

COMP 1002

Intro to Logic for Computer Scientists

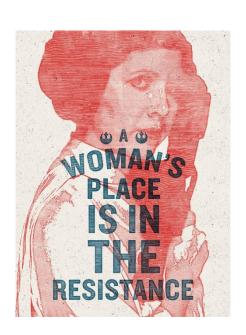
Lecture 10

Puzzle 9

 Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-nuke demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

- a kindergarden teacher
- 2. works in a bookstore and takes yoga classes
- 3. an active feminist
- 4. a psychiatric social worker
- 5. a member of an outdoors club
- 6. a bank teller
- 7. an insurance salesperson
- 8. a bank teller and an active feminist

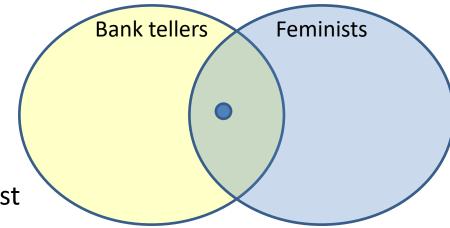


Puzzle 9

 Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-nuke demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

- 1. a kindergarden teacher
- 2. works in a bookstore and takes yoga classes
- 3. an active feminist
- 4. a psychiatric social worker
- 5. a member of an outdoors club
- 6. a bank teller
- 7. an insurance salesperson
- 8. a bank teller and an active feminist



Scenarios and sets

- Want to reason about more general scenarios
- Rather than just true/false, vary over objects:
 - even numbers, integers, primes
 - people that are and are not bank tellers,
 - pairs of animals in the same ecosystem...
- Want multiple properties of these objects:
 - an even number that is divisible by 4 and > 10,
 - a person that is also a bank teller...

Sets

- A set is a collection of objects.
 - $-S_1=\{1, 2, 3\}, S_2=\{Cathy, Alaa, Keiko, Daniela\}$
 - $-S_3 = [-1, 2]$ (real numbers from -1 to 2, inclusive)
 - PEOPLE = {x | x is a person living on Earth now}
 - {x | such that x ... } is called **set builder notation**
 - $-S_4 = \{ (x,y) \mid x \text{ and } y \text{ are people, and } x \text{ is a parent of } y \}$
 - BANKTELLERS = $\{x \mid x \text{ is a person who is a bank teller}\}$
- The order of elements does not matter.
- There are no duplicates.

Special sets

- Notation for some special sets (much of which you are likely to have seen):
 - Empty set Ø
 - Natural numbers $\mathbb{N} = \{1, 2, 3, ...\}$ (sometimes with 0)
 - Integers $\mathbb{Z} = \{ \dots -2, -1, 0, 1, 2, \dots \}$
 - Rational numbers $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \text{ in } \mathbb{Z}, n \neq 0 \right\}$
 - Real numbers $\mathbb R$
 - complex numbers ℂ

Set elements

- $a \in S$ means that an element a is in a set S, and $a \notin S$ that a is not in S. That is, $a \in S \equiv \neg (a \notin S)$
 - Susan ∈ PEOPLE. Susan ∉ BANKTELLERS
 - $-0.23 \in [-1, 2]$. $3.54 \notin [-1, 2]$
- Also, write $x \in S$ for a variable x.
 - − BANKTELLERS = { $x \in PEOPLE \mid x \text{ is a bank teller}}$

How do we generalize sentences like "x is a bank teller",
where x is an element of some set?

Bank tellers Feminists

Predicates

- A **predicate** $P(x_1, ..., x_n)$ is a "proposition with variables", where values of the variables $x_1, ..., x_n$ come from some sets $S_1, ..., S_n$, called their **domains** or **universes**.
 - -P(x) is true for some values of $x \in S$, and false for the rest.
 - Even(x) for $x \in \mathbb{Z}$, Feminist(y) for $y \in PEOPLE$...
 - Here, domain of x is \mathbb{Z} , and domain of y is PEOPLE
 - Even(y) is not defined for $y \in PEOPLE$, only for elements of \mathbb{Z} .
 - A predicate can have several variables:
 - x > y, for $x, y \in \mathbb{R}$
 - Divides(x, y), which is true for $x, y \in \mathbb{Z}$ such that x divides y.
- When all variables in a predicate are replaced with specific elements (instantiated), the predicate becomes a proposition.
 - "Even(3)" is false. "Feminist(Susan)" is true.

