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Puzzle: better than nothing 

• Nothing is better than eternal bliss  
• A burger is better than nothing  
------------------------------------------------ 
• Therefore, a burger is better than eternal bliss. 

 
 

 
Is there anything wrong with this argument?  
The premise: “Nothing is better than eternal bliss” is not true. 

 
 

≤                              ≤ 



Types of proofs 
• Direct proof of ∀𝑥 𝐹 𝑥  

– Show that 𝐹 𝑥  holds for arbitrary x, then use universal generalization.  
• Often, 𝐹 𝑥  is of the form 𝐺 𝑥 → 𝐻(𝑥) 

– Example:  A sum of two even numbers is even. 
– Example:  Difference of numbers congruent mod d. 

• Proof by cases  
– If can write ∀𝑥 𝐹 𝑥  as  ∀𝑥(𝐺1 𝑥 ∨ 𝐺2 𝑥 ∨ ⋯∨ 𝐺𝑘 𝑥 ) → 𝐻(𝑥),  

prove 𝐺1 𝑥 → 𝐻 𝑥 ∧ (𝐺2 𝑥 → 𝐻 𝑥 ) ∧ ⋯∧ (𝐺𝑘 𝑥 → 𝐻(𝑥)) 
– Example: triangle inequality  ( 𝑥 + 𝑦 ≤ 𝑥 + 𝑦 )    

• Proof by contraposition  
– To prove ∀𝑥  𝐺 𝑥 → 𝐻(𝑥), prove ∀𝑥 ¬𝐻 𝑥 → ¬𝐺(𝑥) 
– Example: If square of an integer is even, then this integer is even.  

• Proof by contradiction  
– To prove ∀𝑥 𝐹 𝑥 ,  prove ∀𝑥 ¬𝐹 𝑥 → 𝐹𝐹𝐹𝐹𝐹 
– Example:  2  is not a rational number.  
– Example: There are infinitely many primes.  

 
 



Instantiation/generalization 

• If ∀ 𝑥 ∈ 𝐹  𝐹 𝑥  is true for some formula 
𝐹 𝑥 ,   when you take any specific element 
𝑎 ∈ 𝐹,  then 𝐹 𝑎  must be true.  
– This is called the universal instantiation rule. 

• ∀𝑥 ∈ ℕ  𝑥 > −1   
• ∴   5 > −1  

• If you prove 𝐹 𝑎  without any assumptions 
about 𝑎 other than 𝑎 ∈ 𝐹,  then ∀𝑥 ∈ 𝐹,𝐹 𝑥  
– This is called universal generalization.  



Direct proof 

• Direct proof of ∀𝑥 ∈ 𝐹  𝐹 𝑥 : show directly that 
𝐹 𝑥  holds for arbitrary n ∈ S , then use universal 
generalization.  
– Universal instantiation: “let n be an arbitrary element of 

the domain 𝐹 of ∀𝑥 ”  
– Show F(n) from axioms, definitions, previous theorems…  

• When 𝐹 𝑥  is of the form 𝐺 𝑥 → 𝐻(𝑥), then assume 𝐺(𝑛) is 
true, and from that (and axioms, etc) derive H(n) 

• That proves 𝐺 𝑛 → 𝐻 𝑛  

– Now use universal generalization to conclude that  
∀𝑥 𝐹 𝑥  is true.  

 

 
□ (Done). 



Direct proof 
• Definition (of even integers):   

– An integer n is even iff  ∃𝑘 ∈ ℤ,𝑛 = 2 ⋅ 𝑘.    
• Theorem:  Sum of two even integers is even.   

– ∀𝑥,𝑦 ∈ ℤ  𝐹𝐸𝐸𝑛 𝑥 ∧ 𝐹𝐸𝐸𝑛 𝑦 → 𝐹𝐸𝐸𝑛 𝑥 + 𝑦 .  
• Proof:   

– Suppose m and n are arbitrary even integers.  
• Universal instantiation.  

– Then ∃𝑘 ∈ ℤ,𝑛 = 2𝑘 and ∃𝑙 ∈ ℤ,𝑚 = 2𝑙.  
• By definition: note different variables.  

– 𝑚 + 𝑛 = 2𝑘 + 2𝑙 = 2(𝑘 + 𝑙)   
• By substitution and axioms of theory of integers (algebra).  

– m + n = 2 𝑘 + 𝑙 , so 𝑚 + 𝑛 is even  
• By definition (other direction of iff).  

