Science 1000: Lecture #3 (Wareham):

Necessary Lies: Asymptotic Worst-case Time Complexity Analysis

Comparing running times is hard? Not really.

Comparing Algorithms: What's Best?

- Best algorithm = algorithm with lowest running time.
- Comparing algorithms by raw running time problematic:
 - Raw running times machine / language / OS dependent.
 - Raw running times input dependent.
 - Algorithm may not be implemented in a program.

HOW DO WE MEASURE ALGORITHM RUNNING TIME?

Necessary Lie #1: Runtime Equivalence of Instructions

- Compute runtime on an input by counting the number of instructions executed.
- Is machine-independent (raw abstract runtime).

Necessary Lie #2: Worst-Case Runtime Summary

- Group inputs by input size; summarize each size by largest runtime for that size.
- Is input-independent (worst-case time complexity).

Necessary Lie #3: Asymptotic Smoothing

- Reduce time complexity function to largest term.
- Is simple (asymptotic worst-case time complexity).

Deriving Worst-Case Time Complexities

If already have time complexity, select largest term, e.g.,

$$2 \log n + 4 \qquad \Rightarrow \quad O(\log n)$$
$$3n^2 + 1000n + 13 \qquad \Rightarrow \quad O(n^2)$$
$$12n^4 + 5n^2 + 900 \qquad \Rightarrow \quad O(n^4)$$
$$(3 \times 2^n) + 900n^{50} + 57 \quad \Rightarrow \quad O(2^n)$$

Deriving Worst-Case Time Complexities (Cont'd)

• Otherwise, multiply out "deepest" loop-chain in algorithm, *e.g.*, $n \times n = O(n^2)$ time for List Sort.

```
for i = 1 to n - 1 do
min_pos = i
for scan = i + 1 to n do
    if (L[scan] < L[min_pos]) then
        min_pos = scan
temp = L[min_pos]
L[min_pos] = L[i]
L[i] = temp</pre>
```

Time Complexity Magnitudes

- $O(\log n)$ Logarithmic Time (Binary Search)
 - O(n) Linear Time (Linear Search)
 - $O(n^2)$ Quadratic Time (List Sort)
 - $O(2^n)$ Exponential Time (Bin Packing)

Polynomial Time = $O(n^c)$ time for constant *c*

Table of Doom (1 Gigaflop/s Version)

	Time Complexity				
Input	B-Search	L-Search	Sort	MST	BP-E
Size (n)	$(\log_2 n)$	(<i>n</i>)	(n^2)	(n^3)	(2^{n})
10	< 1	< 1	< 1	< 1	< 1
	second	second	second	second	second
50	< 1	< 1	< 1	< 1	13
	second	second	second	second	days
100	< 1	< 1	< 1	< 1	4×10^{13}
	second	second	second	second	years
1000	< 1	< 1	< 1	1	4×10^{284}
	second	second	second	second	years
one	< 1	< 1	2	30	-
million	second	second	minutes	years	
300	< 1	< 1	10	$9 imes 10^5$	-
million	second	second	days	years	
five	< 1	5	8	$4 imes 10^{12}$	-
billion	second	seconds	centuries	years	

Science 1000: Lecture #3 (Wareham):

Necessary Lies: Asymptotic Worst-case Time Complexity Analysis

Comparing running times is hard? Not really.