COMP 1002

Logic for Computer Scientists

Lecture 22
Recursive definitions of sets

- So far, we talked about recursive definitions of sequences. We can also recursively define sets.
 - E.g: recursive definition of a set $S=\{0,1\}^*$
 - Basis: empty string is in S.
 - Recursive step: if $w \in S$, then $w0 \in S$ and $w1 \in S$
 - Here, $w0$ means string w with 0 appended at the end; same for $w1$
 - Alternatively:
 - Basis: empty string, 0 and 1 are in S.
 - Recursive step: if s and t are in S, then $st \in S$
 - Here, st is concatenation: symbols of s followed by symbols of t
 - If $s = 101$ and $t= 0011$, then $st = 1010011$
 - Additionally, need a restriction condition: the set S contains only elements produced from basis using recursive step rule.
Trees

• In computer science, a **tree** is an undirected graph without cycles
 – **Undirected**: all edges go both ways, no arrows.
 – **Cycle**: sequence of edges going back to the same point.

• Recursive definition of trees:
 – Base: A single vertex v is a tree.
 – Recursion:
 • Let T be a tree, and v a new vertex.
 • Then a new tree consist of T, v, and an edge (connection) between some vertex of T and v.
 – Restriction:
 • Anything that cannot be constructed with this rule from this base is not a tree.
Suppose you are writing a piece of code that takes an arithmetic expression and, say evaluates it.
- “5*3-1”, “40-(x+1)*7”, etc

How to describe a valid arithmetic expression? Define a set of all valid arithmetic expressions recursively.
- Base: A number or a variable is a valid arithmetic expression.
 - 5, 100, x, a,
- Recursion:
 - If A and B are valid arithmetic expressions, then so are (A), A + B, A - B, A * B, A / B.
 - Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then x+1. Then (x+1). Then (x+1)*7, finally 40-(x+1)*7
 - Caveat: how do we know the order of evaluation? On that later.
- Restriction: nothing else is a valid arithmetic expression.
Formulas

• What is a well-formed propositional logic formula?
 – \((p \lor \neg q) \land r \rightarrow (\neg p \rightarrow r)\)
 – Base: a propositional variable \(p, q, r\) ...
 • Or a constant \(TRUE, FALSE\)
 – Recursion:
 • If \(F\) and \(G\) are propositional formulas, so are \((F), \neg F, F \land G, F \lor G, F \rightarrow G, F \leftrightarrow G\).
 – And nothing else.
Formulas

• What is a well-formed predicate logic formula?
 – \(\exists x \in D \ \forall y \in \mathbb{Z} \ P((x, y) \lor Q(x, z)) \land x = y \)
 – Base: a predicate with free variables
 • \(P(x), \ x=y, \ldots \)
 – Recursion:
 • If \(F \) and \(G \) are predicate logic formulas, so are \(F, \ \neg F, \ F \land G, \ F \lor G, \ F \rightarrow G, \ F \leftrightarrow G. \)
 • If \(F \) is a predicate logic formula with a free variable \(x \), then \(\exists x \in D \ F \) and \(\forall x \in D \ F \) are predicate logic formulas.
 – And nothing else.
 • So \(\exists x \in \text{People} \ Likes(x, y \land x), \ Likes(y \neq x) \) is not a well-formed predicate logic formula!
Grammars

• A general recursive definition for these is called a grammar.
 – In particular, here we have “context-free” grammars, where symbols have the same meaning wherever they are.

• A context-free grammar consists of
 – A set V of variables (using capital letters)
 • Including a start variable S.
 – A set Σ of terminals (disjoint from V; alphabet)
 – A set R of rules, where each rule consists of a variable from V and a string of variables and terminals.
 • If $A \to w$ is a rule, we say variable A yields string w.
 – This is not the same “\to” as implication, a different use of the same symbol.
 • We use shortcut “$|$” when the same variable might yield several possible strings: $A \to w_1 \mid w_2 \mid \ldots \mid w_k$
 • Can use A again within the rule: Recursion!
 – Different occurrences of the same variable can be interpreted as different strings.
 • When left with just terminals, a string is derived.
Grammars

• A language generated by a grammar consists of all strings of terminals that can be derived from the start variable by applying the rules.
 – All strings are derived by repeatedly applying the grammar rules to each variable until there are no variables left (just the terminals).

– Language \{1, 00\} consisting of two strings 1 and 00
 • \(S \rightarrow 1 \mid 00 \)
 – Variables: S. Terminals: 1 and 00.

– Language of all strings over \{0,1\} with all 0s before all 1s.
 • \(S \rightarrow 0S \mid S1 \mid _ \)
 – Variables: S. Terminals: 0 and 1.
More context-free grammars

• Propositional formulas.

1. \(F \rightarrow F \lor F \)
2. \(F \rightarrow F \land F \)
3. \(F \rightarrow \neg F \)
4. \(F \rightarrow (F) \)
5. \(F \rightarrow p \mid q \mid r \mid TRUE \mid FALSE \)

 • Here, the only variable is \(F \) (it is a start variable), and terminals are \(\lor, \land, \neg, (,), p, q, r, TRUE, FALSE \)
 • To obtain \((p \lor \neg q) \land r\), first apply rule 2, then rule 1, then rule 5 to get \(p \), then rule 3, then rule 5 to get \(q \), then rule 5 to get \(r \).

• Arithmetic expressions.

 \[\text{EXPR} \rightarrow \text{EXPR} + \text{EXPR} \mid \text{EXPR} - \text{EXPR} \mid \text{EXPR} \ast \text{EXPR} \mid \text{EXPR} / \text{EXPR} \mid (\text{EXPR}) \mid \text{NUMBER} \mid \text{NUMBER} \]

 • Here, \(_{} \) stands for empty string. Variables: EXPR, NUMBER, DIGITS (S is starting).
 • Terminals: +, -, *, /, 0,...,9.
 • We used separate NUMBER to avoid multiple “-”.
 • And separate DIGITS to have an empty string to finish writing a number, but to avoid an empty number.
Encoding order of precedence

• Easier to specify in which order to process parts of the formula.
 – Better grammar for arithmetic expressions (for simplicity, with x, y, z instead of numbers):
 1. $EXPR \rightarrow EXPR + TERM \mid EXPR - TERM \mid TERM$
 2. $TERM \rightarrow TERM \ast FACTOR \mid TERM / FACTOR \mid FACTOR$
 3. $FACTOR \rightarrow (EXPR) \mid x \mid y \mid z$
 – Here, variables are EXPR, TERM and FACTOR (with EXPR a starting variable).
 – Now can encode precedence.
 • And put parentheses more sensibly.
Parse trees.

• Visualization of derivations: parse trees.

1. \(\text{EXPR} \to \text{EXPR} + \text{TERM} | \text{EXPR} - \text{TERM} | \text{TERM} \)
2. \(\text{TERM} \to \text{TERM} * \text{FACTOR} | \text{TERM} / \text{FACTOR} | \text{FACTOR} \)
3. \(\text{FACTOR} \to (\text{EXPR}) | x | y | z \)

• String \((x+y)*z\)

 – Simpler example:

 • \(S \to 0S | S1 | _ \)

• String 001
Puzzle

• Do the following two English sentences have the same parse trees?

 – Time flies like an arrow.

 – Fruit flies like an apple.