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Abstract

Folk wisdom holds that incorporating a part-of-speech tagger into a system that
performs deep linguistic analysis will improve the speed and accuracy of the system.
Previous studies of tagging have tested this belief by incorporating an existing
tagger into a parsing system and observing the effect on the speed of the parser and
accuracy of the results. However, not much work has been done to determine in a
fine-grained manner exactly how much tagging can help to disambiguate or reduce
ambiguity in parser output.

We take a new approach to this issue by examining the full parse-forest output of
a large-scale LFG-based English grammar (Riezler et al., 2002) running on the XLE
grammar development platform (Maxwell and Kaplan, 1993, 1996), and partitioning
the parse outputs into equivalence classes based on the tag sequences for each parse.
If we find a large number of tag-sequence equivalence classes for each sentence, we
can conclude that different parses tend to be distinguished by their tags; a small
number means that tagging would not help much in reducing ambiguity. In this
way, we can determine how much tagging would help us in the best case, if we had
the “perfect tagger” to give us the correct tag sequence for each sentence. We show
that if a perfect tagger were available, a reduction in ambiguity of about 50% would
be available. Somewhat surprisingly, about 30% of the sentences in the corpus that
was examined would not be disambiguated, even by the perfect tagger, since all of
the parses for these sentences shared the same tag sequence. Our study also helps to
inform research on tagging by providing a targeted determination of exactly which
tags can help the most in disambiguation.

1 Introduction

Systems that perform deep linguistic analysis generally operate by tokenizing the
input string, performing morphological analysis, and handing off the tokenized,
morphologically analyzed result as input to a syntactic parser. It is often argued
that additional refinements in the input to the parser will improve performance:
in particular, that including part-of-speech tagging as a preprocessing step will
remove incorrect syntactic analyses from consideration by the parser, speeding up
the parsing process and reducing ambiguity in the output of the parser. However, it
is not clear exactly how much tagging can help to disambiguate or reduce ambiguity
in parser output in naturally-occurring text. The two ends of the spectrum of
possibilities are illustrated by two well-known ambiguous sentences in English.
The two parses of sentence (1) are associated with two different tag sequences:



(1) Time flies.

In the most natural reading for this sentence, time is a noun and flies is a verb,
but there is another parse in which time is a verb and flies is a noun. If we knew
that time was a noun (or that flies was a verb) in the current context, we could
disambiguate the sentence completely.

Another type of ambiguity is illustrated by example (2):

(2) T watched the man with the telescope.

This sentence has multiple parses, but the ambiguity is not reflected in different
part-of-speech tags for the words in the sentence; tagging will not help to disam-
biguate this example.

This study examines whether ambiguity in naturally-occurring English sen-
tences is commonly reflected in different part-of-speech tags for different well-formed
parses. If different parses tend to be associated with different tag sequences (the
Time flies case), assigning the correct tag sequence as a preprocessing step be-
fore parsing will greatly reduce the number of parses that are produced. If different
parses do not tend to be associated with different tag sequences (the telescope case),
tagging will not help to reduce the output of the parser.

Previous research has attempted to answer this question by incorporating a
tagger as a preprocessor to a parser, and seeing whether the accuracy of the parser
improves as a result; some of this research will be discussed in the next section. This
approach to the problem is potentially confusing, however, since any positive effects
are inevitably obscured by the negative effect of tagging mistakes introduced by the
tagger. No tagger is perfect: the current best-case scenario for taggers trained and
tested on the Wall Street Journal corpus (Marcus et al., 1994a) is around 97.2%
correct (Toutanova et al., 2003). Various ways of dealing with the problem of
mistags have been suggested; for example, Copperman and Segond (1996) suggest
that tagging should be used not as a preprocessor to a parser, but to eliminate
unlikely parts of speech for a particular domain or genre from a general-purpose
lexicon. This may be of help, but does not address the general question of how
much tagging as a preprocessing step could in principle help in disambiguation.

