
p-Subsequentiable Transducers

Cyril Allauzen and Mehryar Mohri

AT&T Labs – Research
180 Park Avenue

Florham Park, NJ 07932, USA
{allauzen,mohri}@research.att.com

Abstract. p-subsequential transducers are efficient finite-state trans-
ducers with p final outputs used in a variety of applications. Not all
transducers admit equivalent p-subsequential transducers however. We
briefly describe an existing generalized determinization algorithm for p-
subsequential transducers and give the first characterization of p-subsequ-
entiable transducers, transducers that admit equivalent p-subsequential
transducers. Our characterization shows the existence of an efficient al-
gorithm for testing p-subsequentiability. We have fully implemented the
generalized determinization algorithm and the algorithm for testing p-
subsequentiability. We report experimental results showing that these
algorithms are practical in large-vocabulary speech recognition applica-
tions. The theoretical formulation of our results is the equivalence of the
following three properties for finite-state transducers: determinizability
in the sense of the generalized algorithm, p-subsequentiability, and the
twins property.

1 Introduction

Finite-state transducers are automata in which transitions are labeled with both
an input and an output symbol. Transducers have been used successfully to cre-
ate complex systems in many applications such as text and language processing,
speech recognition and image processing [9,8,7,12,6].

The time efficiency of such systems is substantially increased when subse-
quential transducers [15], i.e. finite-state transducers with deterministic input,
are used. Subsequential machines can be generalized to p-subsequential trans-
ducers which are transducers with deterministic input with p, (p ≥ 1), final
output strings [10]. This generalization is necessary in many applications such
as language processing to account for finite ambiguities [11].

Not all transducers admit equivalent p-subsequential transducers however.
We present the first characterization of p-subsequentiable transducers, i.e. trans-
ducers that admit equivalent p-subsequential transducers. Our characterization
is based on the twins property and leads to an efficient algorithm for testing
p-subsequentiability. More generally, our results show the equivalence of the fol-
lowing three fundamental properties for finite-state transducers: determinizabil-
ity in the sense of a generalized algorithm, p-subsequentiability, and the twins
property.

J.-M. Champarnaud and D. Maurel (Eds.): CIAA 2002, LNCS 2608, pp. 24–34, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

p-Subsequentiable Transducers 25

This can also be viewed as a generalization of the results known in the case of
functional transducers: determinizable functional transducers are exactly those
that admit equivalent subsequential transducers [5]. We generalize these results
by relaxing the condition on functionality: determinizable transducers are exactly
those that admit equivalent p-subsequential transducers and exactly those that
admit the twins property.

We have fully implemented the generalized determinization algorithm men-
tioned above and the algorithm for testing p-subsequentiability. We report exper-
imental results showing that these algorithms are practical in large-vocabulary
speech recognition applications.

We first introduce the notation used in the rest of this paper, then briefly
describe a generalized determinization algorithm for p-subsequential transducers
introduced by [10], present a fundamental characterization theorem, and describe
our experimental results.

2 Preliminaries

Definition 1. A finite-state transducer T = (Σ,∆,Q, I, F,E, λ, ρ) is an 8-tuple
where Σ is a finite input alphabet, ∆ a finite output alphabet, Q a finite set of
states, I ⊆ Q the set of initial states, F ⊆ Q the set of final states, E ⊆
Q×Σ × (∆ ∪ {ε}) ×Q a finite set of transitions, λ : I → ∆∗ the initial output
function mapping I to ∆∗, and ρ : F → 2∆∗

the final output function mapping
each state q ∈ F to a finite subset of ∆∗.

Given a transition e ∈ E, we denote by i[e] its input label, p[e] its origin
or previous state and n[e] its destination state or next state, o[e] its output
label. Given a state q ∈ Q, we denote by E[q] the set of transitions leaving
q. We extend the definitions of i, n, p, and E to sets in the following way:
i[∪k∈Kek] = ∪k∈Ki[ek] and similarly for n, p, and E.

