

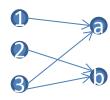
COMP 1002

Logic for Computer Scientists

Lecture 20

Relations

- A relation is a subset of a Cartesian product of sets.
 - If of two sets (set of pairs), call it a binary relation.
 - Of 3 sets (set of triples), ternary.
 Of k sets (set of tuples), k-ary
 - $A=\{1,2,3\}, B=\{a,b\}$
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - $R = \{(1,a), (2,b), (3,a), (3,b)\}$ is a relation. So is $R = \{(1,b)\}$.
 - $A=\{1,2\},$
 - $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
 - R={(1,1), (2,2)} (all pairs (x,y) where x=y)
 - R={(1,1),(1,2),(2,2)} (all pairs (x,y) where $x \le y$).
 - A=PEOPLE
 - COUPLES ={(x,y) | Loves(x,y)}
 - PARENTS ={(x,y) | Parent(x,y)}
 - A=PEOPLE, B=DOGS, C=PLACES
 - WALKS = $\{(x,y,z) \mid x \text{ walks y in z}\}$
 - Jane walks Buddy in Bannerman park.



Graph of R (bipartite)

Graph of {(1,1),(2,2)}

Types of binary relations

• A binary relation $R \subseteq A \times A$ is

- Reflexive if $\forall x \in A, R(x, x)$
 - Every x is related to itself.
 - E.g. $A=\{1,2\}$, $R_1=\{(1,1),(2,2),(1,2)\}$
 - On A = \mathbb{Z} , $R_2 = \{(x,y)|x=y\}$ is reflexive
 - But not $R_3 = \{(x, y) | x < y\}$
- **Symmetric** if $\forall x, y \in A$, $(x, y) \in R \leftrightarrow (y, x) \in R$
 - R_1 and R_3 above are not symmetric. R_2 is.
 - A = \mathbb{Z} , $R_4 = \{(x, y) | x \equiv y \bmod 3 \}$ is symmetric.
- Transitive if $\forall x, y, z \in A$, $(x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$
 - R_1 , R_2 , R_3 , R_4 are all transitive.
 - $R_5 = \{(x, y) | x, y \in \mathbb{Z} \land x + 1 = y\}$ is not transitive.
 - PARENT = $\{(x,y)|x,y \in PEOPLE \land x \text{ is a parent of } y\}$ is not.
 - A **transitive closure** of a relation R is a relation $R^* = \{(x, z) | \exists k \in \mathbb{N} \ \exists y_0, \dots, y_k \in A \ (x = y_0 \land z = y_k \land \forall i \in \{0, \dots, k-1\} \ R(y_i, y_{i+1})\}$ That is, can get from x to z following R arrows.

Types of binary relations

• A binary relation $R \subseteq A \times A$ is

 $0 \longrightarrow 0$

Graph of {(1,2)}

- Anti-reflexive if $\forall x \in A, \neg R(x, x)$
 - R can be neither reflexive nor anti-reflexive.
 - E.g. $A=\{1,2\}, R_6=\{(1,2)\}$
 - but not $R_1 = \{ (1,1), (2,2), (1,2) \}$ (reflexive)
 - nor $R_7 = \{(1,1), (1,2)\}$ (neither)
 - For $A = \mathbb{Z}$, not $R_2 = \{(x, y) | x = y\}$
 - Nor $R_4 = \{(x, y) | x \equiv y \mod 3 \}$
 - But $R_3 = \{(x, y) | x < y\}$ is anti-reflexive.
 - So are $R_5 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + 1 = y\}$
 - And PARENT = $\{(x, y) \in PEOPLE \times PEOPLE \mid x \text{ is a parent of } y\}$
- Anti-symmetric if $\forall x, y \in A, (x, y) \in R \land (y, x) \in R \rightarrow x = y$
 - R_1 , R_3 , R_5 , R_6 , R_7 , PARENT are anti-symmetric. R_4 is not.
 - R_2 is both symmetric and anti-symmetric.
 - $R_8 = \{(1,2), (2,1), (1,3)\}$ is neither symmetric nor anti-symmetric.