An additional problem that has plagued several previous studies is incompati-
bility between the tags assigned by the tagger and the preterminal symbols used by
the grammar. Requiring an additional mapping between the tagset for the tagger
and the preterminal categories employed in syntactic analysis introduces additional
errors and further obscures the results. Studies that train the tagger on the output
of the parser do not suffer from this problem (Prins and van Noord, 2001, 2003),
but must still contend with the harmful effect of mistags on the result.

We take a new approach to this issue by measuring the disambiguating effect
of a “perfect tagger”, a hypothetical tagger which never makes a tagging mistake.
This allows us to evaluate the effect of tagging on disambiguation while abstracting
away from the problems that are associated with any particular tagger. We do this
by examining the full parse-forest output of a parser, and partitioning the output
parses into equivalence classes based on the tag sequences for each parse. Roughly
speaking, if we find a large number of tag-sequence equivalence classes for each
sentence, we can conclude that different parses tend to be distinguished by their
tags; a small number means that tagging would probably not help much in reducing
ambiguity. In this way, we can determine how much tagging would help us in the
best case, if we had the perfect tagger to give us the correct tag sequence for each
sentence.

Given the tag sequences for all successful parses of the input, we can also answer
more fine-grained questions about the utility of tagging: for example, which parts



of speech play the biggest role in creating multiple tag sequence equivalence classes
for a sentence. We return to this question in Section 5 below.

It is important to note that the current study addresses only the question of
the utility of tagging as it relates to ambiguity reduction. It does not answer the
question of the effect of a tagger on speed; that is, it cannot determine whether a
parser will perform faster on tagged input. This is because the data used in the
study is a parse forest — a packed representation of all full, well-formed parses — and
not a chart. Neither incomplete edges nor edges that fail to contribute to a full,
well-formed parse are present for consideration in the data being examined. Since
there is no way to determine how much work was done on tag sequences which
do not ultimately contribute to a full and complete parse, there is no way for a
study such as this one to address questions of increased efficiency or speed when
parser input is pretagged. This question has been addressed in other studies, which
conclude that tagging in a preprocessing step does in fact speed up the parsing
process.

2 Previous work

One of the first studies to address the question of whether tagging helps in parsing
was reported by Pulman (1992). In this study, a tagger was trained on the LOB
corpus and used as a preprocessor to the Core Language Engine (Alshawi, 1992).
This resulted in a loss in accuracy in parsing, though it did increase parsing speed.
Accuracy was regained by the use of a multiple tagger, a tagger that returns more
than one tag for each word. However, to regain the original level of accuracy, each
word had to be assigned a large enough number of tags that most of the speed
gain obtained from pretagging the input was lost. Interestingly, this result goes
against the findings of Charniak et al. (1996), whose work indicated that a multiple
tagger does not in fact significantly increase accuracy when used as a preprocessor
to a probabilistic context-free phrase structure grammar relative to a single tagger,
which assigns only one tag per word.

Subsequently, Wauschkuhn (1995) reported on a study in which two German
corpora were studied; one was hand-tagged, and the other was statistically tagged,
with an error rate of 3.5% to 4%. Both of these corpora were parsed twice: once
with tags, and once without tags but with a morphological analyzer. There was no
gold standard for either corpus, so the metric of success that was used is the number
of sentences receiving a single parse in each case. This study suffered from several
problems. First, the tags assigned by the morphological analyzer were not the same
as the tags used for hand-tagging, which made comparison of the results difficult.
Second, we do not expect tagging alone to completely disambiguate a sentence; a
sentence may be structurally ambiguous, even with the same tags, so using a metric
which defines success as obtaining a single parse does not seem appropriate. Third,
the grammar used in the test seems to be quite small, perhaps too small for a fair
trial: the majority of sentences got either zero or one parse for both the tagged and
untagged corpus.

A subsequent study was conducted by Voutilainen (1998) on the basis of a system
which uses a finite-state syntactic disambiguator to discard impossible syntactic
analyses. Voutilainen added a morphological disambiguator to discard impossible
tags before syntactic analysis is performed. The conclusion of the study was that
tagging helps to reduce ambiguity, but increases the number of sentences with no
parse. As in Wauschkuhn’s study, no gold standard was available to determine
whether the correct parse was among those parses that were discarded, which makes
it hard to determine the benefit of the addition of a tagger to the system.