A path π = e1 · · · ek in T is an element of E∗ with consecutive transitions:
n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]
and p[π] = p[e1]. We denote by P (q, q′) the set of paths from q to q′ and by
P (q, x, q′) the set of paths from q to q′ with input label x ∈ Σ∗. These definitions
can be extended to subsets R,R′ ⊆ Q, by: P (R, x,R′) =

⋃
q∈R, q′∈R′ P (q, x, q′).

The labeling functions i and o can also be extended to paths by defining the
label of a path as the concatenation of the labels of its constituent transitions:

i[π] = i[e1] · · · i[ek] o[π] = o[e1] · · · o[ek]

The set of output strings associated by a transducer T to an input string x ∈ Σ∗

is defined by:
[[T]](x) =

⋃

π∈P (I,x,F)

λ(p[π]) o[π] ρ(n[π])

[[T]](x) = ∅ when P (I, x, F) = ∅. The domain of definition of T is defined as:
Dom(T) = {x ∈ Σ∗ : [[T]](x) �= ∅}. A transducer is said to be p-functional for
some integer p if it associates at most p strings to each input string, that is if

26 C. Allauzen and M. Mohri

|[[T]](x)| ≤ p for any x ∈ Σ∗. Two transducers T and T ′ are equivalent when
[[T]] = [[T ′]].

A successful path in a transducer T is a path from an initial state to a final
state. A state a ∈ Q is accessible if q can be reached from I. It is coaccessible
if a final state can be reached from q. T is trim if all the states of T are both
accessible and coaccessible. T is unambiguous if for any string x ∈ Σ∗ there is
at most one successful path labeled with x. An unambiguous transducer is thus
p-functional, with p = maxq∈F |ρ(q)|.

A transducer T is said to be p-subsequential [10] for some integer p if it has
a unique initial state, if no two transitions leaving the same state share the
same input label and if there are at most p final output strings at each final
state: |ρ(f)| ≤ p for all f ∈ F . T is said to be p-subsequentiable if there exists a
p-subsequential transducer T ′ equivalent to T .

Given two strings x and y in Σ∗, we say that y is a suffix of x if there
exists z ∈ Σ∗ such that x = zy and similarly that y is a prefix of x if there
exists z such that x = yz. We denote by x ∧ y the longest common prefix of
x and y and denote by |x| the length of a string x ∈ Σ∗. We extend Σ by
associating to each symbol a ∈ Σ a new symbol denoted by a−1 and define Σ−1

as: Σ−1 = {a−1 : a ∈ Σ}. X = (Σ ∪ Σ−1)∗ is then the set of strings written
over the alphabet (Σ ∪Σ−1). If we assume that aa−1 = a−1a = ε, then X forms
a group called the free group generated by Σ and is denoted by Σ(∗). Note that
the inverse of a string x = a1 · · · an is then x−1 = a−1

n · · · a−1
1 . The formula used

in our definitions, theorems and proofs should be interpreted as equations in the
free group generated by Σ∗.

3 General Determinization Algorithm with
p-Subsequential Outputs

In this section, we give a brief description of a general determinization algo-
rithm introduced by [10] that takes as input a transducer T and outputs a p-
subsequential transducer T ′ = (Σ,∆,Q′, {i′}, F ′, E′, λ′, ρ′). A transducer T for
which the algorithm terminates and thus generates an equivalent p-subsequential
transducer is said to be determinizable.

The algorithm is a generalization of the subset construction used in the de-
terminization of finite automata. A state in the output transducer T ′ is a set of
pairs (q, z) where q is a state of the input transducer T and z ∈ Σ∗ a remainder
output string with the following property: if a state q′ in T ′ containing a pair
(q, z) can be reached from the initial state by a path with input x and output
y, then q can be reached in T from an initial state by a path with input x and
output yz.

