
Problem 3: Into the Groove

Hackers have recently been trying to break through a multi-stage firewall system that is
protecting sensitive information at Acme Corp. Unfortunately the sysadmin is very busy
and has a limited number of chances to stop the hackers. In each attack, the hackers have
made M attack-attempts. Each stage i, 1 ≤ i ≤ N , in the firewall system has an associated
probability-pair (pi, qi) where pi is the probability of the sysadmin failing to stop a hacker
at stage i if the sysadmin gets involved at that stage and qi is the probability of the firewall
failing to stop a hacker at stage i if the sysadmin decides to ignore that stage. Given these
probabilities, it is your job to select those stages that the sysadmin should focus on so as to
maximize the probability of stopping the hackers.

Write a program which, given n descriptions of system attack scenarios, computes and
outputs for each scenario the stages the sysadmin should select to minimize the probability of
a hacker gaining access. The selected stages should be output in ascending order. If multiple
selections exist with minimal hacker access probability, output the lexicographically smallest
selection (e.g., [1, 2, 9] < [2, 3, 4]). Your input will be an (n+1)-line file in which the
first line is the value of n and each of the following lines contains a particular attack scenario
specified by the values of N and M followed by N probability-pairs (pi, qi). Recall that the
probability of event A and event B both occurring is the product of each of their probabilities.
You may assume that each stage is independent from the others probability-wise, M ≤ N ,
0 ≤ p ≤ q ≤ 100, and all input files are formatted correctly.

Sample input #1 (available as file “test3a.dat”):

3

1 1 50 60

2 1 50 80 50 90

3 2 30 90 90 100 20 80

Sample output #1:

[1]

[2]

[1, 3]



Sample input #2 (available as file “test3b.dat”):

2

3 1 50 60 25 80 60 70

3 2 50 60 25 80 60 70

Sample output #2:

[2]

[1, 2]

Sample input #3 (available as file “test3c.dat”):

2

3 2 50 60 10 20 15 20

3 2 15 25 10 20 15 20

Sample output #3:

[2, 3]

[1, 2]