More recently, Prins and van Noord (2001, 2003) addressed this question by



adding a morphological disambiguator trained on the output of the parser. This
method solves one of the problems that plagues other approaches, that of incom-
patibility between the tagset used by the tagger and the preterminal categories of
the grammar. Prins and van Noord also were able to evaluate their results against
a gold standard, showing whether the correct parse is present in the output when
a tagger is used. Like the work reported by Pulman (1992), Prins and van Noord
concluded that tagging does in fact help to reduce ambiguity if a multiple tagger
is used. Prins and van Noord also show conclusively that tagging as a preprocess-
ing step can increase parsing efficiency, with a twentyfold speedup for the Alpino
system that they tested. Nevertheless, their approach, like most other approaches,
fails to distinguish between the beneficial effects of tagging and the harmful effects
of tagger errors.

A study which is close in some respects to the experiment reported here was
conducted by Kaplan and King (2003), using the XLE parsing platform and PAR-
GRAM English grammar, described below. Kaplan and King attempted to sim-
ulate the effect of a “perfect tagger” by using the preterminal category sequence
from the Penn Treebank to tag the input string in parsing sentences in the Wall
Street Journal corpus. However, the Penn Treebank preterminal categories and
the preterminal categories of the PARGRAM English grammar are not compatible,
which necessitated the introduction of a mapping function to mediate between the
two tagsets. Kaplan and King concluded that parsing with input annotated with
tags from the Penn Treebank speeds up parsing, but decreases parsing accuracy and
coverage. Incompatibility between the Penn Treebank preterminals and the PAR-
GRAM preterminals, with “tagging” errors introduced by errors in the mapping
function, was a major source of difficulties for their approach.

Another closely related study was carried out by Toutanova et al. (2002), who
investigated several techniques for disambiguation in parsing sentences from the
Redwoods HPSG treebank (Oepen et al., 2002). One of the disambiguation tech-
niques they investigated was adding a tagger trained on the gold standard treebank
as a preprocessing step. They compared these results with the effects of a “per-
fect tagger” which, as in the Kaplan and King experiment, assigned the tags that
appear as preterminals in the Redwoods treebank gold standard. They reported
results which are very similar to the findings of the current study; we will return to
a discussion of their work in Section 4 below.

3 The current study: Methodology

To answer the question of how much tagging can help parsing, we used a broad-
coverage grammar of English to parse a large corpus. We then extracted the preter-
minal sequence for each parse — these are the “tags” that would be assigned by the
perfect tagger — and grouped the preterminal sequences into equivalence classes.
This allows us to answer several questions. First, by counting the number of tag
sequence equivalence classes for each sentence in the corpus, we can determine the
correlation between syntactic ambiguity and number of tag sequence equivalence
classes: are most cases of ambiguity like the Time flies case, or like the telescope
case? Second, we can determine which tags tend to give rise to different tag sequence
equivalence classes; these are the tags that can help the most in disambiguation by

tagging.

3.1 The grammar and parser

Our study uses the English grammar developed at the Palo Alto Research Center
within the PARGRAM project, a large-scale multi-site LFG grammar development



project (Butt et al., 2002). The PARGRAM project encompasses large-scale gram-
mars of English, French, German, Japanese, Norwegian, and Danish, with smaller
grammars of Korean and Urdu also under development. The version of the PAR-
GRAM English grammar used in this experiment is the result of about 9 person
years of development, using the XLE grammar development and parsing platform
for Lexical Functional Grammar.

Analysis of a string using the PARGRAM English grammar and the XLE parsing
platform begins with the following steps:

e Tokenization by finite-state transducer
e Finite-state morphological analysis, including part-of-speech information
e Guesser for forms not recognized by morphological analysis

The resulting input to syntactic rules is a chart consisting of all well-formed mor-
phological analyses of all well-formed tokenizations. The version of the PARGRAM
English grammar used in this study comprises 314 rules (left-hand side categories)
with regular-expression right-hand sides. Lexical entries for most nouns and ad-
jectives are constructed on the fly on the basis of the assigned syntactic category.
The verb lexicon contains 9,652 stems and 23,525 subcategorization frame entries
(Riezler et al., 2002).