The pseudocode of the algorithm is given below. Line 1 initializes the set of
states, final states, and transitions of T ′ to the empty set. The algorithm uses
a queue S containing the set of states of T ′ to be considered next. S initially
contains the unique initial state of T ′, i′, which is the set of pairs of an initial
state i of T and the corresponding initial output string λ(i) (line 2).

p-Subsequentiable Transducers 27

0

1x:a

2

x:ε

3
y:b

5/{ε}

x:b

x:a

4

y:a

y:a

y:b

(0, ε) (1,a), (2,ε)x:ε

(5, ε), (5, b)/{ε,b}

x:a

(3,b), (4,ε)

y:a

y:b

(a) (b)

Fig. 1. Generalized determinization of finite-state transducers. (a) Non-deterministic
transducer. (b) Construction of equivalent 2-subsequential transducer.

Transducer-Determinization(T)

1 F ′ ← Q′ ← E′ ← ∅
2 S ← i′ ← {(i, λ(i)) : i ∈ I}
3 while S �= ∅
4 do p′ ← head(S)
5 Dequeue(S)
6 for each x ∈ i[E[Q[p′]]]
7 do y′ ←

∧
{z y : (p, z) ∈ p′, (p, x, y, q) ∈ E}

8 q′ ← {(q, y′−1 z y) : (p, z) ∈ p′, (p, x, y, q) ∈ E}
9 E′ ← E′ ∪ {(p′, x, y′, q′)}
10 if (q′ �∈ Q′)
11 then Q′ ← Q′ ∪ {q′}
12 if Q[q′] ∩ F �= ∅
13 then F ′ ← F ′ ∪ {q′}
14 ρ′(q′)← ⋃{z ρ(q) : (q, z) ∈ q′, q ∈ F}
15 Enqueue(S, q′)
16 return T ′

Each time through the loop of lines 3-15, a new subset p′ (or equivalently a
new state of T ′) is extracted from S. The algorithm then creates (lines 6-9) a
transition with input label x ∈ Σ and output label y′ ∈ Σ∗ leaving p′ if there
exists at least one pair (p, z) ∈ p′ such that p admits an outgoing transition
with input label x and output label y. y′ is then defined as the longest common
prefix of all such zy’s. The destination state q′ of that transition is the subset
containing the pairs (q, y′−1zy) such that (p, z) ∈ p′ and (p, x, y, q) is a transition
in E. If the destination state q′ is new, it is added to Q′ (lines 10-11). q′ is a
final state if it contains at least one pair (q, z), q being a final state. Its final set
of output strings is then the union of zρ(q) over all such pairs (q, z).

28 C. Allauzen and M. Mohri

0

1x:a

2

x:b

3
y:b

5/{ε}

x:b

x:a

4

y:a

y:a

y:b

(0,ε) (1,a),(2,b)x:ε

(5,ab),(5,ba)/{ab,ba}
x:ε

(3,ab),(4,ba)

y:ε

(1,aba),(2,bab)y:ε

(3,abab),(4,baba)

y:ε

(5,abab),(5,baba)/{abab,baba}

x:ε

....

(a) (b)

Fig. 2. Non-determinizable case. (a) A non-determinizable finite-state transducer;
states 1 and 2 are non-twin siblings. (b) Determinization does not halt in this case
and creates an infinite number of states.

There are input transducers that are not determinizable, that is for which
the algorithm does not terminate. When it terminates, the output transducer
T ′ is equivalent to T . Thus, it does not terminate with any transducer T that is
not p-subsequentiable.

Figure 1 (b) illustrates the application of the algorithm to the transducer of
figure 1 (a). Figures 2 (a)-(b) show an example of non-determinizable transducer.

The worst case complexity of determinization is exponential. However, in
many applications such as large-vocabulary speech recognition such a blow-up
does not occur and determinization leads to a significant improvement of speed
versus accuracy at a reasonable cost in space [12].

4 Characterization

This section presents a characterization of p-subsequentiable transducers. The
characterization is based on the following property.

