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Deductive, Inductive, and Abductive 
Reasoning 

• Deductive reasoning concerns what logically 
follows from given premises (if a, then b).  

• Inductive reasoning—the process of deriving a 
reliable generalization from observations. 
Thus its validity requires us to define a reliable 
generalization method. 

• Abductive reasoning that goes from 
observation to a hypothesis and seeks to find 
the simplest and most likely relevant 
evidence.  
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Mathematical induction 

• Is a reliable generalization method. 

• Mathematical Induction principle:   

  If  P 0 ∧ ∀ 𝑘 ∈ ℕ   P(k) → P(k+1) then   

   ∀𝑥 ∈ ℕ 𝑃(𝑥)  
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Well-Order Principle 

• (S, ≤) is a well-ordered set if it is a poset such 
that ≤ is a total ordering and every nonempty 
subset of S has a least element. 

– A relation R on a set S is reflexive, antisymmetric, 
and transitive, it is a partial ordering. A set S 
together with a partial ordering R is called partial 
ordering set, or poset. 
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Reliability of Mathematical induction 

• Want to prove a statement  ∀𝑥 ∈ ℕ  𝑃 𝑥 .   

– Check that 𝑃 0  holds  

– And whenever 𝑃 𝑘  does not hold for some k, 
𝑃 𝑘 − 1  does not hold either 

• Contradicting well-ordering principle.   

• Contrapositive:   
– if  P(k-1) holds for arbitrary k,  

– then P(k) also must be true. 

– Conclude that ∀𝑥 ∈ ℕ  𝑃 𝑥    
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Proving that P(0) holds  
 is called the base case.  

That P(k-1) holds is an induction hypothesis  

Proving that P(k-1) → P(k)   
Is the induction step  

Mathematical Induction principle:   
If  P 0 ∧ ∀ 𝑘 ∈ ℕ   P(k) → P(k+1) then  ∀𝑥 ∈ ℕ 𝑃(𝑥)  
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Sum of numbers formula 

• Claim: for any n∈ ℕ,   𝑖𝑛
𝑖=0 =

𝑛 𝑛+1

2
 

•  Proof (by induction). 

– P(n)  is   𝑖𝑛
𝑖=0 =

𝑛 𝑛+1

2
  (statement we are proving by induction on n)  

– Base case:  k=0.  Then  𝑖0
𝑖=0 = 0 =

0 0+1

2
.  

– Induction hypothesis: Assume that  𝑖𝑘−1
𝑖=0 =

𝑘−1 𝑘 

2
 for an arbitrary k >0 

• That is, for an arbitrary number k-1 ∈ ℕ  
• Can take k instead of k-1, but k-1 makes calculations simpler.   

–  Induction step:  show that P(k-1) implies P(k).  
•  𝑖𝑘

𝑖=0 = ( 𝑖𝑘−1
𝑖=1 ) +k.   

• By induction hypothesis,   𝑖  𝑘−1
𝑖=1 =

k−1 k

2
 

• Now,  𝑖𝑘
𝑖=1 = ( 𝑖𝑘−1

𝑖=1 ) +k = 
k−1 k

2
+ k =

k2−k+2k

2
=
k2+𝑘

2
=
𝑘(𝑘+1)

2
   

– By induction, therefore,  P(n) holds for all 𝑛 ∈ ℕ. 
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Changing the base case 
• Mathematical Induction principle:   

– (P 0 ∧ ∀ 𝑘 ∈ ℕ   P(k) → P(k+1))   → ∀𝑥 ∈ ℕ 𝑃(𝑥)  

 
• What if want to prove it only for 𝑥 ≥ 𝑎? 

– Make 𝑎 the base case (when 𝑎 ≥ 0).  For the rest, assume 𝑘 ≥ 𝑎.   
– (P a ∧ ∀ 𝑘 ≥ 𝑎   P(k) → P(k+1))   → ∀𝑥 ≥ 𝑎  𝑃(𝑥)  

• Here,  ∀𝑥 ≥ 𝑎   𝑃 𝑥   is a shorthand for ∀𝑥 ∈ ℕ   𝑥 ≥ 𝑎 → 𝑃 𝑥  

– To prove it works, prove P(n’) where n’=n-a.    
 

• Example: show that for all 𝑛 ≥ 4, 2𝑛 ≥ 𝑛2 
– 𝑃 𝑛 :   2𝑛 ≥ 𝑛2   
– Base case:  n=4. 24 = 16 = 42 
– Induction hypothesis: assume that for an arbitrary 𝑘 ≥ 𝑎,  2𝑘 ≥ 𝑘2  
– Induction step:  show that 2𝑘 ≥ 𝑘2  implies 2𝑘+1 ≥ (𝑘 + 1)2  

• 2𝑘+1 = 2 ⋅ 2𝑘 = 2𝑘 + 2𝑘 ≥ 𝑘2 + 𝑘2  
• 𝑘 + 1 2 = 𝑘2 + 2𝑘 + 1.   
• Want: 𝑘2 + 𝑘2 ≥ 𝑘2 + 2𝑘 + 1, so 𝑘2 ≥ 2𝑘 + 1 

