Finite-state error/edit-systems and
difference-measures for languages and words*

Lila Kari!, Stavros Konstantinidis?!, Steven Perron?, Geoff Wozniak!, Jing Xu?

'Dept. of Computer Science, University of Western Ontario,
London, Ontario, N6A 5B7 Canada,
lila@Qcsd.uwo.ca, wozniak@csd.uwo.ca

2Dept. of Mathematics and Computing Science,
Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3 Canada,
s.konstantinidis@smu.ca, steven_perron@hotmail.com, j_xu@smu.ca

Abstract

We consider a special type of automaton, the weighted finite-state e-system (wifse-system),
that allows us to describe formally the combinations of errors (edit operations) that are permitted
in some information processing application. Given two regular languages and a wfse-system we
can compute the set of all edit-strings that can transform a word of the first language to a word
of the second one using only the edit operations permitted by the given wfse-system. FEach
wise-system can be used to define a measure of the difference between words and languages.
Our presentation provides a uniform treatment of certain algorithmic problems pertaining to
the differences between such objects. In particular, we show how to find the Hamming distance
of a given regular language in quadratic time and how to compute efficiently the general string
to regular-language correction problem. Moreover, we discuss an implementation of our solution
to this problem, which uses Grail to represent automata.

1 Introduction

The problem of measuring the difference between words (strings) and languages is important in
various applications of information processing such as error control in data communications, bio-
informatics, and spelling correction. Well-known measures of the difference between two words are
the Hamming distance and the edit (or Levenshtein) distance, as well as the weighted edit distance.
In general, the function describing the difference between two words need not be a distance function
(a metric). Moreover, it is often the case that the errors (edit operations) that are used to transform
one word to another can be combined only in certain ways. For example, in some applications of
data communications [7] errors tend to occur in bursts, and in computer typesetting the likelihood of
occurrences of certain word misspellings depend on the letters comprising the word — in particular,
omitting the letter d is more probable when d follows e than when it follows g [2].

*Research partially supported by Grants R2824A01 and R220259 of the Natural Sciences and Engineering Research
Council of Canada.
fCorresponding author.

Typical problems pertaining to differences between strings and languages are (i) computing the
distance (also known as self-distance) of a given language, (ii) computing the edit-distance between
two words, and (iii) correct a given word to a word of a given language using a minimum cost string
of edit operations. The first problem can be used to find the maximum number of errors that a given
code can detect. To our knowledge, it has not been addressed for the case of regular languages.
The second problem can be solved using a dynamic programming algorithm — see [11]. The third
problem is solved in [12] for regular languages and unrestricted edit operations using also dynamic
programming. In [8] the author addresses this problem for more general classes of languages.
Reference [1] discusses the interesting concept of k-reflexivity of a relation which generalizes the
concept of distance between two languages. The definition of distance in [1], however, is totally
different from ours.

In this work, we consider a special type of automaton, the weighted finite-state e-system (wfse-
system), that allows us to describe formally the combinations of errors (edit operations) that are
permitted in some information processing application. Each wfse-system can be used to define a
“measure of the difference” between words and languages. Our presentation provides a uniform
treatment of the above mentioned problems. The paper is organized as follows. In the next
section we provide the basic notation about automata and e-strings, and we introduce the e-
automaton accepting all the e-strings that can transform a word of one language to a word of
another language without restrictions on the edit operations permitted. In Section 3, we define
wfse-systems, show how they can be used to define measures of difference between words, and
how to compute the automaton describing the differences between two languages according to the
wise-system in question. Section 4 shows a quadratic time algorithm for computing the Hamming
distance of a given regular language. In Section 5 we show how to compute the general string to
regular-language correction problem efficiently and discuss an implementation of our algorithm.
Finally, Section 6 contains a few concluding remarks.

2 Basic Notation and the E-automaton

For a set S we denote by |S| the cardinality of S. An alphabet is a finite nonempty set of symbols.
In the sequel we shall use a fixed alphabet 3. A word or string (over X) is a finite sequence ag - - - ay,
such that each a; is in ¥. The length of a word w is denoted by |w|. The empty word, denoted A,
is the word of length zero. A (nondeterministic) finite automaton with A-transitions, a A-NFA for
short, is a quintuple A = (X, @, s, F,T) such that X is an alphabet,) is a finite nonempty set, the
set of states, s is the start state, F' is the set of final states, and T is the set of transitions. Each
transition in 7T is of the form g;zqo, where ¢; and ¢o are states and x is either an alphabet symbol
or A — we assume that the sets () and X are disjoint. A computation of A is an expression of the
form qoz1q1 - - - T gy such that each ¢;_1x;q; is a transition in 7. We say that such a computation
is accepting if qp is the start state and ¢, is a final state and, in this case, z1---x, is called the
accepted word.