Definition 2. Let T be a finite-state transducer. Two states q1 and q2 of T are
said to be siblings if there exist two strings x and y in Σ∗ such that both q1 and
q2 can be reached from I by paths with input label x and there are cycles at q1
and q2 both with input label y. Two siblings q1 and q2 are said to be twins if for
any paths π1 ∈ P (I, x, q1), c1 ∈ P (q1, y, q1), π2 ∈ P (I, x, q2), c2 ∈ P (q2, y, q2),

o[π1]−1o[π2] = o[π1c1]−1o[π2c2] (1)

T has the twins property if any two siblings in T are twins.

The twins property was originally introduced by [4,5] to give a characterization of
functional subsequentiable transducers. The decidability of the twins property

p-Subsequentiable Transducers 29

was also first proved by the same author (see also [3]). The first polynomial-
time algorithm for testing the twins property was given by [16], this algorithm
was later improved by [2]. More recently, we gave a more efficient algorithm
for testing the twins property based on the general algorithm of composition
of finite-state transducers and a new characterization of the twins property in
terms of combinatorics of words [1].

The following factorization lemma will be useful in several proofs.

Lemma 1. Let T = (Σ,∆,Q, I, F,E, λ, ρ) be a finite-state transducer, let π be
a path from I to state p ∈ Q and π′ a path from I to p′ with the same input label
w = i[π] = i[π′]. Assume that |w| > |Q|2 − 1, then there exist paths π1, π2, π3,
π′

1, π
′
2, π

′
3, such that:

π = π1π2π3 π′ = π′
1π

′
2π

′
3 (2)

where π2 and π′
2 are cycles with non-empty input labels and: i[πk] = i[π′

k], for
k = 1, 2, 3.

Proof. Consider the transducer U obtained by composing T and T−1: U =
T ◦ T−1. Since π and π′ have the same input label, there exists a path ψ in U
with input o[π] and output o[π′]. Since |ψ| = |w| > |Q|2 − 1 and U has at most
|Q|2 states, ψ goes at least through one non-empty cycle ψ2: ψ = ψ1ψ2ψ3. This
shows the existence of the common factoring for π and π′ since ψ results from
matching π and the path obtained from π′ by swapping its input and output
labels. ��

The following lemma will be used to prove that determinization terminates when
the twins property holds.

Lemma 2. Assume that T has the twins property. Let R be defined by:

R = {o[π′]−1o[π] : i[π] = i[π′] = w, |w| ≤ |Q|2}

Let q1 and q2 be two states of T , π a path from I to q1, and π′ a path from I to
q2 with the same input label: i[π] = i[π′], then o[π′]−1o[π] ∈ R.

Proof. Let w be the common input label of π and π′ and assume that |w| > |Q|2.
By lemma 1, paths π and π′ can be factored in the following way:

π = π1π2π3 π′ = π′
1π

′
2π

′
3

where π2 and π′
2 are cycles with non-empty input labels and: i[πk] = i[π′

k], for
k = 1, 2, 3. Let φ = π1π3 ∈ P (I, qi) and φ′ = π′

1π
′
3 ∈ P (I, qj) and w′ = i[φ] =

i[φ′]. Since T has the twins property, (o[π′
1π

′
2])

−1o[π1π2] = o[π′
1]

−1o[π1]. Thus:
o[π′

1π
′
2π

′
3]

−1o[π1π2π3] = o[π′
1π

′
3]

−1o[π1π3] = o[φ′]−1o[φ]. Since |i[πk]| > 0, w′ is a
string strictly shorter than w. By induction, we can find paths φ ∈ P (I, q1) and
φ′ ∈ P (I, q2), with i[φ] = i[φ′] = w′, |w′| ≤ |Q|2 and such that o[π′]−1o[π] =
o[φ′]−1o[φ], thus o[π′]−1o[π] ∈ R. This proves the lemma. ��

30 C. Allauzen and M. Mohri

The following two lemmas are used in the proof of our main result.