– Dividing both sides of the inequality by k:   𝑘 ≥ 2 +
1

𝑘
 

– Since k ≥ 4, and 2 +
1

𝑘
≤ 3,  2 +

1

𝑘
≤ 3 < 4 ≤ 𝑘.  So 𝑘 ≥ 2 +

1

𝑘
 and thus 𝑘2 ≥ 2𝑘 + 1 

• So 2𝑘+1 = 2 ⋅ 2𝑘 = 2𝑘 + 2𝑘 ≥ 𝑘2 + 𝑘2 ≥ 𝑘2 + 2𝑘 + 1 = 𝑘 + 1 2 

– By induction, for all 𝑛 ≥ 4, 2𝑛 ≥ 𝑛2 

• Corollary:  as n grows, an algorithm running  in time  𝑛2 will quickly outperform an 
algorithm running in time 2𝑛 
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Examples of mathematical induction 

1. Find and prove closed forms  

1) ½, 4/5, 9/10, 16/17, … 

2) 1, 2/2, 1/3, 2/4, 1/5, 2/6, …. 

3) 1, 3, 6, 10, … 

2. If Sn=1+1/2+1/3+ …+1/(2n-1) prove 

 n/2 < Sn < n for n>= 2. 
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Strong induction 

• For our coins problem, needed not just P(k-1),  but 
P(k-3), and to look at three cases.    

• Mathematical Induction principle:   
– (P 0 ∧ ∀ 𝑘 ∈ ℕ   P(k) → P(k+1))   → ∀𝑥 ∈ ℕ 𝑃(𝑥)  

• Strong Induction principle:   

– ∃𝑏 ∈ ℕ  ∀𝑐 ∈ ℕ 0 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 →  P c  

  ∧ ∀ 𝑘 > 𝑏   (∀ 𝑖 ∈ {0,… , 𝑘 − 1}  P(i)) →  P(k))   
     → ∀𝑥 ∈ ℕ 𝑃(𝑥)  

• Strong induction seems stronger…  
– But in fact, mathematical induction, strong induction and 

well-order principles are equivalent to each other. 
– So choose the most convenient one.   
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Puzzle:  coins  

• A not-too-far-away country recently got rid of 
a penny coin,  and now everything needs to be 
rounded to the nearest multiple of 5 cents…   

– Suppose that instead of just dropping the penny, 
they would introduce a 3 cent coin. 

• Like British three pence.    

– What is the largest amount that cannot be paid by 
using only existing coins (5, 10, 25) and a 3c coin?  

7c 
Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).  
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Strong induction 

• Strong Induction principle (general form):   

– (∃𝑏 ∈ ℕ  ∀𝑐 ∈ ℕ 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 →  P c  
   ∧ ∀ 𝑘 > 𝑏   (∀ 𝑖 ∈ {𝑎, … , 𝑘 − 1}  P(i)) → P(k))  

                       → ∀𝑥 ∈ ℕ 𝑥 ≥ 𝑎 →  𝑃 𝑥   

• Coins:  ∀𝑥 ∈ ℕ, if x >7 then ∃ 𝑦, 𝑧 ∈ ℕ such that x = 3y+5z.    
– P(n):   ∃ 𝑦, 𝑧 ∈ ℕ  𝑛 = 3𝑦 + 5𝑧 .  Also, a=8.  
– Base cases: b = 10, so 𝑐 ∈ 8,9,10    

• n=8.    8 = 3 ⋅ 1 + 5 ⋅ 1, so y=1, z=1.  
• n=9.    9=3⋅ 3,  y=3, z=0 
• n=10.  10=5 ⋅ 5.  y=0, z=2.  

– Induction hypothesis: Let k be an arbitrary integer such that 𝑘 > 10.  
Assume that for all 𝑖 ∈ ℕ such that 8 ≤ 𝑖 < 𝑘 ∃ 𝑦𝑖 , 𝑧𝑖 ∈ ℕ   𝑖 = 3𝑦𝑖 + 5𝑧𝑖 

– Induction step. Show that induction hypothesis implies that ∃ 𝑦, 𝑧 ∈ ℕ  𝑘 =
3𝑦 + 5𝑧  
• Since 𝑘 ≥ 𝑏,  𝑘 − 3 ≥ 𝑎. So by induction hypothesis ∃ 𝑦𝑘−3, 𝑧𝑘−3 ∈ ℕ   𝑘 − 3 =
3𝑦𝑘−3 + 5𝑧𝑘−3.  Now take z=𝑧𝑘−3  and y = 𝑦𝑘−3 +1.   Then k = 3y+5z.  

– By strong induction, get that for all x > 7, ∃ 𝑦, 𝑧 ∈ ℕ such that x = 3y+5z. 
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Puzzle: all horses are white 
• Claim: all horses are white.  
• Proof (by induction):  

– P(n):  any n horses are white.  
– Base case:  P(0) holds vacuously 
– Induction hypothesis: any k horses are white.  
– Induction step: if any k horses are white, then 

any k+1 horses are white.  
• Take an arbitrary set of k+1 horses.  Take a horse out.  

– The remaining k horses are white by induction 
hypothesis.  

• Now put that horse back in, and take out another 
horse.   
– Remaining k horses are again white by induction 

hypothesis.  

• Therefore, all the k+1 horses in that set are white. 

– By induction, all horses are white.  
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