The automaton A is called an NFA if z is nonempty in every transition gizgs of A. It is called
deterministic, a DFA for short, if it is an NFA and for any two transitions of the form ¢;z¢, and
q17q, it is the case that ¢o = ¢5. We use L(A) for the language accepted by A. The size |A| of A
is the quantity |Q| + |T'|. A A-NFA is trim if every state is reachable from the start state and can
reach a final state. Note that in every trim A-NFA we have that |Q| < |T| + 1 and, therefore, the
size of A is O(|T'|). We assume that the reader is familiar with the basic concepts of automata and

formal languages — see [10] for details.

We continue now with the concept of e-system as introduced in [5]. The alphabet Ex of the
basic edit operations is the set of all symbols z/y such that z,y € £ U {A} and at least one of =
and y is in . If z/y is in Ey. and z is not equal to y then we call z/y an error. We write A/ for
the empty word over the alphabet Ex. We note that A is used as a formal symbol in the elements
of Ey,. For example, if and y are in ¥ then (z/))(z/y) # (z/y)(xz/A). The elements of ES are
called e-strings. The input and output parts of an e-string h = (z1/y1) -+ (zn/yn) are the words
(over X) z1 --- @y, and y; - - - yp, respectively. We write inp(h) for the input part and out(h) for the
output part of the e-string h. An e-system is a subset of EY. (or a language over Ey). The e-system
is regular if it can be accepted by an NFA. In this case we shall call the NFA an e-NFA.

We close this section by introducing the e-NFA A; Ng A9 of two given NFAs A; and Ay, where
E is a subset of the e-alphabet Ey. Recall — see for instance [13] — that for any two trim DFAs
A1 and As one can use the standard product construction to define the trim DFA A; N Ay of
size O(|A1||A2|) accepting the language L(A;1) N L(Az). The same construction remains valid even
when the automata involved are NFAs. The construction of the e-NFA A1 Ng A can be viewed
as a generalization of the standard product construction. We note that an interesting product
construction between two copies of the same automaton is defined in [4] for the purpose of deciding
the property of unique decodability for regular languages. Although the topic of [4] is not relevant
to the present work, we wish to acknowledge that our product construction was inspired in part by
the product construction in [4].

Given an NFA A we denote by A* the A-NFA that results from A if we add the transitions g\g
for every state g of A. It should be clear that the language accepted by A* is equal to the language
accepted by A.

Construction 1. Given two trim NFAs A; and As, and a subset E of the e-alphabet FEy,
the eeNFA A; Ng A, is defined to be the trim part of the e-NFA C that is constructed as follows.
The states of C are all the pairs (p,q), where p and ¢ are states of A; and As respectively. The
start state of C is the pair consisting of the start states of A; and Ao, and the set of final states
of C consists of all pairs (p,q) such that p and ¢ are final states of A; and A, respectively. The
transitions of C are of the form (p1,q1)z/y(p2,¢2) such that z/y is in E, pixps is a transition of
A2, and qiyqs is a transition of A3.

Next it is shown that the language accepted by the e-NFA A; Ng As consists of all the e-strings
h that transform a word in L(A;) to a word in L(As2) using any combination of edit operations in
E.

Proposition 1 The e-NFA Ay Ng As of two given NFAs Ay and Ay and a given set E of edit
operations is of size O(|A1]|Az|) and accepts the language

L(A1 Ng AQ) = {h | h € E*, inp(h) € L(Al), out(h) S L(Az)}.
Proof. First let h = (z1/y1) -+ - (zn/yn) be an e-string accepted by some computation

(Po, q0)(z1/y1)(P1,q1) *** (Z0/Yn) (Prs Gn)

of A1 Ng A,. By Construction 1, h is in E* and the expressions poz1p1 « + - Tnprn and QoyY1q1 - - * Yndn
are accepting computations of A7 and A3, respectively. Hence, inp(h) is in L(A;) and out(h) is in
L(As) as required.

