
Sums, products and sequences
• How to write long sums, e.g., 1+2+… (n-1)+n concisely?

– Sum notation (“sum from 1 to n”): ∑ 𝑖𝑛
𝑖=1 = 1 + 2 + … + 𝑛

• If n=3, ∑ 𝑖3
𝑖=1 = 1+2+3=6.

• The name “𝑖𝑖 does not matter. Could use another letter not yet in use.

• In general, let 𝑓:ℤ → ℝ, 𝑚,𝑛 ∈ ℤ,𝑚 ≤ 𝑛.
– ∑ 𝑓(𝑖)𝑛

𝑖=𝑚 = 𝑓 𝑚 + 𝑓 𝑚 + 1 + ⋯+ 𝑓 𝑛
• If m=n, ∑ 𝑓(𝑖)𝑛

𝑖=𝑚 =f(m)=f(n).
• If n=m+1, ∑ 𝑓(𝑖)𝑛

𝑖=𝑚 = f(m)+f(m+1)
• If n>m, ∑ 𝒇(𝒊)𝒏

𝒊=𝒎 = (∑ 𝒇(𝒊)𝒏−𝟏
𝒊=𝒎) + 𝒇(𝒏)

• Example: 𝑓 𝑥 = 𝑥2. 22 + 32 + 42 = ∑ 𝑖24
𝑖=2 = 29

• Similarly for product notation (product from m to n):

– Π𝑖=𝑚𝑛 𝑓 𝑖 = 𝑓 𝑚 ⋅ 𝑓 𝑚 + 1 ⋅ … ⋅ 𝑓 𝑛 = (𝜫𝒊=𝒎
𝒏−𝟏 𝒇 𝒊) ⋅ 𝒇(𝒏)

– For 𝑓 𝑥 = 𝑥, 2 ⋅ 3 ⋅ 4 = Π𝑖=24 𝑖 = 24
– 1 ⋅ 2 ⋅ … ⋅ 𝑛 = Π𝑖=1𝑛 𝑖 = 𝑛! (n factorial)

Recurrences and sequences
• To define a sequence (of things), describe the process which generates that

sequence.
– Sequence: enumeration of objects 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛 , … ,

• Sometimes use notation 𝑠𝑛 for the sequence (i.e., set of elements forming a sequence)
• Sometimes start with 𝑠0 rather than 𝑠1

– Basis (initial conditions): what are the first (few) element(s) in the sequence.

• ∑ 𝑖0
𝑖=0 = 0. ∑ 𝑖𝑚

𝑖=𝑚 = m.
• 0! = 1. 1!=1.
• A0 = ∅

– Recurrence (recursion step, inductive definition): a rule to make a next element from already

constructed ones.
• ∑ 𝑖𝑛+1

𝑖=𝑚 = ∑ 𝑖𝑛
𝑖=𝑚 + 𝑛 + 1 . Here, assume that 𝑚 ≤ 𝑛

• (n+1)! = n! ⋅ (n+1)
• 𝐴𝑛+1 = P(𝐴𝑛)

• Resulting sequences:

– m, 2m+1, 3m+3, …
– 1, 2,6, 24, 120, …
– ∅, ∅ , ∅, ∅ , ∅, ∅ , ∅ , ∅, ∅ , …

Special sequences
• Arithmetic progression:

– Sequence: 𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …
– Recursive definition:

• Basis: 𝑠0 = c, for some c∈ ℝ
• Recurrence: 𝑠𝑛+1 = sn + d, where 𝑑 ∈ ℝ is a fixed number.

– Closed form: 𝑠𝑛 = 𝑐 + 𝑛𝑑
• Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression:

– Sequence: 𝑐, 𝑐𝑐, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑛, …
– Recursive definition:

• Basis: 𝑠0 = c, for some c∈ ℝ
• Recurrence: 𝑠𝑛+1 = sn ⋅ 𝑐, where r∈ ℝ is a fixed number.

– Closed form: 𝑠𝑛 = 𝑐 ⋅ 𝑐𝑛

Fibonacci sequence
• Imagine that a ship leaves a pair of rabbits on an

island (with a lot of food).
• After a pair of rabbits reaches 2 months of age, they

produce another pair of rabbits, which in turn starts
reproducing when reaching 2 months of age…

• How many pairs rabbits will be on the island in n
months, assuming no rabbits die?

