

COMP 1002

Logic for Computer Scientists

Lecture 17

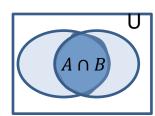
Puzzle: the barber

 In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

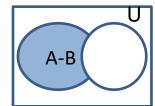
Question: who shaves the barber?

Operations on sets

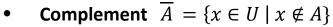
- Let A and B be two sets.
 - Such as A={1,2,3} and B={ 2,3,4}
- Intersection $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - The green part of the picture above
 - $A \cap B = \{2,3\}$



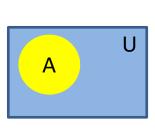
- Union $A \cup B = \{ x \mid x \in A \lor x \in B \}$
 - The coloured part in the top picture.
 - $A \cup B = \{1,2,3,4\}$
- Difference $A B = \{x \mid x \in A \land x \notin B\}$
 - The yellow part in the top picture.
 - $A B = \{1\}$

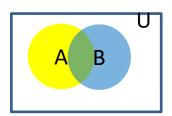


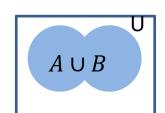
- Symmetric difference $A \Delta B = (A B) \cup (B A)$
 - The yellow and blue parts of the top picture.
 - $\quad A\Delta B = \{1,4\}$

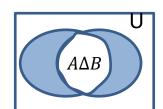


- The blue part on the bottom Venn diagram
- If universe U = \mathbb{N} , \overline{A} = { $x \in \mathbb{N} | x \notin \{1,2,3\}$ }



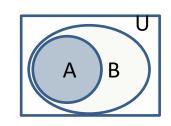


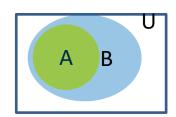




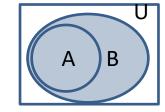
Subsets and operations

- If $A \subseteq B$ then
 - Intersection $A \cap B =$
 - A

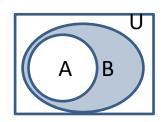




- Union $A \cup B =$
 - B



- Difference A B =
 - Ø
- Difference B A =
 - $\overline{A} \overline{B}$



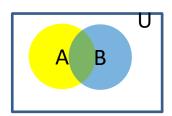
Size (cardinality)

- If a set A has n elements, for a natural number n, then A is a finite set and its cardinality is |A|=n.
 - $-|\{1,2,3\}|=3$
 - $|\emptyset| = 0$
- Sets that are not finite are infinite. More on cardinality of infinite sets in a couple of lectures...
 - $-\mathbb{N},\mathbb{Z},\mathbb{Q}$
 - $-\mathbb{R},\mathbb{C}$
 - $-\{0,1\}^*$: set of all finite-length binary strings.

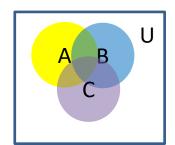
Rule of inclusion-exclusion

Let A and B be two sets. Then

$$|A \cup B| = |A| + |B| - |A \cap B|$$



- Proof idea: notice that elements in $|A \cap B|$ are counted twice in |A|+|B|, so need to subtract one copy.
- If A and B are disjoint, then $|A \cup B| = |A| + |B|$
- If there are 112 students in COMP 1001, 70 in COMP 1002, and 12 of them are in both, then the total number of students in 1001 or 1002 is 112+70-12=170.
- For three sets (and generalizes)
- $|A \cup B \cup C| = |A| + |B| + |C|$ $-|A \cap B| - |A \cap C| - |B \cap C|$ $+|A \cap B \cap C|$



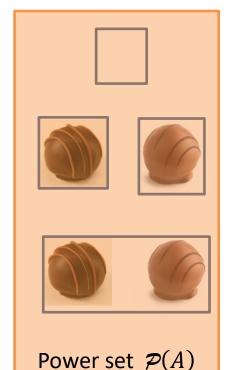
Power sets

- A power set of a set A, P(A), is a set of all subsets of A.
 - Think of sets as boxes of elements.
 - A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some).
 - Then $\mathcal{P}(A)$ is a box containing boxes with elements of A.
 - When you open the box $\mathcal{P}(A)$, you don't see chocolates (elements of A), you see boxes.

$$- A=\{1,2\}, \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$$

- $A = \emptyset, \quad \mathcal{P}(A) = \{\emptyset\}.$
 - They are not the same! There is nothing in A, and there is one element, an empty box, in $\mathcal{P}(A)$
- If A has n elements, then $\mathcal{P}(A)$ has 2^n elements.

Subsets of A:



Cartesian products

- Cartesian product of A and B is a set of all pairs of elements with the first from A, and the second from B:
 - A x B = $\{(x, y) | x \in A, y \in B\}$

$- A=\{1,2,3\},$, B={a,b}
------------------	-----------

 $- A \times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}\$

- A={1,2},
$$A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$$

	а	b
1	(1,a)	(1,b)
2	(2,a)	(2,b)
3	(3,a)	(3,b)

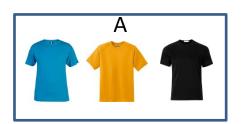
- Order of pairs does not matter, order within pairs does: $A \times B \neq B \times A$.
- Number of elements in $A \times B$ is $|A \times B| = |A| \cdot |B|$
- Can define the Cartesian product for any number of sets:

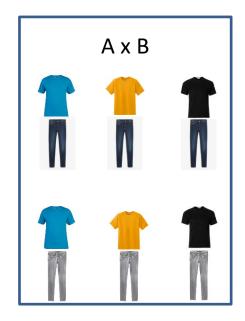
$$- \quad A_1 \times A_2 \times \dots \times A_k = \{(x_1, x_2, \dots x_k) | \ x_1 \in A_1 \dots x_k \in A_k \}$$

$$- A = \{1,2,3\}, B = \{a,b\}, C=\{3,4\}$$

$$- A \times B \times C = \{(1, a, 3), (1, a, 4), (1, b, 3), (1, b, 4), \}$$

(2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (3, a, 3), (3, a, 4), (3, b, 3), (3, b, 4)





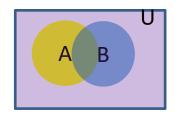
Proofs with sets

- Two ways to describe the purple area
- $\overline{A \cup B}$, $\overline{A} \cap \overline{B}$
 - $-x \in \overline{A \cup B}$ when $x \notin A \cup B$
 - This happens when $x \notin A \land x \notin B$.
 - So $x \in \overline{A} \cap \overline{B}$. Since we picked an arbitrary x, then $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$
 - Not quite done yet... Now let $x \in \overline{A} \cap \overline{B}$
 - Then $x \in A \land x \in \overline{B}$. So $x \notin A \land x \notin B$.
 - $-x \notin A \land x \notin B \equiv \neg (x \in A \lor x \in B)$. So $x \notin A \cup B$. Thus $x \in A \cup B$.
 - Since x was an arbitrary element of $\overline{A} \cap \overline{B}$, then $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.
 - Therefore $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Laws of set theory

Two ways to describe the purple area

$$-\overline{A \cup B} = \overline{A} \cap \overline{B}$$



By similar reasoning,

$$-\overline{A \cap B} = \overline{A} \cup \overline{B}$$

- Does this remind you of something?...
 - $-\neg(p \lor q) \equiv \neg p \land \neg q$
 - DeMorgan's law works in set theory!
 - What about other equivalences from logic?

More useful equivalences

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$

$$A \wedge \neg A \equiv False$$

 $- True \lor A \equiv True.$

True
$$\wedge A \equiv A$$

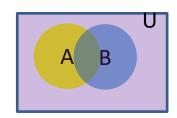
- False $\vee A \equiv A$.

$$False \land A \equiv False$$

- $A \lor A \equiv A \land A \equiv A$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for Λ .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic
 - $-(A \wedge B) \vee C \equiv (A \vee C) \wedge (B \vee C)$

Propositions vs. sets

Propositional logic	Set theory
Negation ¬ p	Complement \overline{A}
$AND p \wedge q$	Intersection $A \cap B$
OR $p \lor q$	Union $A \cup B$
FALSE	Empty set Ø
TRUE	Universe U



More useful equivalences

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$

$$A \wedge \neg A \equiv False$$

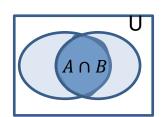
 $- True \lor A \equiv True.$

True
$$\wedge A \equiv A$$

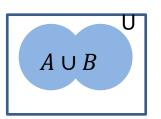
- False $\vee A \equiv A$.

$$False \land A \equiv False$$

- $A \lor A \equiv A \land A \equiv A$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for Λ .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic
 - $-(A \wedge B) \vee C \equiv (A \vee C) \wedge (B \vee C)$



Laws of set theory



For any sets A, B, C:

$$- A \cup A = U$$

$$-U \cup A = U$$
.

$$- \emptyset \cup A = A$$
.

$$-A \cup A = A \cap A = A$$

$$A \cap \overline{A} = \emptyset$$

$$U \cap A = A$$

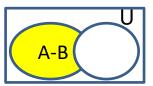
$$\emptyset \cap A = \emptyset$$

Also, like in arithmetic (with V as +, ∧ as *)

$$-A \cup B = B \cup A$$
 and $(A \cup B) \cup C = A \cup (B \cup C)$

- Same holds for \cap .
- Also, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- And unlike arithmetic

$$-(A \cap B) \cup C \equiv (A \cup C) \cap (B \cup C)$$



Boolean algebra

• The "algebra" of both propositional logic and set theory is called **Boolean algebra** (as opposed to algebra on numbers).

Propositional logic	Set theory	Boolean algebra
Negation $\neg p$	Complement \overline{A}	\overline{a}
$AND p \wedge q$	Intersection $A \cap B$	$a \cdot b$
OR $p \lor q$	Union $A \cup B$	a + b
FALSE	Empty set Ø	0
TRUE	Universe U	1

Axioms of Boolean algebra

1.
$$a+b=b+a$$
, $a \cdot b=b \cdot a$

2.
$$(a+b)+c=a+(b+c)$$
 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

3.
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

4. There exist distinct elements 0 and 1 (among underlying set of elements B of the algebra) such that for all $a \in B$,

$$a + 0 = a$$
 $a \cdot 1 = a$

5. For each $a \in B$ there exists an element $\overline{a} \in B$ such that

$$a + \overline{a} = 1$$
 $a \cdot \overline{a} = 0$

How about DeMorgan, etc? They can be derived from the axioms!

Puzzle: the barber club

- In a certain barber's club,
 - Every member has shaved at least one other member
 - No member shaved himself
 - No member has been shaved by more than one member
 - There is a member who has never been shaved.

Question: how many barbers are in this club?