Lemma 3. Let x1, x2, y1, y2 ∈ Σ∗. Assume that for some integers r ≥ 0 and
s > 0, the following holds:

(x1y
r
1)

−1x2y
r
2 = (x1y

r+s
1)−1x2y

r+s
2 (3)

then:

x−1
1 x2 = (x1y1)−1x2y2 (4)

Proof. Let x1, x2, y1, y2 ∈ Σ∗ be strings satisfying the hypothesis of the lemma.
Without loss of generality, we can assume that |x2| ≥ |x1|. Equality 3 of the
lemma can be rewritten as: y−r

1 x−1
1 x2y

r
2 = y−r−s

1 x−1
1 x2y

r+s
2 , or: ys

1(x
−1
1 x2) =

(x−1
1 x2)ys

2. Repeated applications of this identity lead to:

ysn
1 (x−1

1 x2) = (x−1
1 x2)ysn

2 (5)

for any n ≥ 1. This implies that x−1
1 x2 is a string and that it is a prefix of ysn

1 .
Thus, y1 is a period of x−1

1 x2 [14]. There exist an integer p, and two strings u
and v such that y = vu and x−1

1 x2 = ypv. Re-injecting this in equation 5 gives
y2 = uv and completes the proof of the lemma. ��

Lemma 4. Let T ′ = (Σ,∆,Q′, {i′}, F ′, E′, λ′, ρ′) be a p-subsequential trans-
ducer equivalent to T = (Σ,∆,Q, I, F,E, λ, ρ). Let q ∈ F be a final state of T
and q′ ∈ F ′ a final state of F ′ and assume that there exists x ∈ Σ∗ such that
P (I, x, q) �= ∅ in T and P (i′, x, q′) �= ∅ in T ′. Then, there exists a finite set
Z ⊂ ∆(∗) such that for any paths π ∈ P (I, q) and π′ ∈ P (i′, q′), if i[π] = i[π′]
then o[π]−1o[π′] ∈ Z.

Proof. Let π and π′ be two paths satisfying the hypotheses of the lemma. Since
T and T ′ are equivalent, we have o[π]ρ(q) ⊆ [[T]](i[π]) = [[T ′]](i[π]). Since T ′ is
p-subsequential we also have [[T ′]](i[π]) = o[π′]ρ′(q′). Thus:

o[π]ρ(q) ⊆ o[π′]ρ′(q′) (6)

Let x ∈ ρ(q), there exists y in ρ′(q′) such that o[π]x = o[π′]y. Define Z ⊂ ∆(∗)

as the finite set Z = ρ(q)ρ′(q′)−1. Then, o[π]−1o[π′] = xy−1 ∈ Z. This proves
the lemma. ��
Our main characterization result of this section is given by the following theorem
which establishes the equivalence between three properties.

Theorem 1. Let T be a trim finite-state transducer. Then the following three
properties are equivalent:

1. T is determinizable;
2. T has the twins property;
3. T is p-subsequentiable.

p-Subsequentiable Transducers 31

I

q1x

q2

x

y

i[π]’1

y

i[π]’2

i’ x qyr

ys
i[π ’]1

i[π ’]2

(a) (b)
Fig. 3. Illustration of the definition of the paths used in the proof of theorem 1. Only
the input labels of the paths are indicated. (a) Siblings states q1 and q2 in T , paths π1,
c1, π2, and c2 defined as in the definition of the twins property, and paths π′

1 and π′
2

from q1 and q2 to final states. (b) State q in T ′, path π, and paths µ1 and µ2 from q
to final states in T ′.

Proof. 1 ⇒ 3: By definition of the algorithm, the output of determinization is a
p-subsequential transducer.

3 ⇒ 2: Assume that T is p-subsequentiable and let T ′ be a p-subsequential
transducer equivalent to T . Let q1 and q2 be two siblings in T and consider four
paths π1, c1, π2, c2 as in the definition of the twins property. Since T is trim,
there exist a path π′

1 from q1 to a final state and a path π′
2 from q2 to a final

state. Figure 3 (a) illustrates the definition of these paths. Note that π′
1 or π′

2
may be an empty if q1, resp. q2, is a final state.

