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This paper presents the notion of error-tolerant recognition with finite-state recognizers along 
with results from some applications. Error-tolerant recognition enables the recognition of strings 
that deviate mildly from any string in the regular set recognized by the underlying finite-state 
recognizer. Such recognition has applications to error-tolerant morphological processing, spelling 
correction, and approximate string matching in information retrieval. After a description of the 
concepts and algorithms involved, we give examples from two applications: in the context of mor- 
phological analysis, error-tolerant recognition allows misspelled input word forms to be corrected 
and morphologically analyzed concurrently. We present an application of this to error-tolerant 
analysis of the agglutinative morphology of Turkish words. The algorithm can be applied to 
morphological analysis of any language whose morphology has been fully captured by a single 
(and possibly very large) finite-state transducer, regardless of the word formation processes and 
morphographemic phenomena involved. In the context of spelling correction, error-tolerant recog- 
nition can be used to enumerate candidate correct forms from a given misspelled string within 
a certain edit distance. Error-tolerant recognition can be applied to spelling correction for any 
language, if (a) it has a word list comprising all inflected forms, or (b) its morphology has been 
fully described by a finite-state transducer. We present experimental results for spelling correc- 
tion for a number of languages. These results indicate that such recognition works very efficiently 
for candidate generation in spelling correction for many European languages (English, Dutch, 
French, German, and Italian, among others) with very large word lists of root and inflected forms 
(some containing well over 200,000 forms), generating all candidate solutions within 10 to 45 
milliseconds (with an edit distance of 1) on a SPARCStation 10/41. For spelling correction in 
Turkish, error-tolerant recognition operating with a (circular) recognizer of Turkish words (with 
about 29,000 states and 119,000 transitions) can generate all candidate words in less than 20 
milliseconds, with an edit distance of 1. 

1. Introduction 

Error-tolerant finite-state recognition enables the recognition of strings that deviate 
mildly from any string in the regular set recognized by the underlying finite-state 
recognizer. For example, suppose we have a recognizer for the regular set over {a, b} 
described by the regular expression (aba + bab)*, and we would like to recognize 
inputs that may be slightly corrupted, for example, abaaaba may be matched to abaaba 
(correcting for a spurious a), or babbb may be matched to babbab (correcting for a 
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deletion), or ababba may be matched to either abaaba (correcting a b to an a) or to ababab 
(correcting the reversal of the last two symbols). Error-tolerant recognition can be used 
in many applications that are based on finite-state recognition, such as morphological 
analysis, spelling correction, or even tagging with finite-state models (Voutilainen and 
Tapanainen 1993; Roche and Schabes 1995). The approach presented in this paper 
uses the finite-state recognizer built to recognize the regular set, but relies on a very 
efficiently controlled recognition algorithm based on depth-first searching of the state 
graph of the recognizer. In morphological analysis, misspelled input word forms can 
be corrected and morphologically analyzed concurrently. In the context of spelling 
correction, error-tolerant recognition can universally be applied to the generation of 
candidate correct forms for any language, provided it has a word list comprising 
all inflected forms, or its morphology has been fully described by automata such as 
two-level finite-state transducers (Karttunen and Beesley 1992; Karttunen, Kaplan, and 
Zaenen 1992). The algorithm for error-tolerant recognition is very fast and applicable 
to languages that have productive compounding, or agglutination, or both, as word 
formation processes. 

There have been a number of approaches to error-tolerant searching. Wu and Man- 
ber (1991) describe an algorithm for fast searching, allowing for errors. This algorithm 
(called agrep) relies on a very efficient pattern matching scheme whose steps can be 
implemented with arithmetic and logical operations. It is most efficient when the size 
of the pattern is limited to 32 to 64 symbols, though it allows for an arbitrary number 
of insertions, deletions, and substitutions. It is particularly suitable when the pattern 
is small and the sequence to be searched is large. Myers and Miller (1989) describe 
algorithms for approximate matching to regular expressions with arbitrary costs, but 
like the algorithm described in Wu and Manber, these are best suited to applications 
where the pattern or the regular expression is small and the sequence is large. Schnei- 
der, Lim, and Shoaff (1992) present a method for imperfect string recognition using 
fuzzy logic. Their method is for context-free grammars (hence, it can be applied to 
finite state recognition as well), but it relies on introducing new productions to allow 
for errors; this may increase the size of the grammar substantially. 

2. Error-tolerant Finite-State Recognition 

We can informally define error-tolerant recognition with a finite-state recognizer as the 
recognition of all strings in the regular set (accepted by the recognizer), and additional 
strings that can be obtained from any string in the set by a small number of unit editing 
operations. 