• Basis: 𝐹1 = 1, F2 = 1
• Recurrence: 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2
• Sequence: 1,1,2,3,5,8,13…

• Closed form: 𝐹𝑛 = ((1+ 5)/2)𝑛−(1−√5)/2
𝑛

√5

– Golden ratio:
• 𝑎+𝑏

𝑎
= 𝑎

𝑏
= 1+ 5

2

Partial sums
• Properties of a sum:

– ∑ 𝑓 𝑖 + 𝑔 𝑖 = 𝑛
𝑖=𝑚 ∑ 𝑓(𝑖)𝑛

𝑖=𝑚 + ∑ 𝑔(𝑖)𝑛
𝑖=𝑚

– ∑ 𝑐 ⋅ 𝑓(𝑖)𝑛
𝑖=𝑚 = 𝑐 ∑ 𝑓(𝑖)𝑛

𝑖=𝑚

• Sum of arithmetic progression:
– 𝑠𝑛 = 𝑐 + 𝑛𝑑 for some c,𝑑 ∈ ℝ
– Sequence: 𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …
– Partial sum:

• ∑ 𝑠𝑛𝑛
𝑖=0 = ∑ (𝑐 + 𝑖𝑑 𝑛

𝑖=0) = ∑ 𝑐 𝑛
𝑖=0 + ∑ 𝑖𝑑 𝑛

𝑖=0 =
 c(n + 1) + d∑ 𝑖 = 𝑐(𝑛 + 1) + 𝑑 𝑛 𝑛+1

2
𝑛
𝑖=0

• Sum of geometric progression:

– 𝑠𝑛 = 𝑐 ⋅ 𝑐𝑛 for some c, 𝑐 ∈ ℝ
– Sequence: 𝑐, 𝑐𝑐, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑛, …
– Partial sum:

• If r=1, then ∑ 𝑠𝑛𝑛
𝑖=0 = 𝑐 𝑛 + 1

• If 𝑐 ≠ 1, then ∑ 𝑠𝑛𝑛
𝑖=0 = 𝑐𝑟𝑛+1−𝑐𝑟−1

Tower of Hanoi game

• Rules of the game:
– Start with all disks on the first peg.
– At any step, can move a disk to another peg, as long as it is

not placed on top of a smaller disk.
– Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the
tower of 8 disks? How about n disks?

Tower of Hanoi game

• Rules of the game:
– Start with all disks on the first peg.
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
– Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the tower of 8 disks? How about n disks?

• Let us call the number of moves needed to transfer n disks H(n).
– Names of pegs do not matter: from any peg 𝑖 to any peg 𝑗 ≠ 𝑖 would take the same number of

steps.
• Basis: only one disk can be transferred in one step.

– So H(1) = 1
• Recursive step:

– suppose we have n-1 disks. To transfer them all to peg 2, need 𝐻(𝑛 − 1) number of steps.
– To transfer the remaining disk to peg 3, 1 step.
– To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
– So H(n) = 2H(n-1)+1 (recurrence).

• Closed form: H(n) = 2𝑛 − 1.

Recurrence relations

• Recurrence: an equation that defines an 𝑛𝑡𝑡
element in a sequence in terms of one or more of
previous terms.

• Think of 𝐹 𝑛 = 𝑠𝑛 for some sequence {𝑠𝑛}
– H(n) = 2H(n-1)+1
– F(n) = F(n-1)+F(n-2)

• A closed form of a recurrence relation is an

expression that defines an 𝑛𝑡𝑡 element in a
sequence in terms of 𝑛 directly.
– Often use recurrence relations and their closed forms

to describe performance of (especially recursive)
algorithms.

Closed forms of some sequences

• Arithmetic progression:
– Sequence: 𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …
– Recursive definition:

• Basis: 𝑠0 = c, for some c∈ ℝ
• Recurrence: 𝑠𝑛+1 = sn + d, where 𝑑 ∈ ℝ is a fixed number.

– Closed form: 𝑠𝑛 = 𝑐 + 𝑛𝑑
• Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression:
– Sequence: 𝑐, 𝑐𝑐, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑛, …
– Recursive definition:

• Basis: 𝑠0 = c, for some c∈ ℝ
• Recurrence: 𝑠𝑛+1 = sn ⋅ 𝑐, where r∈ ℝ is a fixed number.

