
Sums, products and sequences 
• How to write long sums, e.g., 1+2+… (n-1)+n concisely?  

– Sum notation (“sum from 1 to n”):  ∑ 𝑖𝑛
𝑖=1 = 1 + 2 +  … + 𝑛  

• If n=3, ∑ 𝑖3
𝑖=1  = 1+2+3=6.   

• The name “𝑖𝑖 does not matter. Could use another letter not yet in use. 
 

• In general, let  𝑓:ℤ → ℝ,  𝑚,𝑛 ∈ ℤ,𝑚 ≤ 𝑛. 
– ∑ 𝑓(𝑖)𝑛

𝑖=𝑚  =  𝑓 𝑚 + 𝑓 𝑚 + 1 + ⋯+ 𝑓 𝑛  
• If m=n, ∑ 𝑓(𝑖)𝑛

𝑖=𝑚  =f(m)=f(n).  
• If n=m+1, ∑ 𝑓(𝑖)𝑛

𝑖=𝑚  = f(m)+f(m+1)  
• If n>m,   ∑ 𝒇(𝒊)𝒏

𝒊=𝒎  = (∑ 𝒇(𝒊)𝒏−𝟏
𝒊=𝒎 ) + 𝒇(𝒏) 

• Example: 𝑓 𝑥 = 𝑥2.    22 + 32 + 42 = ∑ 𝑖24
𝑖=2 = 29  

 
• Similarly for product notation (product from m to n):  

– Π𝑖=𝑚𝑛  𝑓 𝑖 = 𝑓 𝑚 ⋅ 𝑓 𝑚 + 1 ⋅ … ⋅ 𝑓 𝑛  = (𝜫𝒊=𝒎
𝒏−𝟏  𝒇 𝒊 ) ⋅ 𝒇(𝒏) 

– For  𝑓 𝑥 = 𝑥,  2 ⋅ 3 ⋅ 4  = Π𝑖=24  𝑖 = 24  
– 1 ⋅ 2 ⋅ … ⋅ 𝑛 = Π𝑖=1𝑛  𝑖 = 𝑛!  (n factorial) 



Recurrences and sequences 
• To define a sequence (of things), describe the process which generates that 

sequence. 
– Sequence:  enumeration of objects 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛 , … ,  

• Sometimes use notation 𝑠𝑛  for the sequence (i.e., set of elements forming a sequence) 
• Sometimes start with 𝑠0 rather than 𝑠1 

 
– Basis (initial conditions): what are the first (few) element(s) in the sequence.  

• ∑ 𝑖0
𝑖=0 = 0. ∑ 𝑖𝑚

𝑖=𝑚  = m.  
• 0! = 1.  1!=1.  
• A0 =  ∅ 

 
– Recurrence (recursion step, inductive definition): a rule to make a next element from already 

constructed ones.  
•  ∑ 𝑖𝑛+1

𝑖=𝑚 = ∑ 𝑖𝑛
𝑖=𝑚 + 𝑛 + 1 .  Here, assume that 𝑚 ≤ 𝑛  

• (n+1)! = n! ⋅ (n+1)  
• 𝐴𝑛+1 =  P(𝐴𝑛)  

 
• Resulting sequences:  

– m, 2m+1, 3m+3, …  
– 1, 2,6, 24, 120, …  
– ∅, ∅ , ∅, ∅ , ∅, ∅ , ∅ , ∅, ∅ , … 



Special sequences 
• Arithmetic progression:  

– Sequence:  𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …  
– Recursive definition:  

• Basis:  𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑛+1 = sn + d, where 𝑑 ∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑛 = 𝑐 + 𝑛𝑑    
• Closed forms are very useful for analysis of recursive programs, etc. 

 
• Geometric progression:  

– Sequence:  𝑐, 𝑐𝑐, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑛, …  
– Recursive definition: 

• Basis: 𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑛+1 = sn ⋅ 𝑐, where r∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑛 = 𝑐 ⋅ 𝑐𝑛 
 

 
 
 



Fibonacci sequence 
• Imagine that a ship leaves a pair of rabbits on an 

island (with a lot of food).  
• After a pair of rabbits reaches 2 months of age, they 

produce another pair of rabbits, which in turn starts 
reproducing when reaching 2 months of age…  

•  How many pairs rabbits will be on the island in n 
months, assuming no rabbits die?  