The notion of error-tolerant recognition requires an error metric for measuring 
how much two strings deviate from each other. The edit distance between two strings 
measures the minimum number of unit editing operations of insertion, deletion, re- 
placement of a symbol, and transposition of adjacent symbols (Damerau 1964) that 
are necessary to convert one string into another. Let Z = zl, z2 . . . .  , Zp denote a generic 
string of p symbols from an alphabet A. Z~] denotes the initial substring of any string 
Z up to and including the jth symbol. We will use X (of length m) to denote the 
misspelled string, and Y (of length n) to denote the string that is a (possibly partial) 
candidate string. Given two strings X and Y, the edit distance ed(X[m], Y[n]) computed 
according to the recurrence below (Du and Chang 1992) gives the minimum number 
of unit editing operations required to convert one string to the other. 
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ed(X[i+ 1],Y[j+ 1]) = ed(X[i],Y~']) if xi+l = yj+l 
(last characters are the same) 

1 + min{ed(X[i - 1], Y[j - 1]), 
ed(X[i + 1], Y[j]), 
ed(X[i], Y~" + 1])} 

if both xi = yj+l 
and xi+l = yj 

(last two characters are 
transposed) 

= 1 + min{ed(X[i], Y[j]), otherwise 
ed(X[i + 1], Y[j]), 
ed(X[i], Y~" + 1])} 

ed(X[O],Y~']) = j 0 < j < n 
ed(X[i],Y[O]) = i 0 < i < m 

ed(X[-1], Y~']) = ed(X[i], Y[-1]) = max(re, n) (boundary definitions) 

For example, ed(recoginze, recognize) = 1, since transposing i and n in the first string 
would give the second. Similarly, ed(sailn,failing) = 3 since one could change the initial 
s of the first string to f, insert an i before the n, and insert a g at the end to obtain the 
second string. 

A (deterministic) finite-state recognizer, R, is described by a 5-tuple R = (Q, A, 6, 
q0, F) with Q denoting the set of states, A denoting the input alphabet, 8 : Q x A ---, Q 
denoting the state transition function, q0 E Q denoting the initial state, and F C_ Q 
denoting the final states (Hopcroft and Ullman 1979). Let L c A* be the regular 
language accepted b y  R. Given an edit distance error threshold t > 0, we define a 
string X[m] ~ L to be recognized by R with an error at most t, if the set 

C = {Y[n] I Y[n] c L and ed(X[m],Y[n])  < t} 

is not empty. 

2.1 An Algorithm for Error-tolerant Recognition 
Any finite-state recognizer can also be viewed as a directed graph with arcs labeled 
with symbols in A. 1 Standard finite-state recognition corresponds to traversing a path 
(possibly involving cycles) in the graph of the recognizer, starting from the start node, 
to one of the final nodes, so that the concatenation of the labels on the arcs along 
this path matches the input string. For error-tolerant recognition, one needs to find 
all paths from the start node to one of the final nodes, so that when the labels on the 
links along a path are concatenated, the resulting string is within a given edit distance 
threshold t, of the (erroneous) input string. With t > 0, the recognition procedure 
becomes a search on this graph, as shown in Figure 1. 

Searching the graph of the recognizer has to be fast if error-tolerant recognition 
is to be of any practical use. This means that paths that can lead to no solutions 
must  be pruned,  to limit the search to a very small percentage of the search space. 
Thus, we need to make sure that any candidate string generated as the search is being 
performed does not deviate from certain initial substrings of the erroneous string by 
more than the allowed threshold. To detect such cases, we use the notion of a cut-off 

1 We use state interchangably with node, and transition interchangeably with arc. 
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Figure 1 
Searching the recognizer graph. 

edit  distance. The cut-off edit  distance measures the min imum edit distance between 
an initial substring of the incorrect input  string, and the (possibly partial) candidate  
correct string. Let Y be a partial candidate string whose length is n, and let X be the 
incorrect string of length m. Let 1 = max( l ,  n - t) and u = min(m, n + t). The cut-off 
edit  distance cuted(X[m], Y[n]) is defined as 

cuted(X[m], Y[n]) = min ed(X[i], Y[n]). 
l ~ i ~ u  

For example,  with t = 2: 

cuted(reprter, repo)= min{ed(re, repo) = 2, 
ed(rep, repo) = 1, 
ed(repr, repo) = 1, 
ed(reprt, repo) = 2, 
ed(reprte, repo) = 3} = 1. 

Note  that, except at the boundaries,  the initial substrings of the incorrect string X 
considered are of length n - t to length n + t. Any  initial substring of X shorter  than 
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1 1 =n-t = 2 U = n+t = 6 m 

X 
e P e 

Cut-off distance is the minimum 

edit distance between Y and any initial 

substring of X that ends in this range. 

Y e P 0 

1 n=4 

Figure 2 
The cutoff edit distance. 

n - t needs more than t insertions, and any initial substring of X longer than n + t 
requires more than t deletions, to at least equal Y in length, violating the edit distance 
constraint (see Figure 2). 

