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Fractals 
• Can use recursive definitions to define fractals 

– And draw them 

– And prove their properties.  

• Fractal is a curve or geometric figure, each 
part of which has the same statistical 
character as the whole.  

• Self-similar: a part looks like the whole.  
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Fractals in nature 
• A fern leaf 

 

• Broccoli 

 

• Mountains 

 

• Stock market  

 

• Heart beat     

3 



Mathematical fractals 

• Koch curve and snowflake 

 

• Sierpinski triangle, pyramid, carpet 

 

• Hilbert space-filling curve 

 

• Mandelbrot set  
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Koch curve 

• Basis: an interval 

• Recursive step: 
Replace the inner third 
of the interval with 
two of the same 
length 

• … 
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Playing with fractals 

• Fractal Grower by  Joel Castellanos:   

• http://www.cs.unm.edu/~joel/PaperFoldingFr
actal/paper.html  
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Regular expressions 

• A regular expression is a standard tool for pattern matching  
– in Python, Ruby, grep, shell scripts...  
– a | b*  matches either a letter a, or 0 or more repetitions of b.    
– So a regular expression defines a set of strings that it matches: a 

regular language.  

• Recursive definition of regular expressions (as a set of strings): 
– Base:  ∅,  𝜆  (empty string),  all letters in alphabet 
– Recursive step:  Given two regular expressions R and S, the following 

are regular expressions: 
• Union 𝑅 ∪ 𝑆  (sometimes written 𝑅 | 𝑆 )  

– Often drop parentheses when no ambiguity 

• Concatenation 𝑅 ∘ 𝑆 = 𝑥𝑦  𝑥 ∈ 𝑅 𝑎𝑛𝑑 𝑦 ∈ 𝑆 }  (sometimes written RS) 
• A Kleene star  𝑅∗= 𝑥1𝑥2 … 𝑥𝑘  𝑘 ∈ ℕ ∧ ∀𝑖 ∈ {0, … , 𝑘}  ∧  𝑥𝑖 ∈ 𝑅 }  

– k=0 ok; so zero or more strings from R concatenated together.  

– Restriction: no other strings are in the set.  
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Examples of regular expressions 

• 𝑎𝑎∗  
– Strings of one or more a’s.  

• 0 1 ∗00  
– Binary strings ending in 00.  

• COMP(1000|1001|1002|2001)  
– Matches COMP1000, COMP1001,  COMP1002 and COMP2001. 

•   COMP(1|2)00(0|1|2) 
– COMP1000,COMP2000,COMP1001, COMP2001, COMP1002,COMP2002  

• ∅  
– Does not match anything:  zero strings in the language 

• 𝜆  
– Matches the empty string: one string in the language 
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Permanent link to this comic: https://xkcd.com/208/ 
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Finite state machine  

• Metrobus door: wave to open.  

– Only works when bus has stopped.  

– Description of the system:  

• If bus  is in motion then  closed.  

• If bus is  stopped then if wave received, open.  

• If bus is stopped and there is no wave, remain closed.  

Bus stopped and wave 

Bus started moving 

Door  
open 

Door  
Closed 
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Finite state machine  

• Finite state machine:  
– States  

• Including start state s, possibly finish states 

– Inputs  
• An input alphabet  

– Transitions from 𝑆𝑡𝑎𝑡𝑒𝑠 × 𝐼𝑛𝑝𝑢𝑡𝑠 → 𝑆𝑡𝑎𝑡𝑒𝑠  
• Sometimes also have outputs: 

– Then include output alphabet  
– Transitions to 𝑆𝑡𝑎𝑡𝑒𝑠 × 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 

• In the bus example 
– Two states: closed and open.  

• Looks like closed is the start state. 
• In real life, probably more states needed.   

– Input alphabet  
• Bus moving/stopping, wave. 

– Transitions:  
• If closed and stopping and sensed a wave, go to open 
• If open and started moving, go to closed.  

 

 

Bus stopped and wave 

Bus started moving 
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Finite automata 

• Finite state machines with no output.  
• Take an input string, accept if finish in an accepting state  

– Example:  accept strings with even number of 1s.  
• States 𝑠1, 𝑠2 
• 𝑠1 is a start state  

– Arrow  

• 𝑠1 is an accepting state 
– Double circle  

• Input alphabet is {0,1}  
• Transitions:  

– 𝑠1, 0 → 𝑠1 

– 𝑠1, 1 → 𝑠2 

– 𝑠2, 0 → 𝑠2 

– 𝑠2, 1 → 𝑠1 

– If exactly one transition for each pair (state, symbol) 
• Then called deterministic finite automata (DFA) 
• Otherwise, non-deterministic finite automata (NFA) 

– No transition: stop and reject. Multiple: if some choice eventually leads to accept, 
accept. 

– Everything an NFA can do, a DFA can do. But might need a much bigger DFA.  

