
Error-tolerant Finite-state Recognition
with Applications to Morphological
Analysis and Spelling Correction

Kemal Oflazer*
Bilkent University

This paper presents the notion of error-tolerant recognition with finite-state recognizers along
with results from some applications. Error-tolerant recognition enables the recognition of strings
that deviate mildly from any string in the regular set recognized by the underlying finite-state
recognizer. Such recognition has applications to error-tolerant morphological processing, spelling
correction, and approximate string matching in information retrieval. After a description of the
concepts and algorithms involved, we give examples from two applications: in the context of mor-
phological analysis, error-tolerant recognition allows misspelled input word forms to be corrected
and morphologically analyzed concurrently. We present an application of this to error-tolerant
analysis of the agglutinative morphology of Turkish words. The algorithm can be applied to
morphological analysis of any language whose morphology has been fully captured by a single
(and possibly very large) finite-state transducer, regardless of the word formation processes and
morphographemic phenomena involved. In the context of spelling correction, error-tolerant recog-
nition can be used to enumerate candidate correct forms from a given misspelled string within
a certain edit distance. Error-tolerant recognition can be applied to spelling correction for any
language, if (a) it has a word list comprising all inflected forms, or (b) its morphology has been
fully described by a finite-state transducer. We present experimental results for spelling correc-
tion for a number of languages. These results indicate that such recognition works very efficiently
for candidate generation in spelling correction for many European languages (English, Dutch,
French, German, and Italian, among others) with very large word lists of root and inflected forms
(some containing well over 200,000 forms), generating all candidate solutions within 10 to 45
milliseconds (with an edit distance of 1) on a SPARCStation 10/41. For spelling correction in
Turkish, error-tolerant recognition operating with a (circular) recognizer of Turkish words (with
about 29,000 states and 119,000 transitions) can generate all candidate words in less than 20
milliseconds, with an edit distance of 1.

1. Introduction

Error-tolerant finite-state recognition enables the recognition of strings that deviate
mildly from any string in the regular set recognized by the underlying finite-state
recognizer. For example, suppose we have a recognizer for the regular set over {a, b}
described by the regular expression (aba + bab)*, and we would like to recognize
inputs that may be slightly corrupted, for example, abaaaba may be matched to abaaba
(correcting for a spurious a), or babbb may be matched to babbab (correcting for a

* Department of Computer Engineering and Information Science, Bilkent University, Ankara, TR-06533,
Turkey

@ 1996 Association for Computational Linguistics

Computational Linguistics Volume 22, Number 1

deletion), or ababba may be matched to either abaaba (correcting a b to an a) or to ababab
(correcting the reversal of the last two symbols). Error-tolerant recognition can be used
in many applications that are based on finite-state recognition, such as morphological
analysis, spelling correction, or even tagging with finite-state models (Voutilainen and
Tapanainen 1993; Roche and Schabes 1995). The approach presented in this paper
uses the finite-state recognizer built to recognize the regular set, but relies on a very
efficiently controlled recognition algorithm based on depth-first searching of the state
graph of the recognizer. In morphological analysis, misspelled input word forms can
be corrected and morphologically analyzed concurrently. In the context of spelling
correction, error-tolerant recognition can universally be applied to the generation of
candidate correct forms for any language, provided it has a word list comprising
all inflected forms, or its morphology has been fully described by automata such as
two-level finite-state transducers (Karttunen and Beesley 1992; Karttunen, Kaplan, and
Zaenen 1992). The algorithm for error-tolerant recognition is very fast and applicable
to languages that have productive compounding, or agglutination, or both, as word
formation processes.

There have been a number of approaches to error-tolerant searching. Wu and Man-
ber (1991) describe an algorithm for fast searching, allowing for errors. This algorithm
(called agrep) relies on a very efficient pattern matching scheme whose steps can be
implemented with arithmetic and logical operations. It is most efficient when the size
of the pattern is limited to 32 to 64 symbols, though it allows for an arbitrary number
of insertions, deletions, and substitutions. It is particularly suitable when the pattern
is small and the sequence to be searched is large. Myers and Miller (1989) describe
algorithms for approximate matching to regular expressions with arbitrary costs, but
like the algorithm described in Wu and Manber, these are best suited to applications
where the pattern or the regular expression is small and the sequence is large. Schnei-
der, Lim, and Shoaff (1992) present a method for imperfect string recognition using
fuzzy logic. Their method is for context-free grammars (hence, it can be applied to
finite state recognition as well), but it relies on introducing new productions to allow
for errors; this may increase the size of the grammar substantially.