Given an incorrect string X, a partial candidate string Y is generated by succes- 
sively concatenating relevant labels along the arcs as transitions are made, starting 
with the start state. Whenever we extend Y, we check if the cut-off edit distance of X 
and the partial Y is within the bound specified by the threshold t. If the cut-off edit 
distance goes beyond the threshold, the last transition is backed off to the source node 
(in parallel with the shortening of Y) and some other transition is tried. Backtracking 
is recursively applied when the search cannot be continued from that state. If, during 
the construction of Y, a final state is reached without violating the cut-off edit distance 
constraint, and ed(X[m], Y[n]) < t at that point, then Y is a valid correct form of the 
incorrect input string} 

Denoting the states by subscripted q's (q0 being the initial state) and the symbols 
in the alphabet (and labels on the directed edges) by a, we present the algorithm for 
generating all Y's by a (slightly modified) depth-first probing of the graph in Figure 3. 
The crucial point in this algorithm is that the cut-off edit distance computation can be 
performed very efficiently by maintaining a matrix H, an m by n matrix with element 
H(i,j) = ed(X[i], Y[j]) (Du and Chang 1992). We can note that the computation of the 
element H(i + 1,j + 1) recursively depends on only H(i, j) ,H(i , j  + 1),H(i + 1,j) and 
H(i - 1 , j -  1), from the earlier definition of edit distance (see Figure 4). 

During the depth-first search of the state graph of the recognizer, entries in column 
n of the matrix H have to be (re)computed only when the candidate string is of 

2 Note that  this check is essential,  since we  m a y  come to other  irrelevant final s tates du r ing  the  search. 
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/*push empty candidate, and start node to start search */ 

push ( ( G qo ) ) 
while stack not empty 

begin 

pop((Y',qi)) /* pop partial surface string Y' 
and the node */ 

for all qj and a such that 6(qi, a ) = q j  
begin /* extend the candidate string */ 

Y = concat(Y',a) /* n is the current length of Y */ 
/* check if Y has deviated too much, if not push-*/ 

if cuted(X[m],Y[n]) K t then push((Y, qj)) 
/* also see if we are at a final state */ 

if ed(X[m],Y[n]) K t and qj 6 F then output Y 
end 

end 

Figure 3 
Algorithm for error-tolerant recognition. • 

. . .  H ( i -  1 , j -  1) . . . . . .  

. . . . . .  H(i,j) H(i;/'+ 1) ... 

. . . . . .  H ( i + I , j )  H ( i + l , j + l )  . . .  

Figure 4 
Computation of the elements of the H matrix. 

length n. During backtracking, the entries for the last column are discarded, but the 
entries in prior columns are still valid. Thus, all entries required by H(i  + 1,j + 1), 
except H(i , j  + 1), are already available in the matrix in columns i - 1 and i. The 
computation of cuted(X[m], Y[n]) involves a loop in which the minimum is computed. 
This loop (indexing along column j + 1) computes H(i , j  + 1) before it is needed for the 
computation of H(i  + 1,j + 1). 

We present in Figure 5 an example of this search algorithm for a simple finite-state 
recognizer for the regular expression (aba + bab)*, and the search graph for the input 
string ababa. The thick circles from left to right indicate the nodes at which we have 
the matching strings abaaba, ababab, and bababa, respectively. Prior visits to the final 
state 1 violate the final edit distance constraint. (Note that the visit order of siblings 
depends on the order of the outgoing arcs from a state.) 

3. Application to Error-tolerant Morphological Analysis 

Error-tolerant finite-state recognition can be applied to morphological analysis. Instead 
of rejecting a given misspelled form, the analyzer attempts to apply the morphological 
analysis to forms that are within a certain (configurable) edit distance of the incorrect 
form. Two-level transducers (Karttunen and Beesley 1992; Karttunen, Kaplan, and 
Zaenen 1992) provide a suitable model for the application of error-tolerant recognition. 
Such transducers capture all morphotactic and morphographemic phenomena, as well 
as alternations in the language, in a uniform manner. They can be abstracted as finite- 
state transducers over an alphabet of lexical and surface symbol pairs 1 : s, where either 
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FSR for (aba 

b 

a a 

+ bab) * 

[1] 

[0] 

Eo/  
a 

[0] 

A 

[0] 

a 

[1] 

a , ,  

[1] 

b 

b 

b 

[U 

[2] 

[1l 

[1] ( 3 } [0] 
[1] 

[1] 
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)  2lt l t21 
Search graph for matching ababa with threshold 1 

Figure 5 
Recognizer  for (aba + bab)* and  search g raph  for ababa. 

1 or s (but not both) may be the null symbol 0. It is possible to apply error-tolerant 
recognition to languages whose word formations employ productive compounding, 
or agglutination, or both. In fact, error-tolerant recognition can be applied to any 
language whose morphology has been described completely as one (very large) finite- 
state transducer. Full-scale descriptions using this approach already exist for a number 
of languages such as English, French, German, Turkish, and Korean (Karttunen 1994). 