Conversely, suppose h = (1/y1) - - - (¢ /Yr) is an e-string in E* with inp(h) in L(A;) and out(h)
in L(As). Then one can define accepting computations of A} and A} of the form pyz1p; - - Tppy

and qoy191 - * Yngn, Tespectively. This implies that (po,qo)(z1/y1)(P1,91) - (Zn/Yn)(Pns gn) is an
accepting computation of A; Ng A2 and, therefore, h must be in L(A; Ng Ag). O

3 Weighted finite-state e-systems and difference-measures

In this section we define weighted finite-state e-systems, wfse-systems for short, that allow one
to describe various combinations of edit operations and specify the cost of a sequence of edit
operations. Each wfse-system can be used to define a measure of the difference between two words.
Moreover, it is shown here how to compute a minimal such difference between two regular languages.
Applications of this approach are discussed in the next sections.

Definition 1 A weighted finite-state e-system, or wfse-system for short, is a pair B = (Ag, f3)
such that Ag is a trim e-NFA and fg is a function, called the weight function of 3, that assigns a
nonnegative real number to every transition of Ag. The alphabet of the e-system L(Ag) is a subset
of the alphabet of edit operations and is denoted by Eg.

A wfse-system (3 is called a free e-system if the e-NFA Ag has exactly one state that is both the
start and the final state (in this case there is no restriction in the way the edit operations in Eg
can be combined).

Consider a wfse-system 3 and a computation goe1q: - - enqn of the e-NFA Ag. The cost of this
computation is equal to the sum of the weights of the transitions that appear in the computation:
Y1 fa(gi—1€iqi). The cost function Cpg defined by f is the function that assigns to every e-string
h in L(Ag) the minimum of the costs of the computations that accept h.

It should be clear that if 3 is a free e-system then L(Ag) is equal to E;, and the cost function
Cp is a morphism of L(Ag) into the monoid (R, +) of the nonnegative real numbers; that is,
Cg(A/A) =0 and Cgler---e,) = > iq Cgle;) for all e-strings ey --- e, in L(Ag). We agree that a
free e-system [is specified by the alphabet Eg and the values Cg(e), for all e € Ejg.

A wifse-system can be used to measure the difference between two words in ¥*. More specifically,
let B be a wfse-system. For any two words w; and ws in *, the B-difference between wq and wo
is the quantity

dg(wi,we) = min{Cg(h) | h € L(Ag), inp(h) = w1, out(h) = ws},

where we assume that min () = oo (this means that it is impossible to transform w; to we using the
edit operations permitted by 8). The concept of S-difference can be extended naturally in three
ways as follows: Let w be a word and let L, L' be two languages, all over ¥. Then,

dlg(L) = min{dﬂ(wl,wg) | w1, W € L, w1 75 ’wg}
dg(w,L) = min{dg(w,u)|u € L}
dg(L, L") = min{dg(w,v') |w € L, w' € L'}.

Definition 2 Given a wfse-system B and an e-NFA D, the wfse-system B/D is defined such that

Ag/p = AgND and fg,p((p1,q1)e(p2, q2)) = fa(prep2) for every transition (p1, q1)e(p2,q2) of Ag/p
— note that piepa must be a transition of the e-NFA Apg.

4

Proposition 2 For every wfse-system 3 and for every e-NFA D, we have that
L(Aﬂ/D) = L(Aﬂ) N L(D) and Cﬂ/D(h) = Cﬂ(h),
for all e-strings h in L(Ag/p).

Proof. The statement L(Ag,p) = L(Ag)NL(D) follows immediately by the definition of Ag/p. Now
consider an e-string h = e1---e, in L(Ag/p), where each e; is an edit operation. By definition,
Cs/p (h) is the sum of the weights appearing in a minimum cost computation of AgND that accepts
h. Suppose
(pOa qo)el (ph q1) e en(p'fh qn)

is such a computation. Then each weight fg/p((pi-1,qi-1)ei(pi,qi)) is equal to fg(pi—1eip;), with
each p;_1e;p; being a transition of Ag. Hence, Cg/p(h) = 21y fg(pi—1€ipi) > Cpg(h). If it were
the case that Cg/p(h) > Cg(h) then there would be a computation pye1p] - - - enp;, of Ag accepting
h with cost equal to Cg(h). In this case, however,

(Pysqo)er (P, q1) « - - en (Pl qn)

would be a computation of Ag/p accepting h with cost Cg(h); a contradiction. O

Definition 3 Given a wfse-system [and two NFAs Ay and As, A Ng Ay is defined to be the
e-NFA of the wfse-system /(A NEg As); that is, Ay Ng Ay = Ag N (A NEg Ag).