Equivalence

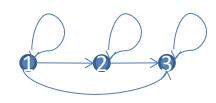
- A binary relation $R \subseteq A \times A$ is an **equivalence** if R is reflexive, symmetric and transitive.
 - E.g. A={1,2}, $R = \{(1,1), (2,2)\}$ or $R = A \times A$
 - Not $R_1 = \{ (1,1), (2,2), (1,2) \}$ nor $R_3 = \{ (x,y) | x < y \}$
 - On A = \mathbb{Z} , $R_2 = \{(x, y) | x = y\}$ is an equivalence
 - So is $R_4 = \{(x, y) | x \equiv y \mod 3 \}$
 - Reflexive: $\forall x \in \mathbb{Z}, x \equiv x \mod 3$
 - Symmetric: $\forall x, y \in \mathbb{Z}$, $x \equiv y \mod 3 \rightarrow y \equiv x \mod 3$
 - Transitive: $\forall x, y, z \in \mathbb{Z}$, $x \equiv y \mod 3 \land y \equiv z \mod 3 \rightarrow x \equiv z \mod 3$

- Intersection of any two equivalence classes is Ø
- Union of all equivalence classes is A.
- $-R_4: \mathbb{Z} = \{x \mid x \equiv 0 \bmod 3\} \cup \{x \mid x \equiv 1 \bmod 3\} \cup \{x \mid x \equiv 2 \bmod 3\}$
- $-R = A \times A$ gives rise to a single equivalence class. $R = \{(1,1), (2,2)\}$ on A = $\{1,2\}$ to two equivalence classes.

Partial and total orders

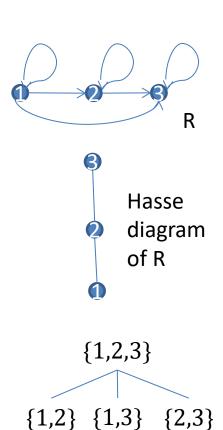
- A binary relation $R \subseteq A \times A$ is an **order** if R is reflexive, anti-symmetric and transitive.
 - R is a **total order** if $\forall x, y \in A \ R(x, y) \lor R(y, x)$
 - That is, every two elements of A are related.
 - E.g. $R_1 = \{(x, y) | x, y \in \mathbb{Z} \land x \le y\}$ is a total order.
 - So is alphabetical order of English words.
 - But not $R_2 = \{(x, y) | x, y \in \mathbb{Z} \land x < y\}$
 - not reflexive, so not an order.

- $SUBSETS = \{(A, B) \mid A, B \text{ are sets } \land A \subseteq B \}$ is a partial order.
 - Reflexive: $\forall A, A \subseteq A$
 - Anti-symmetric: $\forall A, B \ A \subseteq B \land B \subseteq A \rightarrow A = B$
 - Transitive: $\forall A, B, C \ A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$
 - Not total: if A ={1,2} and B ={1,3}, then neither $A \subseteq B$ nor $B \subseteq A$
- $DIVISORS = \{(x,y) | x, y \in \mathbb{N} \land x, y \ge 2 \land \exists z \in \mathbb{N} \ y = z \cdot x\}$ is a partial order.
- PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor
 of themselves. It is a partial order.
- An order may have minimal and maximal elements (maybe multiple)
 - $-x \in A$ is minimal in R if $\forall y \in A \ y \neq x \rightarrow \neg R(y,x)$
 - and maximal if $\forall y \in A \ y \neq x \rightarrow \neg R(x, y)$
 - Ø is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum).
 - All primes are minimal in DIVISORS, and there are no maximal elements.



Hasse diagram

- A Hasse diagram is a way to draw a (partial or total) order (more precisely, its "transitive reduction": opposite of transitive closure) without drawing loops or edges that have to be there by transitivity.
 - draw minimal elements on the bottom, and then go up
 - don't draw arrows (assumed arrow direction is always upwards).
 - $R=\{(x,y) \in \{1,2,3\} \times \{1,2,3\} | x \le y\}$
 - On the Hasse diagram of R, only draw edges (1,2) and (2,3), as all the rest follow by reflexivity and transitivity. 1 is the minimal (bottom), 3 maximal (top).
 - $SUBSETS = \{(A, B) \mid A, B \text{ are sets } \land A \subseteq B \}$
 - Let universe be {1,2,3}
 - Hasse diagram of SUBSETS over {1,2,3}:



{2,3}

Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?