Application of error-tolerant recognition to morphological analysis proceeds as 
described earlier. After a successful match with a surface symbol the corresponding 
lexical symbol is appended to the output gloss string. During backtracking the can- 
didate surface string and the gloss string are again shortened in tandem. The basic 
algorithm for this case is given in Figure 6. 3 The actual algorithm is a slightly optimized 
version of this, in which transitions with null surface symbols are treated as special 
during forward and backtracking traversals to avoid unnecessary computations of the 
cut-off edit distance. 

3 Note that transitions are now labeled with l : s pairs. 
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F i g u r e  6 

/~push empty candidate string, and start node 
to start search on to the stack ~/ 
push((G ¢,q0)) 
while stack not empty 

begin 
pop((surface',lexical',qi)) /* pop p a r t i a l  s t r ings  

and the node from the stack ~/ 
for  a l l  qj and l : s  such that  ~(qi,/:s) =qj 

begin /~ extend the candidate string ~/ 
surface = concat (surface', s) 
i f  cuted(X[m],surface[n]) G t then 

begin 
lexical = concat(lexical', 1) 
push ( (surface, lexical, q j ) ) 
i f  ed(X[m],surface[n]) <_ t and qj E F then 

output lexical 
end 

end 
end 

Algorithm for error-tolerant morphological analysis. 

We can demonstra te  error-tolerant morphological  analysis with a two- level  trans- 
ducer  for the analysis of Turkish morphology.  Agglutinative languages, such as Turk- 
ish, Hungar ian  or Finnish, differ from languages like English in the way  lexical forms 
are generated. Words are formed by  product ive  affixations of derivational  and in- 
flectional affixes to roots or stems, like beads on a string (Sproat 1992). Furthermore,  
roots and affixes may  undergo  changes due  to various phonetic interactions. A typical 
nominal  or verbal root gives rise to thousands of valid forms that never  appear  in 
the dictionary. For instance, we can give the following (rather exaggerated) adverb  
example from Turkish: 

uygarla~tzramayabileceklerimizdenmi~sinizcesine 

whose root is the adjective uygar 'civilized'. 4 The m o rp h em e  breakdown (with mor-  
phological glosses underneath)  is: 5 

uygar +la~ +tlr +ama +yabil +ecek 
civilized +AtoV +CAUS +NEG +POT +VtoA(AtoN) 
+ler +imiz +den +mi~ +siniz +cesine 
+3PL +POSS-1PL +ABL(+NtoV) +PAST +2PL +VtoAdv 

The port ion of the word  following the root consists of 11 morphemes ,  each of which 
either adds further syntactic or semantic information to, or changes the part-of-speech 
of, the part  preceding it. Al though most  words  used in Turkish are considerably shorter 
than this, this example serves to point  out  that the nature of word  structure in Turkish 
and other agglutinative languages is fundamenta l ly  different from word  structure in 
languages like English. 

Our morphological  analyzer  for Turkish is based on a lexicon of about  28,000 root 

4 This is a manner adverb meaning roughly '(behaving) as if you were one of those whom we might not 
be able to civilize.' 

5 Glosses in parentheses indicate derivations not explicitly indicated by a morpheme. 
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words and is a re-implementation, using Xerox two-level transducer technology (Kart- 
tunen and Beesley 1992), of an earlier version of the same description by the author 
(Oflazer 1993) (using the PC-KIMMO environment [Antworth 1990]). This description 
of Turkish morphology has 31 two-level rules that implement the morphographemic 
phenomena, such as vowel harmony and consonant changes across morpheme bound- 
aries, and about 150 additional rules, again based on the two-level formalism, that 
fine-tune the morphotactics by enforcing long-distance feature sequencing and co- 
occurrence constraints. They also enforce constraints imposed by standard alternation 
linkage among various lexicons to implement the paradigms. Turkish morphotactics 
is circular, due to the presence of a relativization suffix in the nominal paradigm and 
multiple causative suffixes in the verb paradigm. There is also considerable linkage 
between nominal and verbal morphotactics, because derivational suffixation is produc- 
tive. The minimized finite-state transducer constructed by composing the transducers 
for root lexicons, morphographemic rules, and morphotactic constraints, has 32,897 
states and 106,047 transitions, with an average fan-out of about 3.22 transitions per 
state (including transitions with null surface symbols). It analyzes a given Turkish 
lexical form into a sequence of feature-value tuples (instead of the more conventional 
sequence of morpheme glosses) that are used in a number of natural language appli- 
cations. The Xerox software allows the resulting finite-state transducer to be exported 
in a tabular form, which can be imported to other applications. 