3.2 Grammar output

The output of the XLE is a packed representation of well-formed pairs consisting of
a c-structure or phrase structure tree and an f-structure or attribute-value structure:

3) P

PRED ‘YAWN(SUBJ)

[PRED ‘DavID’ |

David 'V
|
yawned

The c-structure is a phrase structure tree representing surface phrasal relations and
groupings; it appears on the left-hand side in (3). The f-structure is an attribute-
value structure representing abstract functional syntactic relations like subject and
object (Kaplan and Bresnan, 1982; Dalrymple, 2001); it appears on the right-hand
side in (3). The mapping relating the two structures is represented by arrows from
nodes of the c-structure to subparts of the f-structure. For the current study, f-
structure information is not relevant, and we can therefore ignore the f-structure
and think of the output simply as a packed parse forest.

Riezler et al. (2002) show that the coverage of the PARGRAM English grammar
used in this study is very high, and the output is of very high quality. In a test
of Section 23 of the Wall Street Journal corpus, 100% of the sentences received an
analysis, though some analyses consisted of a set of well-formed fragments; 74.7%
of sentences received a full (nonfragmentary) syntactic analysis. From Section 23,
700 sentences were randomly selected and a gold standard was hand-constructed
(the PARC 700 Dependency Bank: King et al., 2003). These 700 sentences were
then parsed using the English grammar, and the parse with the highest f-score! was

LF-score is an overall score representing a combination of precision and recall (van Rijsbergen,
1979):

2 X precision X recall
precision + recall




chosen; these parses had an average f-score of 84.1% relative to the gold standard.
The average f-score for a randomly-selected parse relative to the gold standard was
78.6%, still quite high.

3.3 PARGRAM tags

Table 1 contains the 115 preterminal node labels used in the PARGRAM English
grammar, referred to as “tags” in the following. These have been divided into the
following groups:

(4) a. Verbal, including auxiliaries
b. Nominal
c. Adverbial
d. Prepositional
e. Punctuation

f. Other

With 115 tags, the PARGRAM tagset is more fine-grained than, for example, the
Penn tagset, which has 48 tags (Marcus et al., 1994b). The relatively large size
of the PARGRAM tagset does not in itself pose a problem for tagger training; as
shown by Elworthy (1995), larger tagsets are not necessarily less accurate than
smaller ones, at least for languages like English. Indeed, much larger tagsets have
been used in tagger training: Toutanova et al. (2002) report reasonable results in
training a tagger for English with the tagset for the HPSG Redwoods treebank. This
tagset incorporates very detailed syntactic and semantic information, and assumes
a tagset of 8,000 lexical tags.

Some of the PARGRAM English tag distinctions reflect subdivisions of standard
phrase structure categories which are used in different syntactic contexts, such as the
various verbal tags: V[fin] for finite verbs, V[perf] for perfect participles, V[prog]
for progressive participles, and so on. These morphologically-encoded differences
should in principle be possible for a standard tagger to discriminate. Other tags
directly reflect structural syntactic ambiguities, however: for example, the word and
can be tagged either as CONJ (used in non-nominal conjunction) or as CONJnp
(used in conjunction of noun phrases). Such distinctions may well be very difficult
for a tagger to make.

On the other hand, the PARGRAM tagset is less fine-grained than tagsets such
as those used by Toutanova et al. (2002) in their experiments with the HPSG Red-
woods treebank or by Bangalore and Joshi (1999) and Clark and Curran (2004)
for supertagging in Combinatory Categorial Grammar and Tree Adjoining Gram-
mar. These tagsets contain much more detailed syntactic information than the
PARGRAM tagset about the syntactic environment in which a word can appear.