– Since m and n were arbitrary, therefore,  we have shown what 
we needed: ∀𝑥,𝑦 ∈ ℤ  𝐹𝐸𝐸𝑛 𝑥 ∧ 𝐹𝐸𝐸𝑛 𝑦 → 𝐹𝐸𝐸𝑛 𝑥 + 𝑦 .  

• By universal generalization.  
 

□ (Done). 



Modular arithmetic 
• Quotient-remainder theorem: for any integer n and a positive 

integer d,  there exist unique integers q (quotient) and r 
(reminder) such that: 𝑛 = 𝑑𝑑 + 𝑟  and 0 ≤ 𝑟 < 𝑑 
– 16 = 3*5+1,  11 = 2*4+3…   

 
• 𝑛 ≡ 𝑚 (𝑚𝑚𝑑 𝑑), pronounced “n is congruent to m mod d”,   

means that n and m have the same remainder when divided 
by d. That is, 𝑛 = 𝑑𝑑1 + 𝑟  and 𝑚 = 𝑑𝑑2 + 𝑟, for the same r.   
– In some programming languages, there is an operator mod, so you 

might see  “n mod d”, which would return r .   
• In Python, it is n % d.    
• 𝑛 ≡ 𝑚 𝑚𝑚𝑑 𝑑   and 𝑚 = 𝑛 𝑚𝑚𝑑 𝑑 are not the same:  
• 10 ≡ 16 mod 3 ,  but 10 𝑚𝑚𝑑 3 = 1 

– Operator  div,  “n div d” is sometimes used to compute q.  
• In  Python, integer division  (or //) does it.  

 



Calendars vs mod  

• Wednesdays are   
     day = 4 (mod 7)  

• Wednesdays are   
     day = 3 (mod 7)  



Calendars vs mod  

• Orange stickers are   
   number  = 3 (mod 8)  

• Wednesdays are   
     day = 3 (mod 7)  



Modular arithmetic in CS 

• Example:  day of the week.  
– Feb 1st and Feb 15th are both on Wednesday: 

1 ≡ 15 (𝑚𝑚𝑑 7) 
• Hash functions:  distribute random data evenly 

among d memory locations  
– Often take h(k) = k mod p for some prime p.  If 
𝑘 ≡ ℓ 𝑚𝑚𝑑 𝑝 ,  get a collision.  

• Cryptography:  
– Parity checks in credit cards, codes, ISBNs, etc.  

• E.g.,  look at combination of digits mod 10 to check if a 
credit card number is valid. 

– Public key crypto, RSA….  
 

 



Direct proof example 
• Theorem: for all integers n,m and d, where 𝑑 > 0, if   𝑛 ≡
𝑚 𝑚𝑚𝑑 𝑑  then there exists an integer k such that n= 𝑚 + 𝑘𝑑   
– ∀𝑥,𝑦, 𝑧  (𝑧 > 0 ∧  𝑥 ≡ 𝑦 𝑚𝑚𝑑 𝑧 ) → ∃𝑢   𝑥 = 𝑦 + 𝑢𝑧 

• Proof:   
– Let n, m, d be arbitrary integers such that 𝑑 > 0  and 𝑛 ≡ 𝑚 𝑚𝑚𝑑 𝑑   

• Universal instantiation and assuming the premise 
– Then there are integers 𝑑1, 𝑑2, 𝑟 with  0 ≤ 𝑟 < 𝑑 such that 𝑛 = 𝑑𝑑1 +
𝑟 and  𝑚 = 𝑑𝑑2 + 𝑟.  

• By the quotient-remainder theorem and definition of congruence.  
– Now,  n−𝑚 = 𝑑𝑑1 + 𝑟 − 𝑑𝑑2 + 𝑟 = 𝑑 𝑑1 − 𝑑2  

• Substitution and algebra. 
– Set k = 𝑑1 − 𝑑2.  For this k, 𝑛 = 𝑚 + 𝑘𝑑.  Therefore, ∃𝑢   𝑛 = 𝑚 + 𝑢𝑑 

• By existential generalization 
– Since n, m, d were arbitrary integers with  𝑑 > 0  and 𝑛 ≡ 𝑚 𝑚𝑚𝑑 𝑑 ,
∀𝑥,𝑦, 𝑧  (𝑧 > 0 ∧  𝑥 ≡ 𝑦 𝑚𝑚𝑑 𝑧 ) → ∃𝑢   𝑥 = 𝑦 + 𝑢𝑧 

• By universal generalization.  