This transducer has been used as input to an analyzer implementing the error- 
tolerant recognition algorithm in Figure 6. The analyzer first attempts to parse the 
input with t = 0, and if it fails, relaxes t up to 2 if it cannot find any parse with a 
smaller t. It can process about 150 (correct) forms a second on a SPARCstation 10/41. 6 
Below, we provide a transcript of a run: 7 

ENTER WORD > eva 
Threshold 0 ... i ... 

ela => ((CAT 
evla => ((CAT 
ava => ((CAT 
deva => ((CAT NOUN)(ROOT 
eda => ((CAT NOUN)(ROOT 
ela => ((CAT NOUN)(ROOT 
enva => ((CAT NOUN)(ROOT 
reva => ((CAT NOUN)(ROOT 
evi => ((CAT NOUN)(ROOT 
eve => ((CAT NOUN)(ROOT 
ev => ((CAT NOUN)(ROOT 
evi => ((CAT NOUN)(ROOT 
eza => ((CAT NOUN)(ROOT 
leva => ((CAT NOUN)(ROOT 
neva => ((CAT NOUN)(ROOT 
ova => ((CAT NOUN)(ROOT 
ova => ((CAT VERB)(ROOT 

ADJ)(ROOT ela)) 
ADJ)(ROOT evla)) 
NOUN)(ROOT av)(AGR 3SG)(POSS NONE)(CASE DAT)) 

deva)(AGR 3SG)(POSS NONE)(CASE NOM)) 
eda)(AGR 3SG)(POSS NONE)(CASE NOM)) 
ela)(AGR 3SG)(POSS NONE)(CASE NOM)) 
enva)(AGR 3SG)(POSS NONE)(CASE NOM)) 
reva)(AGR 3SG)(POSS NONE)(CASE NOM)) 
ev)(AGR 3SG)(POSS NONE)(CASE ACC)) 
ev)(AGR 3SG)(POSS NONE)(CASE OAT)) 
ev)(AGR 3SG)(POSS NONE)(CASE NOM)) 
ev)(AGR 3SG)(POSS 3SG)(CASE NOM)) 
eza)(AGR 3SG)(POSS NONE)(CASE NOM)) 
leva)(AGR 3SG)(POSS NONE)(CASE NOM)) 
neva)(AGR 3SG)(POSS NONE)(CASE NOM)) 
ova)(AGR 3SG)(POSS NONE)(CASE NOM)) 
ov)(SENSE POS)(MOOD OPT)(AGR 3SG)) 

ENTER WORD > ak111mnnikiler 

6 No attempt was made to compress the finite-state recognizer. The Xerox infl program working on the 
proprietary compressed representation of the same transducer can process about 1,000 forms/sec on 
the same platform. 

7 The outputs have been slightly edited for formatting. The feature names denote the usual 
morphosyntactic features. C0NV denotes derivations to the category indicated by the second token with 
a suffix or derivation type denoted by the third token, if any. 
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Threshold 0 ... i ... 2 ... 

ak1111nlnkiler => 
((CAT 

ak1111nlnkiler => 
((CAT 

ak1111ndakiler => 
((CAT 

NOUN)(ROOT ak11)(CONV ADJ LI) 
(CONV NOUN)(AGR 3SG) (POSS NONE)(CASE GEN) 
(CONV PRONOUN REL)(AGR 3PL)(POSS NONE)(CASE NOM)) 

NOUN)(ROOT ak11)(CONV AD3 LI) 
(CONV NOUN)(AGR 3SG)(POSS 2SG)(CASE GEN) 
(CONV PRONOUN REL)(AGR 3PL)(POSS NONE)(CASE NOM)) 

NOUN)(ROOT akxl)(CONV ADJ LI) 
(CONV NOUN)(AGR 3SG)(POSS 2SG)(CASE LOC) 
(CONV ADJ REL) 
(CONV NOUN)(AGR 3PL)(POSS NONE)(CASE NOM)) 

ENTER WORD > eviminkinn 
Threshold 0 ... 1 ... 

eviminkini => 
((CAT NOUN)(ROOT ev)(AGR 3SG)(POSS ISG)(CASE GEN) 

(CONV PRONOUN REL)(AGR 3SG)(POSS NONE)(CASE ACC)) 
eviminkine => 

((CAT NOUN)(ROOT ev)(AGR 3SG)(POSS ISG)(CASE GEN) 
(CONV PRONOUN REL)(AGR 3SG)(POSS NONE)(CASE DAT)) 

eviminkinin => 
((CAT NOUN)(ROOT ev)(AGR 3SG)(PGSS lSG)(CASE GEN) 

(CONV PRONOUN REL)(AGR 3SG)(POSS NONE)(CASE GEN)) 

ENTER WORD > teeplerdeki 
Threshold 0 ... I ... 

tepelerdeki => 
((CAT NOUN)(ROOT tepe)(AGR 3PL)(POSS NONE)(CASE LOC) 

(CONV ADJ REL)) 
teyplerdeki => 

((CAT NOUN)(ROOT teyb)(AGR 3PL)(POSS NONE)(CASE LOC) 
(CONV ADJ REL)) 

ENTER WORD > uygarla~tlramadlklarmllzdanml§slnlzcaslna 
Threshold 0 ... 1 ... 

uygarla§tmramadlklarlmlzdanm1~slnlzcaslna => 
((CAT ADJ)(ROOT uygar)(CONV VERB LAS)(VOICE CAUS)(SENSE NEG) 

(CONV ADJ DIK)(AGR 3PL)(POSS IPL)(CASE ABL) 
(CONV VERB)(TENSE NARR-PAST)(AGR 2PL) 
(CONV ADVERB CASINA)(TYPE MANNER)) 

ENTER WORD > okatulna 
Threshold 0 ... 1 ... 2 ... 