Next it is shown that the e-NFA A; Ng Ay describes all the e-strings h that can transform a
word in L(A;) to a word in L(A2) using only the edit operations permitted by £.

Proposition 3 For every trim NFAs A1 and As, and for every wfse-system 3, the following state-
ments hold true.

L(4NgA2) = {h|heL(Ag), inp(h) € L(Ar), out(h) € L(As)}
ds(L(A1),L(A2)) = min{Cy(h) | h € L(A; Ng Az)}.

Proof. The first statement follows easily from Propositions 1 and 2. The second statement follows
from the first one and Proposition 2. O

By Proposition 3, the g-difference between the two regular languages L(A;) and L(A3) is equal
to the cost of the shortest weighted path from the start state to a final state in the graph A, Ng As.
This value can be computed in time O(nlogn), where n is the size of the graph, using Dijkstra’s
algorithm.

Corollary 1 The following problem is computable in time O(|A1||Az||Ag|log(|A1]|A2||Agl)).
Input: Two NFAs A1 and As and a wfse-system (3.
Output: The B-difference dg(L(A1), L(As2)).

Note that Dijkstra’s algorithm can be used to also return a shortest accepting path in A; Ng As.
Moreover, the labels in the path would form an e-string (x1/y1) - - - (¢ /yn) that defines a specific
pair of words z1 - - -z, € L(A1) and y; - - -y, € L(Ag) with the property that these are words of the
two languages whose S-difference is minimal.

In case the NFAs A; and Aj are acyclic (accepting finite languages), the automaton A; Ng Ao
is also acyclic and, therefore, Dijkstra’s algorithm would run in time linear with respect to the size
of A1 N B As.

Corollary 2 The following problem is computable in time O(|A1||Az||Ag|)-
Input: Two acyclic DFAs Ay and As and a wfse-system [.
Output: The B-difference dg(L(A1), L(As2)).

4 Computing the Hamming distance of a regular language

The Hamming e-system is the free e-system o such that the set of permitted edit operations is
E, ={z/y|z/y € BEx, © # X\, y # A} and the cost of each edit operation z/y € E, is

1, ifz ,
Colafy) = {) el

The Hamming distance between two words w; and we is equal to dy(wi,wz). The Hamming
distance of a language L is equal to d,(L). In this section we show that the following proposition
holds true.

Proposition 4 The following problem is computable in quadratic time.
Input: An NFA A.
Output: The Hamming distance of the language L(A).

Consider the wfse-system ¢’ such that E,» = E, and the e-NFA A, has two states s and g,
with s being the start state and g being the only final state, and transitions sz/zs, sz/yg, gz/zg,
and gz/yg, for all symbols z,y € ¥ with z # y. Moreover, fy(sz/zs) = fy(9z/zg) = 0 and
for(sz/yg) = for(92/yg) =1, for all z,y € ¥ with z # y. It is evident that A, accepts all e-strings
in E containing at least one error. This implies that

dy(L(A)) = do(L(A), L(A)).

Therefore we can construct the e NFA A N, A of size O(|]A|?) and then, using Corollary 1, solve
the above problem in time O(|A|?log|A|). Note that the factor log|A| in the time complexity is
due to the fact that A might contain cycles. However, using the fact that each weight in the graph
AN, A is either 0 or 1, we show next that the shortest accepting path can be computed in time
linear with respect to the size O(|A|?) of AN, A, even when this graph contains cycles. This would
also establish the validity of Proposition 4.

Consider a directed graph G all the nodes of which are reachable from a start node s, and all
the weights on the edges of the graph are 0 or 1. We can view G as two graphs Gy and G1 such
that G results by removing from G the edges of weight 1 and G results by removing from G the
edges of weight 0. The main idea of the algorithm is as follows: Let Q(()O) be equal to s. Define
ng) to be ng) union the the set of all new nodes (i.e., nodes that have not been visited before)
that are reachable from Q(()O) via the graph Gy. The nodes in ng) are exactly those of distance 0
from s. Let Q((]l) be the set of new nodes that are reachable from ng) using exactly one edge of
G1. Each node in Q(()l) is of distance 1 from s. This process is repeated by defining ng) from Q(()z),
and Q(()H'l) from Qgi), until all nodes in G have been visited. It is evident that the nodes in Qgi)
are exactly those of distance ¢ from s.