We hypothesize that when using a more fine-grained tagset which reflects syn-
tactic ambiguities, different syntactic analyses of a string will tend to be reflected
in different tags for the words in the string; conversely, if a coarser-grained tagset
is used, syntactic ambiguity will tend not to be reflected in tags. If this is true,
this study represents a middle ground for evaluation of syntactic disambiguation by
tagging, since the PARGRAM tagset contains more syntactic information relevant
for disambiguation than the Penn tagset, but less than is available from supertags.



Table 1: PARGRAM English grammar preterminals

Verbal tags AUX|[fut,fin] AUX[modal,fin]
AUX|pass,base] AUX|[pass,fin]
AUX|pass,perf] AUX|[pass,prog]
AUX|perf,base] AUX|[perf,fin]
AUX|perf,prog] AUX]prog,base]
AUX|[prog,fin] AUX|[prog,perf]
AUXdo[base] AUXdolfin]
AUXsubjl[fin] Vbase]
V(fin] Vpass]
Vperf] Vprog]
Vcop[base] Veoplfin]
Vcop[perf] Vcop[prog]
Nominal tags N NAME
NP[int] NP|rel]
Ndate Npart
PRON PRON/int]
PRON][rel] PRONemph
PRONfree  PRONheadless
PRONposs PRONpp
DAY HOUR
MN MONTH
TITLE
Adverbial tags ADV ADVadj
ADVadj[post] ADVadj[pre]
ADVcomp ADVcompmod
ADVcoord ADVdate[any]
ADVdate[fin] ADVdet
ADVfoc ADVinf
ADVint ADVnum
ADVpmod ADVtime
Prepositional tags P
Padj
Pnum
Ppart
PP
PP[int]
PP[rel]
PPcl
Punctuation/non-word tags ~ CCOLON CDASH COLON
COMMA CSEMI-COLON DASH
ELLIPSIS HYPHEN INT-MARK
L-CRL L-PRN L-QT
LD-QT PERIOD R-CRL
R-PRN R-QT RD-QT
SEMI-COLON U-QT TOKEN
Other tags A Adate Aquant
CONJ CONJcomp CONJnp
CONJsub  Clinf] Clint]
Clpred] Clthat] D
Dlint] Dcomp INITIAL
LETTER NEG[con]  NEG[full]
NUMBER PA PART
PARTinf POSS PRE-N
PRE-V PRECONJ PREDET
PREint



3.4 The data

The current study examined sentences from two sections of the Wall Street Journal
corpus (Marcus et al., 1994a). The first dataset consists of all of the sentences from
Section 13; this was chosen as a large sample, but with no gold standard. The
second dataset consists of 100 sentences from Section 23 in which the correct parse
was marked; this was chosen as a small gold-standard sample for comparison with
the larger sample. These sentences were parsed using the XLE parsing platform
and the PARGRAM English grammar.
The results for Section 13 were:

(5) Total sentences in Section 13 2481
Full and fragmentary parses 2429
Nonfragmentary parses with extracted tag sequences 2105

Of the 2481 sentences in Section 13, 2429 sentences obtained a complete (but pos-
sibly fragmentary) parse in the time allowed. Skimming was not used; in skimming
mode, the parser may return a result containing only a subset of the parses licensed
by the grammar (Riezler et al., 2002). Of these, tags were extracted from 2105 sen-
tences. Tags were not extracted from sentences which obtained only a fragmentary
parse, nor (because of resource limitations) from the 5 sentences with more than
80,000 full parses. For the sentences in Section 13, the correct or optimal parse was
not marked, so there is no gold standard for evaluation of Section 13.

The 100 sentences chosen from Section 23 constitute a much smaller corpus. In
creating this corpus, the sentences in Section 23 were parsed in sequence; sentences
with a full and correct parse were banked, with the correct parse marked. This
process continued until a 100-sentence treebank corpus had been produced. These
100 sentences all received a nonfragmentary parse, and tag sequences were extracted
for each sentence.

(6) Total sentences selected from Section 23 100
Nonfragmentary parses with extracted tag sequences,
correct parse marked 100

The 100-sentence Section 23 corpus tends to contain slightly shorter and less am-
biguous sentences:

(7) Num. sentences Mean sentence Mean num. Median num.
length (words) parses parses

Section 13 2105 21.6 429 12
Section 23 100 18.2 63 8

Comparison of the two corpora is therefore difficult; the bulk of the study described
below is conducted on the basis of the larger Section 13 corpus.