Since T ′ is equivalent to T , there must be a path π in T from the initial state
to a state q with input label xyr with r ≥ 0, a cycle c at q with input label
ys with s > 0, and two paths µ1 and µ2, potentially empty, from q to a final
state, with input labels respectively i[π′

1] and i[π′
2]. Figure 3 (b) illustrates the

definition of these paths.
By definition of these paths, we have for any t ≥ 0:

i[π1c
r+st
1 π′

1] = i[πctµ1] (7)

The conditions of lemma 4 hold with the final states n[π′
1] and n[µ1] and the

paths π1c
r+st
1 π′

1 and πctµ1. Thus, there exists a finite set Z such that for any
t ≥ 0:

o[π1c
r+st
1 π′

1]
−1o[πctµ1] ∈ Z (8)

Since Z is finite, there exist at least two distinct integers t0 and t1 such that:

o[π1c
r+st0
1 π′

1]
−1o[πct0µ1] = o[π1c

r+st1
1 π′

1]
−1o[πct1µ1] (9)

That is:

o[π′
1]zo[µ1]−1 = o[π1c

r+st0
1]−1o[πct0] = o[π1c

r+st1
1]−1o[πct1] (10)

By lemma 3, this implies:

o[π1c
r
1]

−1o[π] = o[π1c
r+s
1]−1o[πc] (11)

32 C. Allauzen and M. Mohri

We can prove in a similar way that:

o[π2c
r
2]

−1o[π] = o[π2c
r+s
2]−1o[πc] (12)

Thus:

o[π1c
r+s
1]−1o[π2c

r+s
2] = o[π1c

r
1]

−1o[π2c
r
2] (13)

And by lemma 3:

o[π1]−1o[π2] = o[π1c1]−1o[π2c2] (14)

Thus, any two siblings q1 and q2 in T are twins, and T has the twins property.
2 ⇒ 1: Assume that T has the twins property. Let {(q1, z1), . . . , (qn, zn)}

be a subset created during the execution of the determinization algorithm. By
construction, states q1, . . . , qn can all be reached from I by paths labeled with
the same input string w.1 Let z be defined by:

z =
∧

p[π]∈I, i[π]=w

o[π] (15)

By definition of the algorithm, for i = 1, . . . , n, there exists a path πi from I to
qi with input label w such that:

zi = z−1o[πi] (16)

Let Π = πi and Π ′ = πj for some i, j = 1, . . . , n. We have:

z−1
j zi = o[Π ′]−1o[Π] (17)

Thus, by lemma 2, z−1
j zi ∈ R with:

R = {o[π′]−1o[π] : i[π] = i[π′] = w, |w| ≤ |Q|2} (18)

Define K as the maximum length of the elements of R: K = maxx∈R |x|. Since
the remainders in the same subset cannot have a common non-empty prefix,
for any remainder string zi, there exists at least on remainder zj such that
zi ∧ zj = ε, thus |zj | + |zi| = |z−1

j zi|. Since z−1
j zi ∈ R, we have |z−1

j zi| ≤ K,
and thus |zi| ≤ K. This inequality holds for i = 1, . . . , n, that is any subset
remainder belongs to Σ≤K . Thus, a subset necessarily belongs to 2|Q|×Σ≤K

,
which is a finite set. This guarantees the termination of the algorithm and thus
the determinizability of T . ��

5 Experiments and Results

We have fully implemented the general determinization algorithm presented in
section 3. We used a priority queue implemented with a heap to sort the tran-
sitions leaving each subset and another priority queue to sort the final output
1 Note that we may have qi = qj for some choices of i and j.

p-Subsequentiable Transducers 33

strings. Since the computation of the transitions leaving a subset only depends
on the states and remainder strings of that subset and on the input transducer,
one can limit the computation of the result to just the part that is needed. Thus,
we gave an on-the-fly implementation of the algorithm which was incorporated
in the FSM library [13].