– Closed form: 𝑠𝑛 = 𝑐 ⋅ 𝑐𝑛

• Solving a recurrence: finding a closed form.
– Solving the recurrence H(n)=2H(n-1)+1

• H(n) = 2 ⋅ 𝐻 𝑛 − 1 + 1
 = 2 2𝐻 𝑛 − 2 + 1 + 1 = 22𝐻 𝑛 − 2 + 2 + 1
 = 23𝐻 𝑛 − 3 + 22 + 2 + 1
 = 24 𝐻 𝑛 − 4 + 23 + 22 + 2 + 1 …

– Closed form: 𝐻 𝑛 = Σ𝑖=0𝑛−1 2𝑖 = 2𝑛 − 1
• Proof by induction (coming in the next lecture).
• Or by noticing that a binary number 111...1 plus 1 gives a binary number 10000…0

– So adding one more disk doubles the number of steps.

• We say that the function defined by H(n) grows exponentially

• Solving recurrences in general might be tricky.
– When the recurrence is of the form T(n)=a T(n/b)+f(n), there is a general

method to estimate the growth rate of a function defined by the recurrence
• Called the Master Theorem for recurrences.

Solving recurrences

Function growth.

• What does it mean to “grow” at a certain speed?
How to compare growth rate of two functions?
– Is f(n)=100n larger than 𝑔 𝑛 = 𝑛2?

• For small n, yes. For n > 100, not so much…
– As usually program take longer on larger inputs,

performance on larger inputs matters more.
– Constant factors don’t matter that much.

• So to compare two functions, check which becomes

larger as n increases (to infinity).
– Ignoring constant factors, as they don’t contribute to

the rate of growth.

Function growth.

• How to estimate the rate of growth?
– Plotting a graph?

• Not quite conclusive:
– How do you know what they will do past the

graphed part?

• We say that f(n) grows at least as fast as g(n) if
– There is a value 𝑛0 such that after 𝑛0, 𝑔 𝑛 is always at most as large as 𝑓 𝑛

• More precisely, compare absolute values: |g(n)| vs. |f(n)|
– Moreover, ignore constant factors:

• So if two functions only differ by a constant factor, consider them having the same growth rate.

• Denote set of all functions growing at most as fast as 𝑔 𝑛 by 𝑶 𝒈 𝒏
– Big-Oh of g(n).
– g(n) is an asymptotic upper bound for f(n).
– When both 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 , write 𝑓 𝑛 ∈ Θ(𝑔 𝑛)

• f(n) is in big-Theta of g(n)).

• More generally, for real-valued functions f(x) and g(x),

• That is, from some point 𝑥0 on, each |𝑓 𝑥 | is less than |g(x)| (up to a constant

factor).
• Usually in time complexity have functions ℕ → ℝ≥0, so use 𝑛 for 𝑥 and ignore | |.

𝑓 𝑥 ∈ 𝑂 𝑔 𝑥 iff

∃ 𝑥0 ∈ ℝ≥0 ∃𝑐 ∈ ℝ>0 ∀𝑥 ≥ 𝑥0 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔 𝑥

O-notation.

O-notation.

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 2𝑛.
– Take c=1, 𝑛0 = 4.
– For every 𝑛 ≥ 𝑛0,𝑓 𝑛 ≤ 𝑔 𝑛

• Proof by induction.
– So n2 ∈ 𝑂 2𝑛

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 10𝑛.

– Take arbitrary 𝑐 and look at 𝑛2 ≤ 𝑐 ⋅ 10𝑛.
– No matter what 𝑐 is, when 𝑛 > 𝑐 ⋅ 10, 𝑛2 ≥ 𝑐 ⋅ 10𝑛
– So 𝑛2 ∉ 𝑂 10𝑛 .

• 𝑓 𝑛 = 𝑛2 + 100𝑛, 𝑔 𝑛 = 10𝑛2.

– Here, 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and also 𝑔 𝑛 ∈ 𝑂(𝑓 𝑛)
• So 𝑓 𝑛 ∈ Θ(𝑔 𝑛)
• 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 : c = 20 and/or 𝑛0 = 100 work.
• 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 : Take c=10, 𝑛0 = 1.

– Can ignore not only constants, but also all except the leading
term in the expression.

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 iff

∃ 𝑛0 ∈ ℕ ∃𝑐 ∈ ℝ>0 ∀𝑛 ≥ 𝑛0 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

You will see some O-notation
in COMP 1000 and a lot in
COMP 2002.

	Sums, products and sequences
	Recurrences and sequences
	Special sequences
	Fibonacci sequence
	Partial sums
	Tower of Hanoi game
	Tower of Hanoi game
	Recurrence relations
	Closed forms of some sequences
	Solving recurrences
	Function growth.
	Function growth.
	O-notation.
	O-notation.