2. Error-tolerant Finite-State Recognition

We can informally define error-tolerant recognition with a finite-state recognizer as the
recognition of all strings in the regular set (accepted by the recognizer), and additional
strings that can be obtained from any string in the set by a small number of unit editing
operations.

The notion of error-tolerant recognition requires an error metric for measuring
how much two strings deviate from each other. The edit distance between two strings
measures the minimum number of unit editing operations of insertion, deletion, re-
placement of a symbol, and transposition of adjacent symbols (Damerau 1964) that
are necessary to convert one string into another. Let Z = zl, z2 , Zp denote a generic
string of p symbols from an alphabet A. Z~] denotes the initial substring of any string
Z up to and including the jth symbol. We will use X (of length m) to denote the
misspelled string, and Y (of length n) to denote the string that is a (possibly partial)
candidate string. Given two strings X and Y, the edit distance ed(X[m], Y[n]) computed
according to the recurrence below (Du and Chang 1992) gives the minimum number
of unit editing operations required to convert one string to the other.

74

Kemal Oflazer Error-tolerant Finite-state Recognition

ed(X[i+ 1],Y[j+ 1]) = ed(X[i],Y~']) if xi+l = yj+l
(last characters are the same)

1 + min{ed(X[i - 1], Y[j - 1]),
ed(X[i + 1], Y[j]),
ed(X[i], Y~" + 1])}

if both xi = yj+l
and xi+l = yj

(last two characters are
transposed)

= 1 + min{ed(X[i], Y[j]), otherwise
ed(X[i + 1], Y[j]),
ed(X[i], Y~" + 1])}

ed(X[O],Y~']) = j 0 < j < n
ed(X[i],Y[O]) = i 0 < i < m

ed(X[-1], Y~']) = ed(X[i], Y[-1]) = max(re, n) (boundary definitions)

For example, ed(recoginze, recognize) = 1, since transposing i and n in the first string
would give the second. Similarly, ed(sailn,failing) = 3 since one could change the initial
s of the first string to f, insert an i before the n, and insert a g at the end to obtain the
second string.

A (deterministic) finite-state recognizer, R, is described by a 5-tuple R = (Q, A, 6,
q0, F) with Q denoting the set of states, A denoting the input alphabet, 8 : Q x A ---, Q
denoting the state transition function, q0 E Q denoting the initial state, and F C_ Q
denoting the final states (Hopcroft and Ullman 1979). Let L c A* be the regular
language accepted b y R. Given an edit distance error threshold t > 0, we define a
string X[m] ~ L to be recognized by R with an error at most t, if the set

C = {Y[n] I Y[n] c L and ed(X[m],Y[n]) < t}

is not empty.

2.1 An Algorithm for Error-tolerant Recognition
Any finite-state recognizer can also be viewed as a directed graph with arcs labeled
with symbols in A. 1 Standard finite-state recognition corresponds to traversing a path
(possibly involving cycles) in the graph of the recognizer, starting from the start node,
to one of the final nodes, so that the concatenation of the labels on the arcs along
this path matches the input string. For error-tolerant recognition, one needs to find
all paths from the start node to one of the final nodes, so that when the labels on the
links along a path are concatenated, the resulting string is within a given edit distance
threshold t, of the (erroneous) input string. With t > 0, the recognition procedure
becomes a search on this graph, as shown in Figure 1.

Searching the graph of the recognizer has to be fast if error-tolerant recognition
is to be of any practical use. This means that paths that can lead to no solutions
must be pruned, to limit the search to a very small percentage of the search space.
Thus, we need to make sure that any candidate string generated as the search is being
performed does not deviate from certain initial substrings of the erroneous string by
more than the allowed threshold. To detect such cases, we use the notion of a cut-off

1 We use state interchangably with node, and transition interchangeably with arc.

75

Computational Linguistics Volume 22, Number 1

Figure 1
Searching the recognizer graph.

edit distance. The cut-off edit distance measures the min imum edit distance between
an initial substring of the incorrect input string, and the (possibly partial) candidate
correct string. Let Y be a partial candidate string whose length is n, and let X be the
incorrect string of length m. Let 1 = max(l , n - t) and u = min(m, n + t). The cut-off
edit distance cuted(X[m], Y[n]) is defined as

cuted(X[m], Y[n]) = min ed(X[i], Y[n]).
l ~ i ~ u

For example, with t = 2:

cuted(reprter, repo)= min{ed(re, repo) = 2,
ed(rep, repo) = 1,
ed(repr, repo) = 1,
ed(reprt, repo) = 2,
ed(reprte, repo) = 3} = 1.

