

COMP 1002

Logic for Computer Scientists

Lecture 18

Cartesian products

- **Cartesian product** of A and B is a set of all pairs of elements with the first from A, and the second from B:
 - $A \times B = \{(x, y) | x \in A, y \in B\}$
 - A={1,2,3}, B={a,b}
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}\$
 - A={1,2}, $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
- Order of pairs does not matter, order within pairs does: $A \times B \neq B \times A$.
- Number of elements in $A \times B$ is $|A \times B| = |A| \cdot |B|$
- Can define the Cartesian product for any number of sets:
 - $-A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots x_k) | x_1 \in A_1 \dots x_k \in A_k\}$
 - $A = \{1,2,3\}, B = \{a,b\}, C=\{3,4\}$
 - $-A \times B \times C = \{(1, a, 3), (1, a, 4), (1, b, 3), (1, b, 4), (2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (2, b,$
 - (3, a, 3), (3, a, 4), (3, b, 3), (3, b, 4)

Relations

- A relation is a subset of a Cartesian product of sets.
 - If of two sets (set of pairs), call it a **binary** relation.
 - Of 3 sets (set of triples), ternary. Of k sets (set of tuples), k-ary
 - A={1,2,3}, B={a,b}
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - R = {(1,a), (2,b),(3,a), (3,b)} is a relation. So is R={(1,b)}.
 - A={1,2},
 - $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
 - R={(1,1), (2,2)} (all pairs (x,y) where x=y)
 - $R=\{(1,1),(1,2),(2,2)\}$ (all pairs (x,y) where $x \le y$).
 - A=PEOPLE
 - COUPLES ={(x,y) | Loves(x,y)}
 - PARENTS ={(x,y) | Parent(x,y)}
 - A=PEOPLE, B=DOGS, C=PLACES
 - WALKS = {(x,y,z) | x walks y in z}
 - Jane walks Buddy in Bannerman park.

Graph of R (bipartite)

Graph of {(1,1),(2,2)}

Databases and predicates

Relation R	Predicate P
A set of tuples	True/false on a given tuple
R={ $(x_1,, x_k) P(x_1,, x_k)$ is true}	$P(x_1, \dots, x_k) \equiv (x_1, \dots, x_k) \in R$

- In a database, store relations as tables.
- Then ask queries as predicate logic formulas
 - Return the set of all database elements satisfying the formula.

ProfData					CourseData						
	1	А	В	С		A	В	С	D	E	
	1	Manrique	Mata-Montero	EN-2033	1	COMP1000	MWF	11:00-11:50	EN-1054	Mata-Montero	
	2	Sharene	Bungay	ER-6032	2	COMP1001	MWF	12:00-12:50	EN-2040	Bungay	
	3	Antonina	Kolokolova	ER-6033	3	COMP1002	MTR	13:00-13:50	EN-2007	Kolokolova	

- "Return first names of all profs who teach MWF "
- Q(fn): ∃ ln ∃ o ProfData(fn, ln, o) ∧ ∃c, t, r CourseData(c, "MWF",t,r,ln)

Functions

• A function $f: X \to Y$ is a relation on $X \times Y$ such that for every $x \in X$ there is at most one $y \in Y$ for which (x, y) is in the relation.

- Usual notation:
$$f(x) = y$$

- y is an **image** of x under f.
- X is the **domain** of f
- Y is the **codomain** of f
- Range of f (image of X under f):
 - { $y \in Y | \exists x \in X, f(x) = y$ }
- **Preimage** of a given $y \in Y$:

•
$$\{x \in X \mid f(x) = y\}$$

Preimage of b is {2,3}.

This R is not a function

This R is a function with domain {1,2,3,4}, codomain {a,b,c} and range {a,b}

- A function $f: X \to Y$ is
 - Total: $\forall x \in X \exists y \in Y f(x) = y$
 - $f: \mathbb{Z} \to \mathbb{Z}$
 - f(x) = x + 1 is total.
 - $f(x) = \frac{100}{x}$ is not total.
 - **Onto**: $\forall y \in Y \exists x \in X f(x) = y$
 - f(x) = x + 1 is onto over \mathbb{Z} , but not over \mathbb{N}
 - f(x) = 5x is not onto (\mathbb{Z})
 - **One-to-one:** $\forall x_1, x_2 \in X f(x_1) = f(x_2) \to x_1 = x_2$
 - f(x) = x + 1 is one-to-one.
 - $f(x) = x^2$ is not one-to-one
 - Bijection: both one-to-one and onto.
 - f(x) = x + 1 is a bijection over \mathbb{Z} .

Functions

- An **inverse** of f is $f^{-1}: Y \to X$, such that $f^{-1}(y) = x$ iff f(x) = y $-f(x) = x + 1, f^{-1}(y) = y - 1$ - Only one-to-one functions have an inverse
- **Composition** of $f: X \to Y$ and $g: Y \to Z$ is $g \circ f: X \to Z$ such that $(g \circ f)(x) = g(f(x))$ $-f(x) = \frac{x}{5}, g(x) = [x], \text{ over } \mathbb{R}$

• [x] is ceiling: x rounded up to nearest integer.

 $-(g \circ f)(x) = g(f(x)) = \left[\frac{x}{5}\right]$ $-(f \circ g)(x) = f(g(x)) = \frac{[x]}{5}$ $-(g \circ f)(12.5) = [2.5] = 3. (f \circ g)(12.5) = 13/5 = 2.6$ • Order matters!

ิด

 \mathbf{b}

Puzzle: the barber club

- In a certain barber's club,
 - Every member has shaved at least one other member

- No member shaved himself
- No member has been shaved by more than one member
- There is a member who has never been shaved.
- Question: how many barbers are in this club?