 

𝑠2 𝑠1 

0 

1 

1 
0 

0 1 

𝒔𝟏 𝑠1 𝑠2 

𝒔𝟐 𝑠2 𝑠1 
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Regular expressions 
• Recursive definition of regular expressions (as a 

set of strings): 
– Base:  ∅,  𝜆  (empty string),  all letters in alphabet 

– Recursive step:  Given two regular expressions R and 
S, the following are regular expressions: 
• Union  𝑅 ∪ 𝑆  (sometimes written 𝑅 | 𝑆 )  

– Often drop parentheses when no ambiguity 

• Concatenation  𝑅 ∘ 𝑆 = 𝑥𝑦  𝑥 ∈ 𝑅 𝑎𝑛𝑑 𝑦 ∈ 𝑆 }  
(sometimes written RS) 

• A Kleene star 𝑅∗ = 𝑥1𝑥2 … 𝑥𝑘   𝑘 ∈ ℕ ∧ ∀𝑖 ∈ {0, … , 𝑘}  
∧ 𝑥𝑖 ∈ 𝑅 }  
– k=0 ok; so zero or more strings from R concatenated together.  

– Restriction: no other strings are in the set.  
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Finite automata  compute  
what regular expressions match 

• Each regular expression can be computed by a 
finite automaton (in particular, NFA).  

• Proof (structural induction) 

– Base case: 

• Compute the empty language:     

• Accept just the empty string:  

• Accept just the string with one symbol a:   

– Recursion step: take NFAs for R and for S.   

• Kleene star 𝑅∗:  loop back to start (make start accepting)  

• Union 𝑅 ∪ 𝑆:  done with ambiguity (combine starts)  

• Concatenation 𝑅 ∘ 𝑆:   accept states of R become start of S.  

 

 

a 
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Pattern matching 

• Suppose we have a DNA string:  
– AAGATTCATTAATAAATACGCTTACA  

– And a gene  string  ATAC 

– How do we check if the string contains the match? 

 

 

 

– Could just move along checking each letter, and if 
mismatch, shifting by 1 character...  
• There is a faster way: finite state machines.  

AAGATTCATATAATAAATACGCTTACA 

ATAC 
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Matching with finite state machines 

• Faster matching idea: 

 

 

– If mismatch T instead of C, know that shifting by 2 
would be good enough; no need to re-match ATA  

AAGATTCATATAATAAATACGCTTACA 

ATAC 

1st 
letter 

OK  

Start
match 

2nd 
letter 

OK  

3rd 
letter 

OK  

Last 
letter 

OK  

` 

  

A 

C,G,T 

A T C 

C,G 

C,G,T A 

T 

G 

` 
A 
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Turing machines 

• Like finite automata with external memory.  

• Church-Turing thesis: Turing machines can 
compute anything “computable”  

– In particular, anything a human can compute.  
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Turing machine 

• is a mathematical model of computation that 
defines an abstract machine which 
manipulates symbols on a strip of tape 
according to a table of rules.  

• Despite the model's simplicity, given any 
computer algorithm, a Turing machine can be 
constructed that is capable of simulating that 
algorithm's logic. 
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A Turing machine consists of: 
• A tape divided into cells, one next to the other. Each cell contains a symbol 

from some finite alphabet. The alphabet contains a special blank symbol 
(here written as '0') and one or more other symbols. The tape is assumed 
to be arbitrarily extendable to the left and to the right. Cells that have not 
been written before are assumed to be filled with the blank symbol.  

• A head that can read and write symbols on the tape and move the tape 
left and right one (and only one) cell at a time. In some models the head 
moves and the tape is stationary. 

• A state register that stores the state of the Turing machine, one of finitely 
many. Among these is the special start state with which the state register 
is initialized.  

• A finite table of instructions that, given the state(qi) the machine is 
currently in and the symbol(aj) it is reading on the tape (symbol currently 
under the head), tells the machine to do the following in sequence: 
– Either erase or write a symbol (replacing aj with aj1). 
– Move the head (which is described by dk and can have values: 'L' for one step 

left or 'R' for one step right or 'N' for staying in the same place). 
– Assume the same or a new state as prescribed (go to state qi1). 
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Church-Turing thesis 

 

 Everything  we can call “computable” is 
computable by a Turing machine.    
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Puzzle:  coins  

• A not-too-far-away country recently got rid of 
a penny coin,  and now everything needs to be 
rounded to the nearest multiple of 5 cents…   

– Suppose that instead of just dropping the penny, 
they would introduce a 3 cent coin. 

• Like British three pence.    

– What is the largest amount that cannot be paid by 
using only existing coins (5, 10, 25) and a 3c coin?  
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Conway’s game of life 

• Rules of the Game of Life: 
• At every step of the game: 

– Every live cell with less than 
2 neighbours dies  

– Every live cell with more 
than 3 neighbours dies 

– A cell with exactly 3 
neighbours becomes alive (is 
“born”).  

 • Converge to a still pattern 

 

 

• Oscillate   

 

 

• Create a moving pattern 
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Conway’s game of life: 
 what does it mean to 

compute? 

• Rules of the Game of Life: 
• At every step of the game: 

– Every live cell with less than 
2 neighbours dies  

– Every live cell with more 
than 3 neighbours dies 

– A cell with exactly 3 
neighbours becomes alive (is 
“born”).  

 

• Start with a few cells lit up 

• See if cells somewhere else light 
up 

• Make it so they only light up if 
some condition holds  

• Just like a Turing machine going 
into “yes”-state if some 
condition holds about its input 
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  Game of life and Turing 
machines are equivalent 

• A Turing machine 
can read a 
description of the 
initial 
configuration and 
keep applying the 
rules.  

• Conway game of 
life can do a Turing 
machine using this 
picture: 
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