82 



Kemal Oflazer Error-tolerant Finite-state Recognition 

okutulma => 
((CAT 

okutulma => 
((CAT 

okutulan => 
((CAT 

okutulana => 
((CAT 

okutulsa => ((CAT 

okutula => 

VERB)(RODT oku)(VOICE CAUS)(VOICE PASS)(SENSE NEG) 
(MOOD IMP)(AGR=2SG)) 

VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS) 
(CONV NOUN MA)(TYPE INFINITIVE) 
(AGE 3SG)(POSS NONE)(CASE NOM)) 

VEKB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS) 
(CONV ADJ YAN)) 

VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS) 
(CONV ADJ YAN)(CONV NOUN)(AGR 3SG)(POSS NONE)(CASE DAT)) 
VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS) 
(MOOD COND)(AGE 3SG)) 

(CAT VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS) 
(MOOD OPT)(AGR 3SG)) 

In an application context, the candidates that are generated by such a morphological 
analyzer can be disambiguated or filtered to a certain extent by constraint-based tag- 
ging techniques (see Oflazer and Kuru6z 1994; Voutilainen and Tapanainen 1993) that 
take into account syntactic context for morphological disambiguation. 

4. Applications to Spelling Correction 

Spelling correction is an important application for error-tolerant recognition. There 
has been substantial work on spelling correction (see the excellent review by Ku- 
kich [1992]). All methods essentially enumerate plausible candidates that resemble the 
incorrect word, and use additional heuristics to rank the results. 8 Most techniques 
assume a word list of all words in the language. These approaches are suitable for 
languages like English, for which it is possible to enumerate such a list. They are not 
directly suitable or applicable to languages like German, which have very produc- 
tive compounding, or agglutinative languages like Finnish, Hungarian, or Turkish, 
in which the concept of a word is much larger than what is normally found in a 
word list. For example, Finnish nouns have about 2,000 distinct forms, while Finnish 
verbs have about 12,000 forms (Gazdar and Mellish 1989, 59--60). Turkish is similar: 
nouns, for instance, may have about 170 different forms, not counting the forms for 
adverbs, verbs, adjectives, or other nominal forms, generated (sometimes circularly) 
by derivational suffixes. Hankamer (1989) gives much higher figures (in the millions) 
for Turkish; presumably he took derivations into account in his calculations. 

Some recent approaches to spelling correction have used morphological analysis 
techniques. Veronis (1988) presents a method for handling quite complex combinations 
of typographical and phonographic errors (phonographic errors are the kind usually 
made by language learners using computer-aided instruction). This method takes into 
account phonetic similarity, in addition to standard errors. Aduriz et al. (1993) present 
a two-level morphology approach to spelling correction in Basque. They use two- 
level rules to describe common insertion and deletion errors, in addition to the two- 
level rules for the morphographemic component. Oflazer and G6zey (1994) present 
a two-level morphology approach to spelling correction in agglutinative languages 
using a coarser morpheme-based morphotactic description rather than the finer lexi- 

8 Ranking is dependent on the language, the application, and the error model. It is an important 
component of the spelling correction problem, but is not addressed in this paper. 
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Recognizer for the word list 
abacus, abacuses, abalone, abandone, abandoned, abandoning 
access. 

Figure 7 
A finite-state recognizer for the word list: abacus, abacuses, abalone, abandone, abandoned, 
abandoning, access. 

cal/surface symbol approach presented here. The approach presented in Oflazer and 
G6zey 1994 generates a valid sequence of the lexical forms of root and suffixes and 
uses a separate morphographemic component that implements the two-level rules to 
derive surface forms. However, that approach is very slow, mainly because of the un- 
derlying PC-KIMMO morphological analysis and generation system, and cannot deal 
with compounding because of its approach to root selection. More recently, Bowden 
and Kiraz (1995) have used a multitape morphological analysis technique for spelling 
correction in Semitic languages which, in addition to insertion, deletion, substitution, 
and transposition errors, allows for various language-specific errors. 

