

COMP 1002

Intro to Logic for Computer Scientists

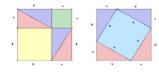
Lecture 16

Puzzle: Caesar cipher

- The Roman dictator Julius Caesar encrypted his personal correspondence using the following code.
 - Number letters of the alphabet: A=0, B=1,... Z=25.
 - To encode a message, replace every letter by a letter three positions before that (wrapping).
 - A letter numbered x by a letter numbered x-3 mod 26.
 - For example, F would be replaced by C, and A by X
- Suppose he sent the following message.
 - QOBXPROB FK QEB ZXSB
- What does it say?

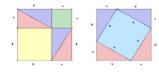
Proof by cases

- Use the tautology $(p_1 \lor p_2) \land (p_1 \rightarrow q) \land (p_2 \rightarrow q) \rightarrow q$
- If $\forall x \ F(x)$ is $\forall x (G_1(x) \lor G_2(x)) \to H(x)$,
- prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x))$.
- Proof:
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Case 1: $G_1(n)$ → H(n)
 - Case 2: $G_2(n) \rightarrow H(n)$
 - Therefore, $(G_1(n) \vee G_2(n)) \rightarrow H(n)$,
 - Now use universal generalization to conclude that $\forall x F(x)$ is true.
- This generalizes for any number of cases $k \geq 2$.



Proof by cases.

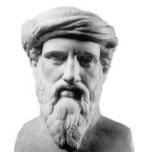
- *Definition* (of odd integers):
 - An integer n is **odd** iff $\exists k \in \mathbb{Z}, n = 2 \cdot k + 1$.
- Theorem: Sum of an integer with a consecutive integer is odd.
 - $\forall x \in \mathbb{Z} \ Odd(x + (x + 1)).$
- Proof:
 - Suppose n is an arbitrary integer.
 - Case 1: n is even.
 - So n=2k for some k (by definition).
 - Its consecutive integer is n+1 = 2k+1. Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1. (axioms).
 - Let l=2k. Then 4k+1=2l+1 is an odd number (by definition). So in this case, n+(n+1) is odd.
 - Case 2: n is odd.
 - So n=2k+1 for some k (by definition).
 - Its consecutive integer is n+1 = 2k+2. Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1. (axioms).
 - Let l = 2k + 1. Then n+(n+1) = 2(2k+1)+1 = 2l + 1, which is an odd number (by definition). So in this case, n+(n+1) is also odd.
 - Since in both cases n+(n+1) is odd, it is odd without additional assumptions. Therefore, by universal generalization, get $\forall x \in \mathbb{Z} \ Odd(x + (x + 1))$.



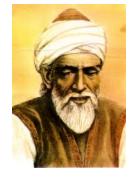
 \square (Done).

Proof by cases

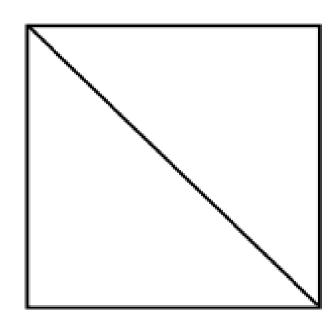
- Definition: an absolute value of a real number r is a non-negative real number |r| such that if |r| = r if $r \ge 0$, and |r| = -r if r < 0
 - Claim 1: $\forall x \in \mathbb{R}, |-x| = |x|$
 - Claim 2: $\forall x \in \mathbb{R}, -|x| \le x \le |x|$
- Theorem: for any two reals, sum of their absolute values is at least the absolute value of their sum.
 - $\forall x, y \in \mathbb{R} |x + y| \le |x| + |y|$
- *Proof*:
 - Let r and s be arbitrary reals. (universal instantiation)
 - Case 1: Let $r + s \ge 0$.
 - Then |r + s| = r + s (definition of ||)
 - Since $r \le |r|$ and $s \le |s|$ (claim 2), $r+s \le |r| + |s|$ (axioms),
 - so $|r+s| = r+s \le |r| + |s|$, which is what we need.
 - Case 2: Let r + s < 0.
 - Then |r + s| = -(r + s) = (-r) + (-s) (definition of ||)
 - Since $-r \le |-r| = |r|$ and $-s \le |-s| \le |s|$ (claims 1 and 2),
 - $|r+s| = (-r) + (-s) \le |r| + |s|$ (axioms), which is what we need.
 - Since in both cases $|r+s| \le |r| + |s|$, and there are no more cases, $|r+s| \le |r| + |s|$ without additional assumptions. By universal generalization , can now get $\forall x, y \in \mathbb{R}$ $|x+y| \le |x| + |y|$.



Square root of 2



- Is it possible to have a Pythagorean triple with a=b=1?
- Not quite: $1^2 + 1^2 = 2$, so the third side would have to be $\sqrt{2}$.
- Is it at least possible to represent √2 as a ratio of two integers?...
 - Pythagoras and others tried...



Proof by contradiction

- − To prove $\forall x \ F(x)$, prove $\forall x \ \neg F(x) \rightarrow FALSE$
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Suppose that $\neg F(n)$ is true.
 - Derive a contradiction.
 - Conclude that F(n) is true.
 - By universal generalization, $\forall x \ F(x)$ is true.