□ (Done). 



Proof by contraposition  

– To prove ∀𝑥  𝐺 𝑥 → 𝐻(𝑥), prove its contrapositive 
∀𝑥 ¬𝐻 𝑥 → ¬𝐺(𝑥) 
• Universal instantiation: “let n be an arbitrary element of 

the domain 𝐹 of ∀𝑥 ”  
• Suppose that ¬𝐻(𝑛) is true.  
• Derive that ¬𝐺(𝑛) is true.  
• Conclude that ¬𝐻 𝑛 → ¬𝐺(𝑛) is true.  
• Now use universal generalization to conclude that  
∀𝑥 𝐹 𝑥  is true.  
 

 
□ (Done). 



Pigeonhole Principle 

• The Pigeonhole Principle: 
– If there are n pigeons 
– And n-1 pigeonholes  
– Then if every pigeon is in a pigeonhole  
– At least two pigeons sit in the same hole  

• Suppose that nobody in our class carries more than 10 pens.  
• There are 70 students in our class. 
  
• Prove that there are at least 2 students in our class who carry 

the same number of pens.  
– In fact, there are at least 7 who do.  



Proof by contraposition.  
• Theorem (PigeonHolePrinciple):  For any n, if there are n+1 pigeons 

and n holes, then if every pigeon sits in some hole, then there is a 
hole with at least two pigeons.   
– ∀𝑥 ∈ ℕ  ∀ 𝑦 ∈ 1, . . , 𝑥 + 1  ∃ 𝑧 ∈ 1, . . , 𝑥   𝐹𝑆𝑆𝑆 𝑦, 𝑧 →   

(∃ 𝑢 ∈ 1, . . , 𝑥 + 1  ∃ 𝐸 ∈ 1, . . , 𝑥 + 1  ∃𝑤 ∈ 1, . . , 𝑥  
                                                   (𝑢 ≠ 𝐸 ∧ 𝐹𝑆𝑆𝑆 𝑢,𝑤 ∧ 𝐹𝑆𝑆𝑆 𝐸,𝑤 ) ) 

• Proof:   
– Suppose n is an arbitrary integer.  
– We show the contrapositive:  if every hole has at most one pigeon, then 

some pigeon is not sitting in any hole.  
– If every hole has at most one pigeon, then there are at ≤ 1*n=n pigeons 

sitting in holes.    
– Then there is   (𝑛 + 1) − 𝑛 = 1  pigeon that is not sitting in a hole, 

proving the contrapositive.   
–  Therefore, if every pigeon sits in a hole, and there are more than n 

pigeons, then two pigeons sit in the same hole.  
– By universal generalization, done.  

 
□ (Done). 



Proof by contraposition.  
• Theorem:  If a square of an integer is even, that integer is 

even.     
– ∀𝑥 ∈ ℤ  𝐹𝐸𝐸𝑛 𝑥2 → 𝐹𝐸𝐸𝑛(𝑥).  

• Proof:   
– We will show a contrapositive:  ∀𝑥 ∈ ℤ ¬𝐹𝐸𝐸𝑛 𝑥 →

¬𝐹𝐸𝐸𝑛 𝑥2  . That is, square of an odd integer is odd.  
– Let n be an arbitrary odd integer. By definition, 𝑛 = 2𝑘 + 1  

for some integer k.  
– Then 𝑛2 = 2𝑘 + 1 2 = 4𝑘2 + 4𝑘 + 1 = 2 2𝑘2 + 2𝑘 + 1,   
– So 𝑛2 = 2𝑚 + 1 for m= 2𝑘2 + 2𝑘, thus 𝑛2 is odd by 

definition.   
– By universal generalization, get ∀𝑥 ∈ ℤ ¬𝐹𝐸𝐸𝑛 𝑥 →

¬𝐹𝐸𝐸𝑛 𝑥2  . Since it is a contrapositive of the original 
statement, done.   

 □ (Done). 



Puzzle: Caesar cipher 

• The Roman dictator Julius Caesar encrypted his 
personal correspondence using the following code.  
– Number letters of the alphabet:  A=0, B=1,… Z=25.  
– To encode a message, replace every letter by a letter 

three positions before that (wrapping).  
•  A letter numbered x  by a letter numbered x-3  mod 26.  
• For example, F would be replaced by C, and A by X  

 

• Suppose he sent the following message.  
– QOBXPROB FK QEB ZXSB 

• What does it say?  
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