COMP 1002

Intro to Logic for Computer Scientists

Lecture 10
Puzzle 9

- Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-nuke demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

1. a kindergarden teacher
2. works in a bookstore and takes yoga classes
3. an active feminist
4. a psychiatric social worker
5. a member of an outdoors club
6. a bank teller
7. an insurance salesperson
8. a bank teller and an active feminist
Puzzle 9

- Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-nuke demonstrations.

*Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

1. a kindergarten teacher
2. works in a bookstore and takes yoga classes
3. an active feminist
4. a psychiatric social worker
5. a member of an outdoors club
6. a bank teller
7. an insurance salesperson
8. a bank teller and an active feminist
Scenarios and sets

• Want to reason about more general scenarios
• Rather than just true/false, vary over objects:
 – even numbers, integers, primes
 – people that are and are not bank tellers,
 – pairs of animals in the same ecosystem...
• Want multiple properties of these objects:
 – an even number that is divisible by 4 and > 10,
 – a person that is also a bank teller...
Sets

• A **set** is a collection of objects.
 – \(S_1 = \{1, 2, 3\}, \ S_2 = \{\text{Cathy, Alaa, Keiko, Daniela}\} \)
 – \(S_3 = [-1, 2] \) (real numbers from -1 to 2, inclusive)
 – \(\text{PEOPLE} = \{x \mid x \text{ is a person living on Earth now}\} \)
 • \(\{x \mid \text{such that } x \ldots \} \) is called **set builder notation**
 – \(S_4 = \{(x,y) \mid x \text{ and } y \text{ are people, and } x \text{ is a parent of } y\} \)
 – \(\text{BANKTELLERS} = \{x \mid x \text{ is a person who is a bank teller}\} \)

• The order of elements does not matter.
• There are no duplicates.
Special sets

- Notation for some special sets (much of which you are likely to have seen):
 - Empty set \emptyset
 - Natural numbers $\mathbb{N} = \{1, 2, 3, \ldots \}$ (sometimes with 0)
 - Integers $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots \}$
 - Rational numbers $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \text{ in } \mathbb{Z}, n \neq 0 \right\}$
 - Real numbers \mathbb{R}
 - Complex numbers \mathbb{C}
Set elements

• \(a \in S \) means that an element \(a \) is in a set \(S \), and \(a \notin S \) that \(a \) is not in \(S \). That is, \(a \in S \equiv \neg (a \notin S) \)
 – Susan \(\in \) PEOPLE. Susan \(\notin \) BANKTELLERS
 – 0.23 \(\in \) \([-1, 2]\). 3.54 \(\notin \) \([-1,2]\)

• Also, write \(x \in S \) for a variable \(x \).
 – BANKTELLERS = \{ \ x \in PEOPLE \ | \ x \text{ is a bank teller} \}\n
• How do we generalize sentences like “\(x \) is a bank teller”, where \(x \) is an element of some set?
Predicates

- A **predicate** \(P(x_1, ..., x_n) \) is a “proposition with variables”, where values of the variables \(x_1, ..., x_n \) come from some sets \(S_1, ..., S_n \), called their **domains** or **universes**.
 - \(P(x) \) is true for some values of \(x \in S \), and false for the rest.
 - Even(x) for \(x \in \mathbb{Z} \), Feminist(y) for \(y \in PEOPLE \).
 - Here, domain of \(x \) is \(\mathbb{Z} \), and domain of \(y \) is \(PEOPLE \).
 - Even(y) is not defined for \(y \in PEOPLE \), only for elements of \(\mathbb{Z} \).
 - A predicate can have several variables:
 - \(x > y \), for \(x, y \in \mathbb{R} \)
 - Divides(x, y), which is true for \(x, y \in \mathbb{Z} \) such that \(x \) divides \(y \).