From the packed parse forest for each sentence in both corpora, a file was pro-
duced containing the tag sequence (the sequence of preterminal categories) for each
parse. The contents of an example tagfile for the sentence Hess declined to comment
is given in (8). The sentence has three parses. In the first parse, to has category P
(preposition) and comment has category N (decline is intransitive in this case, and
to comment is a prepositional phrase). In the second and third parses, to has cat-
egory PARTinf (infinitival particle) and comment has category V[base] (one parse
is the expected one, where to comment is an infinitival clause and an argument of
declined; in the other parse, declined is intransitive and to comment is an infinitival
purpose modifier).



N:comment PERIOD:.
Vlbase]:comment
Vbase]:comment

(8) NAME:Hess
NAME:Hess
NAME:Hess

Vlfin]:declined  P:to
Vlfin]:declined PARTinf:to

fi PERIOD:..
Vlfin]:declined PARTinf:to

PERIOD:..

Next, the tag sequences were grouped into equivalence classes. The tag sequences
in (8) would be grouped into two equivalence classes, with the first parse in one class
and the second and third parses in the other class. Example statistics for sentences
1000-1010 are given in (9).

©) Sentence Number of | Number of Number of
words parses tag sequence
equivalence classes

wsjS1000.tags 26 2 1
wsjS1001.tags 9 1 1
wsjS1002.tags 15 15 6
wsjS1003.tags 27 49 18
wsjS1004.tags 28 640 8
wsjS1005.tags 31 320 2
wsjS1007.tags 33 128 2
wsjS1008.tags 14 6 3
wsjS1009.tags 24 4 1
wsjS1010.tags 38 660 6

The results reported below are based on these equivalence class groupings.

4 Analysis

620 (29.47%) of the sentences in Section 13 had parses whose tag sequences all
fell into one equivalence class; these sentences had between 1 and 320 parses. One
sentence had parses falling into 600 equivalence classes (20 words, 7336 parses); all
the others had parses falling into 234 or fewer equivalence classes.

(10) Number of Number of | Number of | Cumulative
tag sequence sentences parses percentage
equivalence classes
1 620 1-320 29.47%
2 526 2-4608 54.47%
3 102 3-4758 59.32%
4-10 591 4-13584 87.40%
11-20 143 12-30576 94.20%
21-50 84 48-62464 98.19%
51-100 21 176-82704 99.19%
101-234 17 448 75152 99.99%
600 1 7336 100.00%
total 2105 903765

In answering the question of whether tagging is useful in disambiguation, the most
relevant statistic is the proportion of sentences whose tag sequences all fall into one
equivalence class: tagging would not help to disambiguate 29.47% of the sentences
in this corpus, while it would help with the remaining 70.53%.

The relation between degree of ambiguity and number of tag equivalence classes
is given in (11):



Number of Number of | Mean number | Median number
tag sequence parses of parses of parses
equiv. classes

1 1-320 7.18 2

2 2-4608 46.04 8

3 3-4758 103.96 12

4-10 4-13584 198.38 36
11-20 12-30576 943.30 179
21-50 48-62464 2154.96 584
51-100 176-82704 8672.48 2484
101-234 448— 75152 12448.82 7496
600 7336 7336 7336

Somewhat surprisingly, the number of tag equivalence classes does not correlate
well with either the length of the input string or with the number of parses of
the sentence. Only 5% of the variation in tag-sequence classes is accounted for by
sentence length, and only 16% by the number of parses:

(12) Sentence length Num. parses
r=.2260 r=.3967

r2=.0510 r2=.1574

Num. tag sequence equiv. classes

This means that it is difficult to tell in advance whether tagging will be helpful:
tagging only the longer sentences, for example, is not guaranteed to be the best
strategy.