We turn the above idea to an algorithm by using two queues QO and Q1, a counter length that
plays the role of ¢, an array Seen to keep track of whether a node has been visited, and an array

Distance to store the distance of each node from the start node. The algorithm is presented below.
As each node of the graph G can be examined no more than two times, the algorithm runs in time
proportional to the size of the graph.

Algorithm.

Define two empty queues QO and Q1

Initialize all entries of the boolean array Seen to false
Initialize all entries of the integer array Distance to 0
Q0.insert (startNode)

Seen[startNode] = true

length = 0;

while (QO is not empty)

while (QO is not empty)
a = Q0.front ()
for each edge (a,b) in GO with not Seen[b]
Q0.insert(b), Seen[b] = true;
Distance[b] = length
end for
Q0.delete(), Q1.insert(a)
end while

length = length + 1

while (Q1 is not empty)
a = Q1.front()
for each edge (a,b) in G1 with not Seen[b]
Q0.insert(b), Seen[b] = true;
Distance[b] = length
end for
Q1.delete()
end while

end while

5 The string to regular-language correction problem

In the general string to regular-language correction problem, we are given a string (word) w,
an NFA A and a wfse-system § and we want to compute a minimum cost e-string h in L(Ag).
More specifically, the language L(A) is supposed to contain all the “syntactically correct words”
and the e-string h describes the edit operations permitted by 8 that would transform w to a
syntactically correct word. The cost of h is equal to dg(w, L(A)). If we construct the (|w|+ 1)-state
automaton A,, accepting {w} then we can use the e-NFA A, Ng A to solve the problem in time
O(|wl|A[|Ag[log(|w]|A[[Agl)), or O(|w||A[[Ag]) if A is acyclic.

7

TABLE 1

dictionary words |----------——————————|-—————————— |~ |

| Finite | | Time for Algorithms |
| Machine | Word | 014 | New: initial, improved |
| |
| c20: | dh_installxfonts; | O0m28.899s | Om0.137s, OmO0.009s

| accepts |-————————————————————— e === [
| 113 unix | The Dog Ran | Om28.468s | Om0.087s, Om0.019s |
| commands |---—————-----————-————————— [=== [————— [
| ended | dh_innnnnstalllllllxfonts; | Om29.597s | Om0.215s, Om0.026s |
| with ; | | | |
| |
| c20plus: | edusers;dig;evolution;scro | Om59.797s | Oml.548s, Om0.021s |
| accepts | llkeeper-install;rep;rep;p | | |
| any word | ython;python;python;ppmqua | | [
consist-	ntall;ppmquantall;plotfont		
ing of	;zsh4;bibtex;bibtex;bibtex		
one or	;_java_classes;		
more	===	-===mm-	-—————m I
words in	edusersdigevolutionscrollk	Om56.909s	Om1.319s, Om0.193s
L(c20)	eeper-installrepreppythonp	I [
	ythonpythonppmquantallppmq	I	
	uantallplotfontzshd4bibtexb		
	ibtexbibtex_java_classes;	I	
[-—————— [-=====—- [-==——————			
	XXXXXXXXXXXXXXXXXXXX	Om40.692s	Om0.176s, Om0.040s
fmé:	aduhgeoipaodijw	Om0.005s	Om0.005s, OmO.003s

| accepts |-————————————————————— [—=—==—————- [—==——m e I
| the | abcabcaabbcc | Om0.005s | Om0.005s, Om0.003s |
| language |-————-------------==------—- | === | === I
| (abc)*abc(abc)* | |
| |
dict:	qualificaton	I Om2.830s
accepts	-	- [—————
249083	quamificaton	I Om2.950s

|

The Levenshtein e-system is the free e-system 7 that permits all possible edit operations, namely
E; = Esx, and the cost of each edit operation z/y is Cr(z/y) = 0 if z = y, and C;(z/y) = 1 if
z # y. We consider 7 to be fixed and, therefore, the above problem can be computed in time
O(|w||A| log(|w||4])), or O(Jw||A]) if A is acyclic. This problem has been solved also in [12] using
a dynamic programming algorithm that operates in time O(|w||A[?) - see also [8] for cases where

the language of valid words can be non-regular. We have implemented both algorithms in C++ on
a Pentium IIT 1.4 GHz machine. The implementations are available in [9]. We used the class fm
of Grail+ 2.5 [3] to represent automata (finite machines). This class stores the transitions of an
automaton in an array and maintains a flag to indicate whether the array is sorted. To add a new
transition, Grail first tests whether the transition already exists, either by performing binary search
if the array is sorted, or by sorting the array and then performing binary search if the array is not
sorted. With this approach, the cost of building a large automaton could be high and dominate the
running time of the algorithms. For this reason in our tests, we have considered only cases where
the transitions, which are contained in some text file, are already sorted; therefore, no sorting takes
place when the transitions are read from the text file into an object of the class fm.