Our experiments in large-vocabulary speech recognition showed the algo-
rithm to be quite efficient. It took about 5s using a Pentium III 700MHz with
2048 Kb of cache and 4Gb of RAM to construct a p-subsequential transducer
equivalent to a transducer T with 440,000 transitions representing the mapping
from phonemic sequences to word sequences obtained by composition of two
transducers.

We also implemented an efficient algorithm for testing the twins property [1].
With our implementation, the p-subsequentiality of the transducer T already
described could be tested in just 60s using the same machine.

6 Conclusion

A new characterization of p-subsequentiable transducers was given. The twins
property was shown to be a necessary and sufficient condition for the p-subse-
quentiability of a finite-state transducer without requiring it to be p-functional
and a necessary and sufficient condition for the general determinizability of trans-
ducers. We reported experimental results demonstrating the practicality of our
algorithms for testing p-subsequentiability and for determinizing transducers in
large-vocabulary speech recognition applications.

References

1. Cyril Allauzen and Mehryar Mohri. On the Determinizability of Weighted Au-
tomata and Transducers. In Proceedings of the workshop Weighted Automata:
Theory and Applications (WATA), Dresden, Germany, March 2002.

2. Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch.
Squaring transducers: An efficient procedure for deciding functionality and sequen-
tiality. In Proceedings of LATIN’2000, volume 1776 of Lecture Notes in Computer
Science. Springer, 2000.

3. Jean Berstel. Transductions and Context-Free Languages. Teubner Studienbucher:
Stuttgart, 1979.

4. Christian Choffrut. Une caractérisation des fonctions séquentielles et des fonctions
sous-séquentielles en tant que relations rationnelles. Theoretical Computer Science,
5:325–338, 1977.

5. Christian Choffrut. Contributions à l’étude de quelques familles remarquables de
fonctions rationnelles. PhD thesis, (thèse de doctorat d’Etat), Université Paris 7,
LITP: Paris, France, 1978.

6. Karel Culik II and Jarkko Kari. Digital Images and Formal Languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 599–616. Springer, 1997.

34 C. Allauzen and M. Mohri

7. Maurice Gross and Dominique Perrin, editors. Electronic Dictionnaries and Au-
tomata in Computational Linguistics, volume 377 of Lecture Notes in Computer
Science. Springer Verlag, 1989.

8. Ronald M. Kaplan and Martin Kay. Regular Models of Phonological Rule Systems.
Computational Linguistics, 20(3):331–378, 1994.

9. Lauri Karttunen. The Replace Operator. In 33rd Annual Meeting of the Associ-
ation for Computational Linguistics, pages 16–23. Association for Computational
Linguistics, 1995. Distributed by Morgan Kaufmann Publishers, San Francisco,
California.

10. Mehryar Mohri. On some Applications of Finite-State Automata Theory to Natural
Language Processing. Journal of Natural Language Engineering, 2:1–20, 1996.

11. Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2), 1997.

12. Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Finite-State
Transducers in Speech Recognition. Computer Speech and Language, 16(1):69–88,
2002.

13. Mohri, Mehryar and Fernando C. N. Pereira and Michael Riley. General-Purpose
Finite-State Machine Software Tools. http://www.research.att.com/sw/tools/fsm,
AT&T Labs – Research, 1997.

14. Dominique Perrin. Words. In M. Lothaire, editor, Combinatorics on words, Cam-
bridge Mathematical Library. Cambridge University Press, 1997.

15. Marcel Paul Schützenberger. Sur une variante des fonctions séquentielles. Theo-
retical Computer Science, 4(1):47–57, 1977.

16. Andreas Weber and Reinhard Klemm. Economy of Description for Single-Valued
Transducers. Information and Computation, 118(2):327–340, 1995.

	Introduction
	Preliminaries
	General Determinization Algorithm with p-Subsequential Outputs
	Characterization
	Experiments and Results
	Conclusion