4.1 Ambiguity reduction from tagging

Our problem is to estimate the degree of ambiguity reduction that could be obtained
if the correct tag sequence is specified for each sentence by the “perfect tagger”.?
Specifying a tag sequence amounts to choosing a particular tag sequence equivalence
class for a sentence; when we choose an equivalence class as the correct one, we rule
out the parses in other equivalence classes. Therefore, the size of the equivalence
class containing the correct parse represents the degree to which ambiguity can be
reduced by tagging.

For the sentences in Section 13, the correct parse is not marked, and so we do
not know which equivalence class contains the right parse. One way to guess how
much ambiguity reduction is available by tagging is to compute the average size of
the tag sequence equivalence classes. For Section 13, the tag sequence equivalence
classes are distributed as follows:

14.31%
4.16%

(13) Mean size of equivalence classes, Section 13:

Median:

The equivalence classes have an average size of 14.31%, with a median size of 4.16%,
meaning that we can rule out 85-95% of the parses by randomly choosing a tag
sequence for an input string.

Again, however, we do not know for Section 13 which tag sequence equivalence
class contains the correct parse. It may well be that the correct parse is usually con-
tained in the largest tag sequence equivalence class (since most parses are contained
in that class). This is the worst case for disambiguation by the tagger, since the
smallest number of parses will be ruled out if the largest tag sequence equivalence
class turns out to be the correct one. For Section 13, the average size of the largest
tag sequence equivalence class is:

2T am grateful to Ron Kaplan for discussion of these issues.
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(14) Mean size of largest equivalence class, Section 13:  55.55%
Median: 50.00%

If the largest tag sequence is taken to be the correct one, we can expect to rule out
45-50% of the potential parses for the sentence.

To decide which figure better reflects how much disambiguation can be expected
from tagging, our corpus of 100 parses from Section 23 of the Wall Street Journal
is relevant, since in this corpus the correct parse for each of the sentences has been
hand-selected. For this corpus, the results are:

(15) Mean size of correct equivalence class, Section 23:  54.83%
Median: 50.00%

This result is surprisingly close to the result obtained by always choosing the largest
equivalence class from the Section 13 corpus. If these data are representative, we
can expect to rule out 45-50% of the potential parses for a sentence by choosing the
correct tag sequence for the sentence.

Furthermore, this result accords well with results obtained by Toutanova et al.
(2002) in their work on disambiguation with the HPSG LinGO grammar. As out-
lined above, Toutanova et al. investigated several disambiguation techniques in pars-
ing sentences from the HPSG Redwoods treebank, including tagging the input in a
preprocessing step. Since the Redwood corpus represents a very large gold standard
corpus, they can identify the correct tag sequence for each sentence, and determine
how much disambiguation the “perfect tagger” would provide. They report a cor-
rect tag sequence equivalence class size of 54.59%, very close to the results fond in
the current study. This convergence of results is all the more surprising, given the
very different granularity of the tagsets; the PARGRAM English tagset contains 115
tags, while the HPSG Redwoods tagset contains 8,000 tags.

One difference between the two studies is that Toutanova et al. report results
only for sentences that have more than one parse, and for which disambiguation is
therefore an issue. Because we do not know before parsing a sentence whether it
is ambiguous or not, and because we are investigating the utility of a tagger as a
preprocessor and not as a means of selecting the correct parse from the output of a
parser, we have included all sentences in our corpus in the results we report above,
not just the sentences that have more than one parse.

Our results are, of course, dependent on the grammar that was used in the
experiment. Like the HPSG LinGO grammar, the PARGRAM grammar produces
linguistically rich, detailed analyses in which subcategorization and other grammat-
ical requirements must be satisfied; analyses which violate these requirements are
ruled out by the grammar and do not appear in the output of the parser. It may be
that tagging would play a greater role in ambiguity reduction for looser, less con-
strained grammars which do not encode or enforce such grammatical requirements.

5 Ambiguous words

Identifying the tags that are most often involved in cases of ambiguity provides
useful information for developers of taggers as well as for grammar writers to tune
large-scale grammars and reduce unnecessary ambiguity. In the following, we ex-
amine which tags are most often involved in distinguishing between different tag
sequence equivalence classes.