For languages like English, all inflected forms can be included in a word list, which 
can be used to construct a finite-state recognizer structured as a standard letter-tree 
recognizer (with an acyclic graph) as shown in Figure 7. Error-tolerant recognition can 
be applied to this finite-state recognizer. Furthermore, transducers for morphological 
analysis can be used for spelling correction, so the same algorithm can be applied 
to any language whose morphology has been described using such transducers. We 
demonstrate the application of error-tolerant recognition to spelling correction by con- 
structing finite-state recognizers in the form of letter trees from large word lists that 
contain root and inflected forms of words for 10 languages, obtained from a number of 
resources on the Internet (Table 1). The Dutch, French, German, English (two different 
lists), Italian, Norwegian, Swedish, Danish, and Spanish word lists contained some or 
all inflected forms in addition to the basic root forms. The Finnish word list contained 
unique word forms compiled from a corpus, although the language is agglutinative. 

For edit distance thresholds 1, 2, and 3, we selected 1,000 words at random from 
each word list and perturbed them by random insertions, deletions, replacements, and 
transpositions, so that each misspelled word had the required edit distance from the 
correct form. Kukich (1992), citing a number of studies, reports that typically 80% 
of misspelled words contain a single error of one of the unit operations, although 
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Table 1 
Statistics about the word lists used. 

Language Words Arcs Average Maximum Average 
Word W o r d  Fan-out 

Length Length 

Finnish 276,448 968,171 12.01 49 1.31 
English-1 213,557 741,835 10.93 25 1.33 
Dutch 189,249 501,822 11.29 33 1.27 
German 174,573 561,533 12.95 36 1.27 
French 138,257 286,583 9.52 26 1.50 
English-2 104 ,216  265,194 10.13 29 1.40 
Spanish 86,061 257,704 9.88 23 1.40 
Norwegian 61,843 156,548 9.52 28 1.32 
Italian 61,183 115,282 9.36 19 1.84 
Danish 25,485 81,766 10.18 29 1.27 
Swedish 23,688 67,619 8.48 29 1.36 

Table 2 
Correction Statistics for Threshold 1. 

Average Average Average Time Average Average 
Language Misspelled Correction to F ir s t  Number of % of 

Word Time Solution Solutions Space 
Length (msec) (msec) Found Searched 

Finnish 11.08 45.45 25.02 1.72 0.21 
English-1 9.98 26.59 12.49 1.48 0.19 
Dutch 10.23 20.65 9.54 1.65 0.20 
German 11.95 27.09 14.71 1.48 0.20 
French 10.04 15.16 6.09 1.70 0.28 
English-2 9.26 17.13 7.51 1.77 0.35 
Spanish 8.98 18.26 7.91 1.63 0.37 
Norwegian 8.44 16.44 6.86 2.52 0.62 
Italian 8.43 9.74 4.30 1.78 0.46 
Danish 8.78 14.21 1.98 2.25 1.00 
Swedish 7.57 16.78 8.87 2.83 1.57 

Turkish (FSR) 8.63 17.90 7.41 4.92 1.23 

in specific applications the percentage of such errors is lower. Our  earlier s tudy of 
an error model  developed for spelling correction in Turkish indicated similar results 
(Oflazer and G/izey 1994). 

Tables 2, 3, and 4 present  the results from correcting these misspelled word  lists 
for edit distance thresholds 1, 2, and 3, respectively. The runs were per formed on a 
SPARCstation 10/41. The second column in these tables gives the average length of 
the misspelled string in the input  list. The third column gives the time in milliseconds 
to generate all solutions, while the fourth column gives the time to find the first 
solution. The fifth column gives the average number  of solutions generated from the 
given misspelled strings with the given edit distance. Finally, the last column gives 
the percentage of the search space (that is, the ratio of forward-traversed arcs to the 
total number  of arcs) that is searched when  generat ing all the solutions. 
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Table 3 
Correction Statistics for Threshold 2. 

Language 
Average Average Average Time Average Average 

Misspelled Correction to F irs t  Number of % of 
Word Time Solution Solutions Space 

Length (msec) (msec) Found Searched 

Finnish 11.05 312.26 162.49 13.54 1.30 
English-1 9.79 232.56 108.69 7.90 1.51 
Dutch 10.24 148.62 68.19 9.35 1.25 
German 12.05 169.88 96.55 3.33 1.14 
French 9.88 95.07 37.52 6.99 1.44 
English-2 9.12 129.29 55.64 12.56 2.28 
Spanish 8.78 125.35 48.80 10.24 2.49 
Norwegian 8.36 112.06 42.13 27.27 3.47 
Italian 8.41 57.87 25.09 8.09 2.36 
Danish 9.15 82.39 34.80 13.25 4.23 
Swedish 7.44 90.59 16.47 36.37 6.84 
Turkish (FSR) 8.59 164.81 57.87 55.12 11.12 

Table 4 
Correction Statistics for Threshold 3. 

