
Science 1000: Lecture #2 (Wareham):

The Way Things Work:
Computing with Algorithms

Got problems?
Try algorithms!

Much gets solved.



Problems

List Search:
Input: A list L of n elements and a value t.
Output: The position of the element in L with
value t if such an element exists and −1 otherwise.

List Sort:
Input: A list L of n elements.
Output: The sorted version of L.

Bin Packing:
Input: A list L of the sizes of n items and a
numbers B.
Output: The smallest number of bins of size B that
can hold the the items in L.



List Search (Linear)

Intuition:
“Well, if I don’t know anything else about the list
except that it has n elements, I suppose I’ll have to
look at each element in the list and see if it is
equal to the target-value. If I find such an element,
I can stop and print that element’s position;
otherwise, I print -1 after I’ve look at all elements
in the list. Sounds like a lot of work. Bummer.”



List Search (Linear) [Cont’d]
Algorithm

tpos = -1
i = 1
while (i <= n) and (tpos == -1)) do

if (L[i] == t) then
tpos = i

i = i + 1
print tpos



List Search (Binary)

Intuition:
“Hmmm ... Suppose this time I know L is sorted.
Whenever I look at L[i] where i is the middle of the
list and L[i]’s not equal to the target-value, as L is
sorted, I know that the target-value must be either
above or below i in the list (depending on whether
the target-value is greater or less than L[i]). I can
keep repeating this in a loop until I either find the
target-value or run out of list to search. Cool!”



List Search (Binary) [Cont’d]
Algorithm (Version #1)

set the current list to L
while we haven’t found t in the list

and there’s still a current list
to search do
if t isn’t the middle element of

the current list then
if t > middle element then

set current list to upper
part of current list

else
set current list to lower
part of current list



List Search (Binary) [Cont’d]
Algorithm (Version #2)

t_pos = -1
left = 1
right = n
while ((t_pos == -1) and

(left <= right)) do
t_pos = (left + right) / 2
if (L[t_pos] != t) then

if (t > L[t_pos]) then
left = t_pos + 1

else
right = t_pos - 1

t_pos = -1
print t_pos



List Sort

Intuition:
“The first element in a sorted list is the smallest in
the list, the second element is the smallest among
the remaining elements in the list, and so on.
Perhaps we could use a find-list-minimum
algorithm in a loop!”



List Sort [Cont’d]
Algorithm (Version #1)

for i = 1 to n - 1 do
find minimum element in L[i .. n]
swap minimum element and element i



List Sort [Cont’d]
Algorithm (Version #1)

for i = 1 to n - 1 do
min_pos = i
for scan = i + 1 to n do

if (L[scan] < L[min_pos]) then
min_pos = scan

temp = L[min_pos]
L[min_pos] = L[i]
L[i] = temp



Bin Packing

Intuition #1:
“Well, if I have at most n items, I’ll need at most n
bins. How about I try all possible ways of dividing
the items in L among n or less bins, and then
check each packing to make sure that no bin has
items that are too big for their bin?”

Intuition #2:
“That sounds way too hard. How about I just do it
like Doug at Sobey’s – take each item in L in turn
and add it to the current bin, and if that item is too
large, make a new bin and add it to that one?”



Types of Algorithms

• If an algorithm always produces the answer you want, it is
an exact algorithm; otherwise, it is a heuristic algorithm.

• If a heuristic produces an answer that is provably close to
the one you want, it is an approximation algorithm.

• Each problem has many algorithms; which one should we
use? Exact algorithms may not run quickly and quick
heuristic or approximation algorithms may not be exact.

HOW DO WE SHOW ALGORITHMS RUN QUICKLY?



Science 1000: Lecture #2 (Wareham):

The Way Things Work:
Computing with Algorithms

Got problems?
Try algorithms!

Much gets solved.