• Basis:  𝐹1 = 1, F2 = 1 
• Recurrence: 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 
• Sequence:  1,1,2,3,5,8,13…   

• Closed form: 𝐹𝑛 = ((1+ 5)/2)𝑛−( 1−√5)/2
𝑛

√5
 

– Golden ratio: 
• 𝑎+𝑏

𝑎
= 𝑎

𝑏
= 1+ 5

2
  

 



Partial sums 
• Properties of a sum:  

– ∑ 𝑓 𝑖 + 𝑔 𝑖 = 𝑛
𝑖=𝑚  ∑ 𝑓(𝑖)𝑛

𝑖=𝑚 + ∑ 𝑔(𝑖)𝑛
𝑖=𝑚  

– ∑ 𝑐 ⋅ 𝑓(𝑖)𝑛
𝑖=𝑚 = 𝑐 ∑ 𝑓(𝑖)𝑛

𝑖=𝑚  
 

• Sum of arithmetic progression:  
– 𝑠𝑛 = 𝑐 + 𝑛𝑑   for some c,𝑑 ∈ ℝ 
– Sequence:  𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …  
– Partial sum:  

• ∑ 𝑠𝑛𝑛
𝑖=0 =  ∑ (𝑐 + 𝑖𝑑 𝑛

𝑖=0 ) = ∑ 𝑐 𝑛
𝑖=0 + ∑ 𝑖𝑑 𝑛

𝑖=0 =
 c(n + 1) + d∑ 𝑖 = 𝑐(𝑛 + 1) + 𝑑 𝑛 𝑛+1

2
𝑛
𝑖=0  

 
• Sum of geometric progression:  

– 𝑠𝑛 = 𝑐 ⋅ 𝑐𝑛 for some c, 𝑐 ∈ ℝ 
– Sequence:  𝑐, 𝑐𝑐, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑛, …  
– Partial sum:   

•  If r=1, then  ∑ 𝑠𝑛𝑛
𝑖=0 = 𝑐 𝑛 + 1    

• If 𝑐 ≠ 1,  then ∑ 𝑠𝑛𝑛
𝑖=0 =  𝑐𝑟𝑛+1−𝑐𝑟−1   

 
 

 
 
 
 



Tower of Hanoi game 

• Rules of the game:  
– Start with all disks on the first peg.  
– At any step, can move a disk to another peg, as long as it is 

not placed on top of a smaller disk.  
– Goal:  move the whole tower onto the second peg.  

• Question:  how many steps are needed to move the 
tower of 8 disks? How about n disks?    



Tower of Hanoi game 

• Rules of the game:  
– Start with all disks on the first peg.  
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.  
– Goal:  move the whole tower onto the second peg.  

• Question:  how many steps are needed to move the tower of 8 disks? How about n disks?    

• Let us call the number of moves needed to transfer n disks H(n).  
– Names of pegs do not matter:  from any peg 𝑖 to any peg 𝑗 ≠ 𝑖  would take the same number of 

steps. 
• Basis:  only one disk can be transferred in one step.  

– So H(1) = 1  
• Recursive step:   

– suppose we have n-1 disks.  To transfer them all to peg 2, need 𝐻(𝑛 − 1) number of steps.   
– To transfer the remaining disk to peg 3, 1 step.  
– To transfer n-1 disks from peg 2 to peg 3 need  H(n-1) steps again.  
– So  H(n) = 2H(n-1)+1   (recurrence).  

• Closed form:  H(n) = 2𝑛 − 1.   



Recurrence relations 

• Recurrence:  an equation that defines an 𝑛𝑡𝑡 
element in a sequence in terms of one or more of 
previous terms.  

• Think of 𝐹 𝑛 = 𝑠𝑛 for some sequence {𝑠𝑛} 
– H(n) = 2H(n-1)+1 
– F(n) = F(n-1)+F(n-2)  

 
•  A closed form of a recurrence relation is an 

expression that defines an 𝑛𝑡𝑡 element in a 
sequence in terms of 𝑛 directly.  
– Often use recurrence relations and their closed forms 

to describe performance of (especially recursive) 
algorithms. 

 
 

 
 



Closed forms of some sequences 

• Arithmetic progression:  
– Sequence:  𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …  
– Recursive definition:  

• Basis:  𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑛+1 = sn + d, where 𝑑 ∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑛 = 𝑐 + 𝑛𝑑    
• Closed forms are very useful for analysis of recursive programs, etc. 