Note that, except at the boundaries, the initial substrings of the incorrect string X
considered are of length n - t to length n + t. Any initial substring of X shorter than

76

Kemal Oflazer Error-tolerant Finite-state Recognition

1 1 =n-t = 2 U = n+t = 6 m

X
e P e

Cut-off distance is the minimum

edit distance between Y and any initial

substring of X that ends in this range.

Y e P 0

1 n=4

Figure 2
The cutoff edit distance.

n - t needs more than t insertions, and any initial substring of X longer than n + t
requires more than t deletions, to at least equal Y in length, violating the edit distance
constraint (see Figure 2).

Given an incorrect string X, a partial candidate string Y is generated by succes-
sively concatenating relevant labels along the arcs as transitions are made, starting
with the start state. Whenever we extend Y, we check if the cut-off edit distance of X
and the partial Y is within the bound specified by the threshold t. If the cut-off edit
distance goes beyond the threshold, the last transition is backed off to the source node
(in parallel with the shortening of Y) and some other transition is tried. Backtracking
is recursively applied when the search cannot be continued from that state. If, during
the construction of Y, a final state is reached without violating the cut-off edit distance
constraint, and ed(X[m], Y[n]) < t at that point, then Y is a valid correct form of the
incorrect input string}

Denoting the states by subscripted q's (q0 being the initial state) and the symbols
in the alphabet (and labels on the directed edges) by a, we present the algorithm for
generating all Y's by a (slightly modified) depth-first probing of the graph in Figure 3.
The crucial point in this algorithm is that the cut-off edit distance computation can be
performed very efficiently by maintaining a matrix H, an m by n matrix with element
H(i,j) = ed(X[i], Y[j]) (Du and Chang 1992). We can note that the computation of the
element H(i + 1,j + 1) recursively depends on only H(i, j) ,H(i , j + 1),H(i + 1,j) and
H(i - 1 , j - 1), from the earlier definition of edit distance (see Figure 4).

During the depth-first search of the state graph of the recognizer, entries in column
n of the matrix H have to be (re)computed only when the candidate string is of

2 Note that this check is essential, since we m a y come to other irrelevant final s tates du r ing the search.

77

Computational Linguistics Volume 22, Number 1

/*push empty candidate, and start node to start search */

push ((G qo))
while stack not empty

begin

pop((Y',qi)) /* pop partial surface string Y'
and the node */

for all qj and a such that 6(qi, a) = q j
begin /* extend the candidate string */

Y = concat(Y',a) /* n is the current length of Y */
/* check if Y has deviated too much, if not push-*/

if cuted(X[m],Y[n]) K t then push((Y, qj))
/* also see if we are at a final state */

if ed(X[m],Y[n]) K t and qj 6 F then output Y
end

end

Figure 3
Algorithm for error-tolerant recognition. •

. . . H (i - 1 , j - 1)

. H(i,j) H(i;/'+ 1) ...

. H (i + I , j) H (i + l , j + l) . . .

Figure 4
Computation of the elements of the H matrix.

length n. During backtracking, the entries for the last column are discarded, but the
entries in prior columns are still valid. Thus, all entries required by H(i + 1,j + 1),
except H(i , j + 1), are already available in the matrix in columns i - 1 and i. The
computation of cuted(X[m], Y[n]) involves a loop in which the minimum is computed.
This loop (indexing along column j + 1) computes H(i , j + 1) before it is needed for the
computation of H(i + 1,j + 1).

We present in Figure 5 an example of this search algorithm for a simple finite-state
recognizer for the regular expression (aba + bab)*, and the search graph for the input
string ababa. The thick circles from left to right indicate the nodes at which we have
the matching strings abaaba, ababab, and bababa, respectively. Prior visits to the final
state 1 violate the final edit distance constraint. (Note that the visit order of siblings
depends on the order of the outgoing arcs from a state.)