Average Average Average Time Average Average 
Language Misspelled Correction to First Number of % of 

Word Time Solution Solutions Space 
Length (msec) (msec) Found Searched 

Finnish 11.08 1217.56 561.70 157.39 3.86 
English-1 9.73 1001.43 413.60 87.09 5.30 
Dutch 10.30 610.52 256.90 71.89 4.07 
German 11.82 582.45 305.80 21.39 3.14 
French 9.99 349.41 122.38 41.58 4.00 
English-2 9.36 519.83 194.69 97.24 6.97 
Spanish 8.90 507.46 176.77 88.31 7.79 
Norwegian 8.47 400.57 125.52 199.72 8.98 
Italian 8.34 198.79 66.80 55.47 6.41 
Danish 9.25 228.55 47.9 97.85 8.69 
Swedish 7.69 295.14 36.89 267.51 14.70 
Turkish (FSR) 8.57 907.02 63.59 442.17 60.00 

4.1 Spelling Correction for Agglutinative Word Forms 
The t ransducer  for Turkish developed for morphological  analysis, using the Xerox 
software, was also used for spelling correction. However ,  the original t ransducer  had 
to be simplified into a recognizer for two reasons. First, for morphological  analysis, 
the concurrent  generation of the lexical gloss string requires that occasional transitions 
with an empty  surface symbol  be taken to generate the gloss properly. Secondly, in 
morphological  analysis, a given surface form may  have m an y  morphological  interpre- 
tations. This diversity must  be accounted for in morphological  processing. In spelling 
correction, however,  the presentat ion of only one surface form is sufficient. To remove 
all empty  transitions and analyses with the same surface form from the Turkish trans- 
ducer, a recognizer recognizing only the surface forms was extracted using the Xerox 
tool ifsm. The resulting recognizer had 28,825 states and 118,352 transitions labeled 

86 



Kemal Oflazer Error-tolerant Finite-state Recognition 

with just surface symbols. The average fan-out of the states in this recognizer was 
about 4. This transducer was then used to perform spelling correction experiments in 
Turkish. 

In the first set of experiments, three word lists of 1,000 words each were gener- 
ated from a Turkish corpus, and words were perturbed as described before, for error 
thresholds of 1, 2, and 3, respectively. The results for correcting these words are pre- 
sented in the last rows (labeled Turkish [FSR]) of the tables above. It should be noted 
that the percentage of search space searched may not be very meaningful in this case 
since the same transitions may be taken in the forward direction more than once. 

In a separate experiment that would simulate a real correction application, about 
3,000 misspelled Turkish words (again compiled from a corpus) were processed by 
successively relaxing the error threshold starting with t = 1. Of this set of words, 
79.6% had an edit distance of 1 from the intended correct form, while 15.0% had an 
edit distance of 2, and 5.4% had an edit distance of 3 or more. The average length 
of the incorrect strings was 9.63 characters. The average correction time was 77.43 
milliseconds (with 24.75 milliseconds for the first solution). The average number of 
candidates offered per correction was 4.29, with an average of 3.62% of the search space 
being traversed, indicating that this is a very viable approach for real applications. For 
comparison, the same recognizer running as a spell checker (t = 0) can process correct 
forms at a rate of about 500 words/sec. 

5. C o n c l u s i o n s  

This paper has presented an algorithm for error-tolerant finite-state recognition that en- 
ables a finite-state recognizer to recognize strings that deviate mildly from some string 
in the underlying regular set. Results of its application to error-tolerant morphologi- 
cal analysis and candidate generation in spelling correction were also presented. The 
approach is very fast and applicable to any language with a list of root and inflected 
forms, or with a finite-state transducer recognizing or analyzing its word forms. It 
differs from previous error-tolerant finite-state recognition algorithms in that it uses a 
given finite-state machine, and is more suitable for applications where the number of 
patterns (or the finite-state machine) is large and the string to be matched is small. 

In some cases, however, the proposed approach may not be efficient and may be 
augmented with language-specific heuristics: For instance, in spelling correction, users 
(at least in Turkey, as indicated by our error model [Oflazer and Gfizey 1994]) usually 
replace non-ASCII characters with their nearest ASCII equivalents because of inconve- 
niences such as nonstandard keyboards, or having to input the non-ASCII characters 
using a sequence of keystrokes. In the last spelling correction experiment for Turk- 
ish, almost all incorrect forms with an edit distance of 3 or more had three or more 
non-ASCII Turkish characters, all of which were rendered with the nearest ASCII ver- 
sion (e.g., ya~g~n~m~zde (on our birthday) was written as yasgunumuzde). These forms 
could surely be found with appropriate edit distance thresholds, but at the cost of gen- 
erating many words containing more substantial errors. Under these circumstances, 
one may use language-specific heuristics first, before resorting to error-tolerant recog- 
nition, along the lines suggested by morphological-analysis-based approaches (Aduriz 
et al. 1993; Bowden and Kiraz 1995). 

Although the method described here does not handle erroneous cases where omis- 
sion of space characters causes joining of otherwise correct forms (such as inspite of), 
such cases may be handled by augmenting the final state(s) of the recognizers with a 
transition for space characters and ignoring all but one of such space characters in the 
edit distance computation. 
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