The correct parse for the sentences in Section 13 is not marked, so we cannot
compare the correct parse to the rest of the parses to determine which words are
most often tagged incorrectly. However, we know from research conducted by Rie-
zler et al. (2002) that the average quality of the analyses produced by the PARGRAM
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English grammar is quite high, with a randomly-selected parse getting an average
f-score of 78.6%. We can, then, perform the following experiment. We first pick an
arbitrary parse as the standard to evaluate against. We then record the number of
instances of disagreement relative to this arbitrarily-selected parse, where disagree-
ment is defined as an instance of tag mismatch between a parse and the standard.
Here we consider only parses with the same tokenization as the arbitrarily-chosen
standard, discarding parses with different tokenizations.

Table 2 contains the confusion matrix for disagreements representing at least 1%
of the total disagreements in the data. An explanation of the preterminal symbols
referenced in Table 2 is given in (16):

(16) A adjective
ADV adverb
CONJ conjunction

CONJnp  conjunction for noun phrases
CONJsub  subordinating conjunction

C[that) that as complementizer

D determiner

N noun

NAME proper name

P preposition

PA a in constructions like § times a day

PARTiInf  to as infinitival marker
PRON pronoun

V[base] base (citation) form of verb
Vlfin] finite verb

V[pass] passive participle form of verb
Vlprog] progressive form of verb

Three entries in the table are worthy of note.

Tag disagreement between the category A (adjective) and N (noun) accounted
for 29.63% of cases of disagreement between the arbitrarily-selected standard and
the other parses (summing together the 21.86% of cases where the arbitrarily-chosen
standard had category A and the other parses had N, and the 7.77% of cases where
the standard had N and the other parses had A). The reason for this is that there are
many words that can be used either as an adjective or as a noun, and it is difficult
to allow only an adjective + noun parse for these cases and disallow a noun-noun
compound parse. For example, the most obvious parse for a phrase like green box
is the one where green is an adjective, but in order to parse examples like Green is
my favorite color, green is also listed in the lexicon as a noun; thus, green bor gets
a noun-noun compound parse like the parse for music box.

Tag disagreement between the category CONJ (conjunction) and CONJnp (a
special category for noun phrase conjunction) accounted for 7.21% (5.10% + 2.11%)
of cases of disagreement. On the PARGRAM English grammar analysis of coordi-
nation, the lexical category of the conjunction reflects structural ambiguity arising
from differences in scope of coordination. The grammar writer could alternatively
have made a different choice: to use the same preterminal category for conjunctions
used within noun phrases as in coordination more generally. If that had been done,
the number of parses would have remained the same (the same structural ambi-
guities for scope of coordination would have been available), but these would not
have been reflected in different tag sequences for the different possibilities: given
such a grammar, choosing a tag sequence would not disambiguate between different
coordination possibilities.

Tag disagreement between the category V|[prog] and the category N accounted
for 8.31% (1.83%+6.48%) of cases of disagreement. This is because present par-
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ticiple forms like swimming can be analyzed either as progressive verbs (He is
swimming) or as gerunds (Swimming is fun). Ambiguity can arise in a variety of
situations: the most pernicious is in seemingly simple cases like He is swimming,
which has besides the obvious present progressive reading, a reading where is is
analyzed as a copula and swimming is a gerund, with a meaning something like he
is (the concept of) swimming. Again, it is difficult to rule out such examples in a
non-ad-hoc manner.

6 Conclusion

Examining the output of the PARGRAM English grammar allows us to assess the
effect of incorporating a tagger into a large-scale processing system in the best
case, abstracting away from errors that would inevitably be introduced by even the
best tagger currently available. We have shown that a perfect tagger would reduce
ambiguity by about 50%. Somewhat surprisingly, about 30% of the sentences in the
corpus that was examined would not be disambiguated, even by the perfect tagger,
since all of the parses for these sentences shared the same tag sequence. For at
least some of the difficult cases, in particular ambiguity corresponding to scope of
coordination, it is not at all clear whether a tagger could be expected to do better
than a parser in any case.
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