COMP 1002

Logic for Computer Scientists

Lecture 18
Cartesian products

- **Cartesian product** of A and B is a set of all pairs of elements with the first from A, and the second from B:
 - \(A \times B = \{(x, y) | x \in A, \ y \in B\} \)
 - \(A = \{1,2,3\}, \ B = \{a,b\} \)
 - \(A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\} \)
 - \(A = \{1,2\}, \ A \times A = \{(1,1), (1,2), (2,1), (2,2)\} \)

- Order of pairs does not matter, order within pairs does: \(A \times B \neq B \times A \).

- Number of elements in \(A \times B \) is \(|A \times B| = |A| \cdot |B|\)

- Can define the Cartesian product for any number of sets:
 - \(A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \ldots, x_k) | x_1 \in A_1, \ldots, x_k \in A_k\} \)
 - \(A = \{1,2,3\}, \ B = \{a,b\}, \ C = \{3,4\} \)
 - \(A \times B \times C = \{(1, a, 3), (1, a, 4), (1, b, 3), (1, b, 4), (2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (3, a, 3), (3, a, 4), (3, b, 3), (3, b, 4)\} \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,a)</td>
<td>(1,b)</td>
</tr>
<tr>
<td>2</td>
<td>(2,a)</td>
<td>(2,b)</td>
</tr>
<tr>
<td>3</td>
<td>(3,a)</td>
<td>(3,b)</td>
</tr>
</tbody>
</table>
Relations

- **A relation** is a subset of a Cartesian product of sets.
 - If of two sets (set of pairs), call it a **binary** relation.
 - Of 3 sets (set of triples), **ternary**. Of k sets (set of tuples), **k-ary**

- \(A=\{1,2,3\}, \; B=\{a,b\} \)
 - \(A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\} \)
 - \(R = \{(1,a),(2,b),(3,a),(3,b)\} \) is a relation. So is \(R = \{(1,b)\} \).

- \(A=\{1,2\}, \)
 - \(A \times A = \{(1,1),(1,2),(2,1),(2,2)\} \)
 - \(R = \{(1,1),(2,2)\} \) (all pairs (x,y) where x=y)
 - \(R = \{(1,1),(1,2),(2,2)\} \) (all pairs (x,y) where \(x \leq y \)).

- \(A=\text{PEOPLE} \)
 - \(\text{COUPLES} = \{(x,y) \mid \text{Loves}(x,y)\} \)
 - \(\text{PARENTS} = \{(x,y) \mid \text{Parent}(x,y)\} \)

- \(A=\text{PEOPLE}, \; B=\text{DOGS}, \; C=\text{PLACES} \)
 - \(\text{WALKS} = \{(x,y,z) \mid x \text{ walks } y \text{ in } z\} \)
 - Jane walks Buddy in Bannerman park.
Databases and predicates

In a database, store relations as tables.

Then ask queries as predicate logic formulas

- Return the set of all database elements satisfying the formula.
- "Return first names of all profs who teach MWF"
 - $Q(fn)$:
 $\exists ln \exists o\ ProfData(fn, ln, o) \land \exists c, t, r\ CourseData(c, "MWF", t, r, ln)$
Functions

• A function \(f : X \to Y \) is a relation on \(X \times Y \) such that for every \(x \in X \) there is at most one \(y \in Y \) for which \((x, y) \) is in the relation.
 – Usual notation: \(f(x) = y \)
 • \(y \) is an image of \(x \) under \(f \).
 – \(X \) is the domain of \(f \)
 – \(Y \) is the codomain of \(f \)
 – Range of \(f \) (image of \(X \) under \(f \)):
 • \(\{ y \in Y \mid \exists x \in X, f(x) = y \} \)
 – Preimage of a given \(y \in Y \):
 • \(\{ x \in X \mid f(x) = y \} \)
 – Preimage of \(b \) is \(\{2,3\} \).

This \(R \) is not a function

This \(R \) is a function with domain \(\{1,2,3,4\} \), codomain \(\{a,b,c\} \) and range \(\{a,b\} \).
Functions

- **A function** $f: X \rightarrow Y$ is
 - **Total**: $\forall x \in X \exists y \in Y \ f(x) = y$
 - $f: \mathbb{Z} \rightarrow \mathbb{Z}$
 - $f(x) = x + 1$ is total.
 - $f(x) = \frac{100}{x}$ is not total.

- **Onto**: $\forall y \in Y \exists x \in X \ f(x) = y$
 - $f(x) = x + 1$ is onto over \mathbb{Z}, but not over \mathbb{N}
 - $f(x) = 5x$ is not onto (\mathbb{Z})

- **One-to-one**: $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \rightarrow x_1 = x_2$
 - $f(x) = x + 1$ is one-to-one.
 - $f(x) = x^2$ is not one-to-one

- **Bijection**: both one-to-one and onto.
 - $f(x) = x + 1$ is a bijection over \mathbb{Z}.
Functions

• An **inverse** of f is $f^{-1}: Y \rightarrow X$, such that $f^{-1}(y) = x$ if $f(x) = y$

 - $f(x) = x + 1$, $f^{-1}(y) = y - 1$
 - Only one-to-one functions have an inverse

• **Composition** of $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is $g \circ f: X \rightarrow Z$ such that $(g \circ f)(x) = g(f(x))$

 - $f(x) = \frac{x}{5}$, $g(x) = [x]$, over \mathbb{R}
 - $[x]$ is ceiling: x rounded up to nearest integer.

 - $(g \circ f)(x) = g(f(x)) = \left\lceil \frac{x}{5} \right\rceil$
 - $(f \circ g)(x) = f(g(x)) = \frac{[x]}{5}$
 - $(g \circ f)(12.5) = [2.5] = 3$. $(f \circ g)(12.5) = 13/5 = 2.6$
 - Order matters!
Puzzle: the barber club

• In a certain barber’s club,
 – Every member has shaved at least one other member
 – No member shaved himself
 – No member has been shaved by more than one member
 – There is a member who has never been shaved.

• **Question:** how many barbers are in this club?