 2^{h(T)} - 1 = 2^{h(T)+1} - 1 \]
 - Therefore, the number of vertices of any binary tree T is less than $2^{h(T)+1} - 1$
- **Alternatively,** height of a binary tree is at least $\log_2 n(T)$
 - If you have a recursive program that calls itself twice (e.g, within if ... then ... else ...)
 - Then if this code executes n times (maybe on n different cases)
 - Then the program runs in time at least $\log_2 n$, even when cases are checked in parallel.