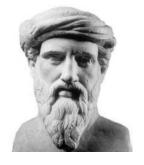
Rational and irrational numbers



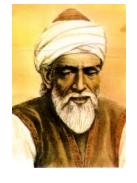
- The numbers that are representable as a fraction of two integers are rational numbers. Set of all rational numbers is Q.
- Numbers that are not rational are irrational.
 - Pythagoras figured out that the diagonal of a square is not comparable to the sides, but did not think of it as a number.
 - More like something weird.
 - It seems that irrational numbers started being treated as numbers in 9th century in the Middle East.
 - Starting with a Persian mathematician and astronomer Abu-Abdullah Muhammad ibn Īsa Māhānī (Al-Mahani).
- Rational and irrational numbers together form the set of all real numbers.
 - Any sequence of digits, potentially infinite after a decimal point, is a real number. Any point on a line.
- Irrationality of $\sqrt{2}$ is a classic proof by contradiction.

Proof by contradiction

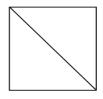
- − To prove $\forall x \ F(x)$, prove $\forall x \ \neg F(x) \rightarrow FALSE$
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Suppose that $\neg F(n)$ is true.
 - Derive a contradiction.
 - Conclude that F(n) is true.
 - By universal generalization, $\forall x \ F(x)$ is true.

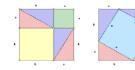


Definition of rational



- We need a slightly more precise definition of rational numbers for our proof that $\sqrt{2}$ is irrational.
- Definition (of rational and irrational numbers):
 - A real number r is **rational** iff $\exists m, n \in \mathbb{Z}, n \neq 0 \land \gcd(m,n) = 1 \land r = \frac{m}{n}$.
 - Reminder: **greatest common divisor gcd(m,n)** is the largest integer which divides both m and n. When d=1, m and n are **relatively prime**.
 - Any fraction can be simplified until the numerator and denominator are relatively prime, so it is not a restriction,
 - A real number which is not rational is called irrational.





Proof by contradiction

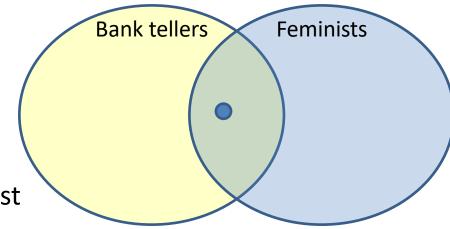
- *Theorem*: Square root of 2 is irrational.
- Proof:
 - Suppose, for the sake of contradiction, that $\sqrt{2}$ is rational. Then there exist relatively prime m, n $\in \mathbb{Z}$, $n \neq 0$ such that $\sqrt{2} = \frac{m}{n}$.
 - By algebra, squaring both sides we get $2 = \frac{m^2}{n^2}$.
 - Thus m^2 is even, and by the theorem we just proved, then m is even. So m=2k for some k.
 - $-2n^2=4\ k^2$, so $n^2=2k^2$, and by the same argument n is even.
 - This contradicts our assumption that m and n are relatively prime. Therefore, such m and n cannot exist, and so $\sqrt{2}$ is not rational.

Puzzle 9

 Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-nuke demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

- 1. a kindergarden teacher
- 2. works in a bookstore and takes yoga classes
- 3. an active feminist
- 4. a psychiatric social worker
- 5. a member of an outdoors club
- 6. a bank teller
- 7. an insurance salesperson
- 8. a bank teller and an active feminist



Set inclusion.

Feminists

PEOPLE

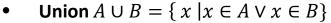
Bank

tellers

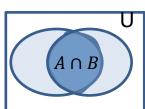
- Let A and B be two sets.
 - Such as $A=\{2,3,4\}$ and $B=\{1,2,3,4,5\}$
- A is a **subset** of B:
 - $-A \subseteq B \text{ iff } \forall x (x \in A \rightarrow x \in B)$
 - $A \subseteq B$. FEMINISTS \subseteq PEOPLE
 - A is a **strict subset** of B: $A \subset B$ iff $\forall x (x \in A \rightarrow x \in B) \land \exists y (y \in B \land y \notin A)$
 - $A \subset B$. FEMINISTS \subset PEOPLE
 - When both $A \subseteq B$ and $B \subseteq A$, then A = B
- A and B are **disjoint** iff $\forall x (x \notin A \lor x \notin B)$
 - {1,5} and {2,3,6,9} are disjoint. So are BANKTELLERS and FEMINISTS in the diagram above.

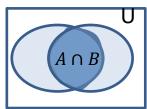
Operations on sets

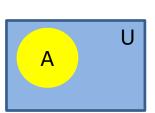
- Let A and B be two sets.
 - Such as A={1,2,3} and B={ 2,3,4}
- **Intersection** $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - The green part of the top right picture
 - $A \cap B = \{2,3\}$

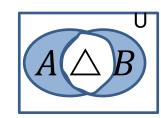


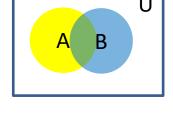
- The coloured part in the top picture.
- $A \cup B = \{1,2,3,4\}$
- Complement $\overline{A} = \{x \in U \mid x \notin A\}$
 - The blue part on the Venn diagram to the right
 - If universe U = \mathbb{N} , $\overline{A} = \{x \in \mathbb{N} \mid x \notin \{1,2,3\}\}$
- **Difference** $A B = \{x \mid x \in A \land x \notin B\}$
 - The yellow part in the top picture.
 - $A B = \{1\}$
- **Symmetric Difference** $A \triangle B = (A B) \cup (B A)$
 - Both blue parts of the picture to the right.
 - $A\triangle B = \{1.4\}$

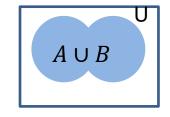


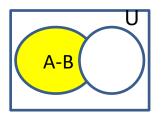












Puzzle: the barber

 In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

Question: who shaves the barber?

