

COMP 1002

Intro to Logic for Computer Scientists

Lecture 13

Puzzle 11

• Let $S = \{x \in \mathbb{N} \mid x \text{ is even}\} \cap \{x \in \mathbb{N} \mid x \text{ is odd}\}$

• Prove or disprove:

$$\forall x \in S$$
, $x does not divide x^2$

Puzzle 11

- Let $S = \{x \in \mathbb{N} \mid x \text{ is even}\} \cap \{x \in \mathbb{N} \mid x \text{ is odd}\}$ - $S = \emptyset$
- Prove or disprove:

$$\forall x \in S$$
, $x \ does \ not \ divide \ x^2$

- Let $P(x) = "x does not divide x^2"$
- To disprove, can give a counterexample
 - Find an element in S such that P(x) is true...
 - But there is no such element in S, because there are no elements in S at all!
- To prove, enough to check that it holds for all elements of S.
 - There is none, so it does hold for every element in S.
- Another way: Since S is defined as a subset of natural numbers, can read $\forall x \in S \ P(x)$ as $\forall x \in \mathbb{N} \ (x \in S \rightarrow P(x))$.
 - Since " $x \in S$ " is always false, $x \in S \to P(x)$ is true for every $x \in \mathbb{N}$
- Call a statement $\forall x \in \emptyset P(x)$ vacuously true.

Universal Modus Ponens

- All men are mortal
- Socrates is a man

Therefore, Socrates is mortal

- All cats like fish
- Molly likes fish

Therefore, Molly is a cat

Universal Modus Ponens

- $\forall x, P(x) \rightarrow Q(x)$
- \bullet P(a)
- ------
- Q(a)

- All men are mortal $(\forall x, Man(x) \rightarrow Mortal(x))$
- Socrates is a man (Man(Socrates))
- Therefore, Socrates is mortal (Mortal(Socrates))
- All numbers are either odd or even
- 2 is a number
- Therefore, 2 is either odd or even.
- All trees drop leaves
- Pine does not drop leaves
- Therefore, pine is not a tree

Universal Modus Ponens

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal

- Molly likes fish
- Therefore, Molly is a cat $(\forall x) \ Cat(x) \rightarrow like_fish(x)$
- like_fish(Molly)

Cat(Molly) X

Instantiation/generalization

- In general, if $\forall x \in S$ F(x) is true for some formula F(x), if you take any specific element $a \in S$, then F(a) must be true.
 - This is called the **universal instantiation** rule.
 - $\forall x \in \mathbb{N} \ (x > -1)$
 - : 5 > -1
- If you prove F(a) without any assumptions about a other than $a \in S$, then $\forall x \in S, F(x)$
 - This is called universal generalization.

Instantiation/generalization

- If you can find an element $a \in S$ such that F(a), then $\exists x \in S, F(x)$
 - This is called existential generalization.
- Alternatively, if $\exists x \in S \ F(x)$ is true, then you can give that element of S for which F(x) is true a name, as long as that name has not been used elsewhere.
 - This is called the existential instantiation rule.
 - $\exists x \in \mathbb{N} \ (x 5 = 0)$
 - : k = 0 + 5

Existential instantiation

- If $\exists x \in S \ F(x)$ is true, then you can give that element of S for which F(x) is true a name, as long as that name has not been used elsewhere.
 - "Let n be an even number. Then n=2k for some k".
 - $\forall x \in \mathbb{N} \ Even(x) \rightarrow \exists y \in \mathbb{N} \ (x = 2 * y)$
 - Important to have a new name!
 - "Let n and m be two even numbers. Then n=2k and m=2k" is wrong!
 - $\forall x_1, x_2 \in \mathbb{N} \ Even(x_1) \land Even(x_2) \rightarrow \exists y_1, y_2 \in \mathbb{N} \ (x_1 = 2 * y_1) \land (x_2 = 2 * y_2)$
 - "Let n and m be two even numbers. Then n=2k and $m=2\ell$ "

Other inference rules

 Combining universal instantiation with tautologies, get other types of arguments:

$$p o q ext{ } ext{$\forall x$ $P(x)$ $\rightarrow Q(x)$ For any x, if $x > 3$, then $x > 2$ }$$
 $q o r ext{ } ext{$\forall x$ $Q(x)$ $\rightarrow R(x)$ For any x, if $x > 2$, then $x \ne 1$ }$ $\therefore p o r ext{ } \therefore \forall x P(x) o R(x)$ $\xrightarrow{} \therefore \text{For any x, if $x > 3$, then $x \ne 1$}$

(This particular rule is called "transitivity")

Types of proofs (1)

- Direct proof of $\forall x \ F(x)$
 - Show that F(x) holds for arbitrary x, then use universal generalization.
 - Often, F(x) is of the form $G(x) \to H(x)$
 - Example: A sum of two even numbers is even.
- Proof by cases
 - If can write $\forall x \ F(x)$ as $\forall x (G_1(x) \lor G_2(x) \lor \cdots \lor G_k(x)) \to H(x)$, prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)) \land \cdots \land (G_k(x) \to H(x))$

```
Example: x \in \{\text{days in August}\}\
(\forall x)(\text{rain}(x) \ \forall \text{sunny}(x) \ \forall \text{foggy}(x)) \rightarrow \text{hot}(x)
```

you may prove

```
(∀x)

(rain(x) \rightarrow hot(x))

\land (sunny(x) \rightarrow hot(x))

\land (foggy(x) \rightarrow hot(x)))
```

Type of Proof (2)

- Proof by contraposition
 - To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Example: $(\forall x)(even(x) \rightarrow integer(x))$, prove $(\forall x)(\neg integer(x) \rightarrow \neg even(x))$
- Proof by contradiction
 - To prove $\forall x \ F(x)$, prove $\forall x \ \neg F(x) \rightarrow FALSE$
 - Example: $\sqrt{2}$ is not a rational number.
 - Example: There are infinitely many primes.

Puzzle: better than nothing

Nothing is better than eternal bliss

A burger is better than nothing

• Therefore, a burger is better than eternal bliss.

 \leq

Is there anything wrong with this argument?
The premise: "Nothing is better than eternal bliss" is not true.