Predicates

- We can make formulas out of predicates the same way as we did for propositions, but now our formulas have free variables:
 - Even(x) ∨ Divides(3,x) $\rightarrow \neg Prime(x)$
 - $Feminist(x) \land Bankteller(x)$
 - Now scenarios can correspond to values of x.
 - The first formula is false for x=2, because Even(2) = true, but $\neg Prime(2) = false$.
- This is called **predicate logic** (or **first-order logic**), as opposed to propositional logic we did so far.

Quantifiers: universal (∀)

- Theorems often look like this: "For all x, the following is true", and then a formula with x as a free variable.
 - For all $x \in \mathbb{Z}$, $Divides(6,x) \rightarrow Divides(3,x)$
 - For all $n \in \mathbb{N}$, n > 4, $2^n > n^2$
- We write this in predicate logic using a universal quantifier (written as ∀):
 - $-\forall x \in \mathbb{Z}$, $Divides(6,x) \rightarrow Divides(3,x)$
 - $-\forall n \in \mathbb{N}, n > 4 \rightarrow 2^n > n^2$

Quantifiers: universal (∀)

- In general, for every formula F of predicate logic with a free variable x, we can write $\forall x \in S$, F(x)
 - The formula " $\forall x \in S$, F(x)" is true if and only if F(a) is true for every $a \in S$.
 - That is, if $a_1, a_2, ..., a_n, ...$ is a list of all elements of S, then $\forall x \in S$, F(x) is true if and only if $F(a_1) \wedge F(a_2) \wedge \cdots \wedge F(a_n) \wedge \cdots$ is true.
 - If there are no more free variables or quantifiers in F, then $\forall x \in S$, F(x) is true if and only if $F(a_1) \wedge F(a_2) \wedge \cdots \wedge F(a_n) \wedge \cdots$ is a tautology.

Negating the universal

- What is the negation of "All"? When would a statement " $\forall x \in S$, F(x)" be false?
 - All girls hate math.
 - No!
 - All girls love math?
 - Some girls do not hate math!
 - Everybody in O'Brian family is tall
 - No, Jenny is O'Brian and she is quite short.
 - It is foggy all the time, every day in St. John's
 - No, sometimes it is not foggy (like today).

Quantifiers: existential (∃) ♣

- To prove that something is not always true, we give a counterexample. In predicate logic, use **existential quantifier** ∃.
- $\exists x \in S, F(x)$ is true if and only if there exist some $a \in S$ such that F(a) is true (and we don't care for the rest). That is, when $F(a_1) \vee F(a_2) \vee \cdots \vee F(a_n) \vee \ldots$ is true.
 - ∃ $t \in TIMESLOTS$, $Scheduled(COMP1002, t) \land Scheduled(COMP1000, t)$
 - $-\exists x \in \mathbb{N}, \ Even(x) \land Prime(x).$
- $\neg \forall x \in S, F(x) \equiv \exists x \in S, \neg F(x)$
- Once a variable is quantified, it is no longer free.
 - -x is free in $Even(x) \wedge Prime(x)$,
 - But $\exists x \in \mathbb{N}$, $Even(x) \land Prime(x)$ has no free variables.

Quantifiers in English

- Universal quantifier: usually "every", "all", "each", "any".
 - Every day it is foggy. Each number is divisible by 1.
 - Existential quantifier: "some", "a", "exists"
- Some students got 100% on both labs.
- There exists a prime number greater than 100.

The word "any" can mean either!

Quantifiers in English: "any"

"Any" can mean "every":

– Any student in our class knows logic 改

Every student in our class knows logic.

But "any" can also mean "some"!

I will be happy if I do well on every quiz.

- I will be happy if I do well on any quiz.

Puzzle 10

 The first formulation of the famous liar's paradox, attributed to a Cretan philosopher Epimenides, stated

"All Cretans are liars".

Is this really a paradox?