We note that, in our initial implementation of the new algorithm, we constructed explicitly the
graph A, N; A and then performed Dijkstra’s algorithm on that graph. In the current, improved,
implementation, given the graphs of A, and A, we first allocate space for the vertices (p,q) of
the graph A, N, A and then we simply perform Dijkstra’s algorithm by computing the edges of
Ay N7 A “on the fly” as needed. More specifically, if (p1,q1) is a vertex of A, N, A with minimum
“path-length” then, to update the path-length of an unmarked vertex (ps,q2) that is adjacent to
(p1,q1), we examine the transitions of Ag of the form pizp, and the transitions of A* of the form
¢1yg2 and update the path-length of (p2,q2) using the cost of the edit operation z/y — see [6], for
instance, for details on Dijkstra’s algorithm. The actual running times of the algorithms on certain
inputs are given in Table 1 — currently, we are working on the implementation of the algorithm for
the general string to regular-language correction problem. We note that our implementation of the
old algorithm [12] uses a lot of function calls to allocate and deallocate memory, as required by the
dynamic programming approach, and this appears to slow the algorithm down considerably. It is
not obvious, however, how to reduce the number of these function calls without introducing extra
computation time.

6 Discussion

We have provided a method of representing error situations using basic tools from automaton theory.
This allows us to address various algorithmic questions pertaining to the differences between words
and languages. For the problem of computing the Hamming distance of a given regular language,
we were able to give a fast algorithm by taking advantage of two facts specific to the Hamming
e-system: (i) the weights involved are zero and one, and (ii) if an e-string of this system contains
an error then the input and output parts of the string must be different. The second fact, however,
is not true in the case of the Levenshtein e-system. More generally, the problem of computing, in
polynomial time, the value of dg(L(A)) for given NFA A and wfse-system 3 remains open.

For the general string to regular-language correction problem, our solution makes no assump-
tions about any specific properties of the objects involved. Of course, for certain types of regular
languages and wfse-systems it might be possible to improve the algorithm or even follow a totally
different approach. For example, the times for the automata c20 and dict in Table 1 would be
lower if one used the shortest path algorithm that is specific to acyclic graphs. We believe that our
observations can be useful in addressing various algorithmic questions related to the topic of word
and language comparisons.

References

[1] C. Choffrut, G. Pighizzini, Distances between languages and reflexivity of relations. Proceedings
MFCS’97, Lecture Notes in Computer Science, 1295 (1997), 199-208.

[2] K. W. Church, W. A. Gale, Probability scoring for spelling correction. Statistics and Computing,
1 (1991), 93-103.

[3] Grail+. Department of Computer Science, University of Western Ontario. URL address
www.csd.uwo.ca/research/grail/

[4] T. Head, A. Weber, Deciding code related properties by means of finite transducers. Proceedings
of Sequences II, Methods in Communication, Security, and Computer Science, 1993, Springer-
Verlag, Berlin, 260-272.

[5] L. Kari, S. Konstantinidis, Descriptional complexity of error/edit systems. In: J. Dassow, M.
Hoeberechts, H. Jurgensen, D. Wotschke (eds), Pre-Proceedings of Descriptional Complezity of
Formal Systems 2002, London, Canada, 133-147.

[6] U. Manber, Introduction to Algorithms, A Creative Approach. Addison-Wesley Publishing Com-
pany, 1989.

[7] W. Peterson, E. Weldon Jr., Error-Correcting Codes. MIT Press 1972.

[8] G. Pighizzini, How hard is computing the edit distance? Information and Computation, 165
(2001), 1-13.

[9] Program for the general string to regular-language correction problem. Depart-
ment of Mathematics and Computing Science, Saint Mary’s University. URL address
http://cs.stmarys.ca/"s_perron/

[10] G. Rozenberg, A. Salomaa (eds), Handbook of Formal Languages, Vol. I. Springer-Verlag,
Berlin, 1997.

[11] D. Sankoff, J. Kruskal (eds), Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. CSLI Publications, 1999.

[12] R. A. Wagner, Order-n correction for regular languages. Communications of the ACM 17(5)
(1974), 265-268.

[13] S. Yu, Regular Languages. In [10], 41-110.

10