• Geometric progression:  
– Sequence:  𝑐, 𝑐𝑐, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑛, …  
– Recursive definition: 

• Basis: 𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑛+1 = sn ⋅ 𝑐, where r∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑛 = 𝑐 ⋅ 𝑐𝑛 
 

 
 
 



• Solving a recurrence: finding a closed form.  
– Solving  the recurrence H(n)=2H(n-1)+1  

•     H(n)  =  2 ⋅ 𝐻 𝑛 − 1 + 1 
  = 2 2𝐻 𝑛 − 2 + 1 + 1  = 22𝐻 𝑛 − 2 + 2 + 1 
  = 23𝐻 𝑛 − 3 + 22 + 2 + 1   
  = 24 𝐻 𝑛 − 4 + 23 + 22 + 2 + 1 …  
 

– Closed form:  𝐻 𝑛 = Σ𝑖=0𝑛−1 2𝑖 = 2𝑛 − 1 
• Proof by induction (coming in the next lecture).  
• Or by noticing that a binary number 111...1 plus 1 gives a binary number 10000…0   

 
– So adding one more disk doubles the number of steps.  

• We say that the function defined by H(n) grows exponentially 
 

• Solving recurrences in general might be tricky.  
– When the recurrence is of the form T(n)=a T(n/b)+f(n), there is a  general 

method to estimate the growth rate of a function defined by the recurrence 
• Called the Master Theorem for recurrences.  

 
 

Solving recurrences  



Function growth.  

• What does it mean to “grow” at a certain speed? 
How to compare growth rate of two functions? 
– Is f(n)=100n larger than 𝑔 𝑛 = 𝑛2? 

• For small n, yes. For n > 100, not so much…  
– As usually program take longer on larger inputs, 

performance on larger inputs matters more.   
– Constant factors don’t matter that much.  

 
• So to compare two functions, check which becomes 

larger as n increases (to infinity).  
– Ignoring constant factors, as they don’t contribute to 

the rate of growth.  



Function growth.  

• How to estimate the rate of growth?  
– Plotting a graph?  

 
 
 
 
 

• Not quite conclusive: 
– How do you know what they will do past the 

graphed part?   



• We say that f(n) grows at least as fast as g(n) if 
– There is a value 𝑛0 such that after 𝑛0,  𝑔 𝑛  is always at most as large as 𝑓 𝑛  

• More precisely, compare absolute values: |g(n)| vs. |f(n)| 
– Moreover, ignore constant factors:  

• So if two functions only differ by a constant factor, consider them having the same growth rate. 
 

• Denote set of all functions growing at most as fast as 𝑔 𝑛  by 𝑶 𝒈 𝒏  
– Big-Oh of g(n).   
– g(n) is an asymptotic upper bound for f(n).  
– When both 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛  and 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 , write  𝑓 𝑛 ∈ Θ(𝑔 𝑛 )   

• f(n) is in big-Theta of g(n)).   
 

• More generally, for real-valued functions f(x) and g(x),   
      

         
 
 

 
• That is,  from some point 𝑥0  on, each  |𝑓 𝑥 |  is less than |g(x)| (up to a constant 

factor).  
• Usually in time complexity have functions  ℕ → ℝ≥0, so use 𝑛 for 𝑥 and ignore | |.  

 

𝑓 𝑥 ∈ 𝑂 𝑔 𝑥  iff  
 

∃ 𝑥0 ∈ ℝ≥0 ∃𝑐 ∈ ℝ>0  ∀𝑥 ≥ 𝑥0  𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔 𝑥  

O-notation.  



O-notation.  

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 2𝑛.  
– Take c=1, 𝑛0 = 4.  
– For every 𝑛 ≥ 𝑛0,𝑓 𝑛 ≤ 𝑔 𝑛   

• Proof by induction.  
– So n2 ∈ 𝑂 2𝑛  

 
• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 10𝑛. 

– Take arbitrary 𝑐 and  look at 𝑛2 ≤ 𝑐 ⋅ 10𝑛.  
– No matter what 𝑐 is, when 𝑛 > 𝑐 ⋅ 10,  𝑛2 ≥ 𝑐 ⋅ 10𝑛  
– So 𝑛2 ∉ 𝑂 10𝑛 .  

 
• 𝑓 𝑛 = 𝑛2 + 100𝑛, 𝑔 𝑛 = 10𝑛2. 

– Here, 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛  and also 𝑔 𝑛 ∈ 𝑂(𝑓 𝑛 ) 
• So 𝑓 𝑛 ∈ Θ(𝑔 𝑛 )   
• 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 :   c = 20 and/or 𝑛0 = 100 work.  
• 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 :   Take c=10, 𝑛0 = 1.  

– Can ignore not only constants, but also all except the leading 
term in the expression.  

 
 

 
 

 

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛  iff  
 

∃ 𝑛0 ∈ ℕ ∃𝑐 ∈ ℝ>0  ∀𝑛 ≥ 𝑛0  𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) 

You will see some O-notation 
in COMP 1000 and a lot in 
COMP 2002. 
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