- When all variables in a predicate are replaced with specific elements (**instantiated**), the predicate becomes a proposition.
 - “Even(3)” is false. “Feminist(Susan)” is true.
Predicates

• We can make formulas out of predicates the same way as we did for propositions, but now our formulas have free variables:
 – \(\text{Even}(x) \lor \text{Divides}(3, x) \rightarrow \neg \text{Prime}(x) \)
 – \(\text{Feminist}(x) \land \text{Bankteller}(x) \)
 – Now scenarios can correspond to values of \(x \).
 • The first formula is false for \(x=2 \), because \(\text{Even}(2) = \text{true} \), but \(\neg \text{Prime}(2) = \text{false} \).

• This is called **predicate logic** (or **first-order logic**), as opposed to propositional logic we did so far.
Quantifiers: universal (∀)

• Theorems often look like this: “For all x, the following is true”, and then a formula with x as a free variable.
 – For all $x \in \mathbb{Z}$, $\text{Divides}(6, x) \rightarrow \text{Divides}(3, x)$
 – For all $n \in \mathbb{N}$, $n > 4, \ 2^n > n^2$

• We write this in predicate logic using a universal quantifier (written as ∀):
 – $\forall x \in \mathbb{Z}, \ \text{Divides}(6, x) \rightarrow \text{Divides}(3, x)$
 – $\forall n \in \mathbb{N}, \ n > 4 \rightarrow 2^n > n^2$
• In general, for every formula F of predicate logic with a free variable x, we can write
\[\forall x \in S, \; F(x) \]

– The formula “$\forall x \in S, \; F(x)$” is true if and only if $F(a)$ is true for every $a \in S$.

– That is, if $a_1, a_2, \ldots, a_n, \ldots$ is a list of all elements of S, then $\forall x \in S, \; F(x)$ is true if and only if $F(a_1) \land F(a_2) \land \cdots \land F(a_n) \land \cdots$ is true.

– If there are no more free variables or quantifiers in F, then $\forall x \in S, \; F(x)$ is true if and only if $F(a_1) \land F(a_2) \land \cdots \land F(a_n) \land \cdots$ is a tautology.
Negating the universal

• What is the negation of “All”? When would a statement “∀𝑥 ∈ 𝑆, 𝐹(𝑥)” be false?
 – All girls hate math.
 – No!
 • All girls love math?
 • Some girls do not hate math!

 – Everybody in O’Brian family is tall
 • No, Jenny is O’Brian and she is quite short.

 – It is foggy all the time, every day in St. John’s
 • No, sometimes it is not foggy (like today).
Quantifiers: existential (∃)

• To prove that something is not always true, we give a counterexample. In predicate logic, use existential quantifier \(\exists \).

• \(\exists x \in S, F(x) \) is true if and only if there exist some \(a \in S \) such that \(F(a) \) is true (and we don’t care for the rest). That is, when \(F(a_1) \lor F(a_2) \lor \ldots \lor F(a_n) \lor \ldots \) is true.
 – \(\exists t \in \text{TIMESLOTS}, \text{Scheduled} (\text{COMP1002}, t) \land \text{Scheduled} (\text{COMP1000}, t) \)
 – \(\exists x \in \mathbb{N}, \text{Even}(x) \land \text{Prime}(x) \).

• \(\neg \forall x \in S, F(x) \equiv \exists x \in S, \neg F(x) \)

• Once a variable is quantified, it is no longer free.
 – \(x \) is free in \(\text{Even}(x) \land \text{Prime}(x) \),
 – But \(\exists x \in \mathbb{N}, \text{Even}(x) \land \text{Prime}(x) \) has no free variables.
Quantifiers in English

• Universal quantifier: usually “every”, “all”, “each”, “any”.
 – Every day it is foggy. Each number is divisible by 1.

• Existential quantifier: “some”, “a”, “exists”
 – Some students got 100% on both labs.
 – There exists a prime number greater than 100.

• The word “any” can mean either!
Quantifiers in English: “any”

• “Any” can mean “every”:
 – Any student in our class knows logic 😊
 – Every student in our class knows logic. 😊

• But “any” can also mean “some”!
 – I will be happy if I do well on every quiz. 😊
 – I will be happy if I do well on any quiz. 😊😊
Puzzle 10

• The first formulation of the famous liar’s paradox, attributed to a Cretan philosopher Epimenides, stated

“All Cretans are liars”.

Is this really a paradox?