3. Application to Error-tolerant Morphological Analysis

Error-tolerant finite-state recognition can be applied to morphological analysis. Instead
of rejecting a given misspelled form, the analyzer attempts to apply the morphological
analysis to forms that are within a certain (configurable) edit distance of the incorrect
form. Two-level transducers (Karttunen and Beesley 1992; Karttunen, Kaplan, and
Zaenen 1992) provide a suitable model for the application of error-tolerant recognition.
Such transducers capture all morphotactic and morphographemic phenomena, as well
as alternations in the language, in a uniform manner. They can be abstracted as finite-
state transducers over an alphabet of lexical and surface symbol pairs 1 : s, where either

78

Kemal Oflazer Error-tolerant Finite-state Recogni t ion

FSR for (aba

b

a a

+ bab) *

[1]

[0]

Eo/
a

[0]

A

[0]

a

[1]

a , ,

[1]

b

b

b

[U

[2]

[1l

[1] (3 } [0]
[1]

[1]
a

[i]

[2]

) 2lt l t21
Search graph for matching ababa with threshold 1

Figure 5
Recognizer for (aba + bab)* and search g raph for ababa.

1 or s (but not both) may be the null symbol 0. It is possible to apply error-tolerant
recognition to languages whose word formations employ productive compounding,
or agglutination, or both. In fact, error-tolerant recognition can be applied to any
language whose morphology has been described completely as one (very large) finite-
state transducer. Full-scale descriptions using this approach already exist for a number
of languages such as English, French, German, Turkish, and Korean (Karttunen 1994).

Application of error-tolerant recognition to morphological analysis proceeds as
described earlier. After a successful match with a surface symbol the corresponding
lexical symbol is appended to the output gloss string. During backtracking the can-
didate surface string and the gloss string are again shortened in tandem. The basic
algorithm for this case is given in Figure 6. 3 The actual algorithm is a slightly optimized
version of this, in which transitions with null surface symbols are treated as special
during forward and backtracking traversals to avoid unnecessary computations of the
cut-off edit distance.

3 Note that transitions are now labeled with l : s pairs.

79

Computational Linguistics Volume 22, Number 1

F i g u r e 6

/~push empty candidate string, and start node
to start search on to the stack ~/
push((G ¢,q0))
while stack not empty

begin
pop((surface',lexical',qi)) /* pop p a r t i a l s t r ings

and the node from the stack ~/
for a l l qj and l : s such that ~(qi,/:s) =qj

begin /~ extend the candidate string ~/
surface = concat (surface', s)
i f cuted(X[m],surface[n]) G t then

begin
lexical = concat(lexical', 1)
push ((surface, lexical, q j))
i f ed(X[m],surface[n]) <_ t and qj E F then

output lexical
end

end
end

Algorithm for error-tolerant morphological analysis.

We can demonstra te error-tolerant morphological analysis with a two- level trans-
ducer for the analysis of Turkish morphology. Agglutinative languages, such as Turk-
ish, Hungar ian or Finnish, differ from languages like English in the way lexical forms
are generated. Words are formed by product ive affixations of derivational and in-
flectional affixes to roots or stems, like beads on a string (Sproat 1992). Furthermore,
roots and affixes may undergo changes due to various phonetic interactions. A typical
nominal or verbal root gives rise to thousands of valid forms that never appear in
the dictionary. For instance, we can give the following (rather exaggerated) adverb
example from Turkish:

uygarla~tzramayabileceklerimizdenmi~sinizcesine

whose root is the adjective uygar 'civilized'. 4 The m o rp h em e breakdown (with mor-
phological glosses underneath) is: 5

uygar +la~ +tlr +ama +yabil +ecek
civilized +AtoV +CAUS +NEG +POT +VtoA(AtoN)
+ler +imiz +den +mi~ +siniz +cesine
+3PL +POSS-1PL +ABL(+NtoV) +PAST +2PL +VtoAdv

The port ion of the word following the root consists of 11 morphemes , each of which
either adds further syntactic or semantic information to, or changes the part-of-speech
of, the part preceding it. Al though most words used in Turkish are considerably shorter
than this, this example serves to point out that the nature of word structure in Turkish
and other agglutinative languages is fundamenta l ly different from word structure in
languages like English.

Our morphological analyzer for Turkish is based on a lexicon of about 28,000 root

4 This is a manner adverb meaning roughly '(behaving) as if you were one of those whom we might not
be able to civilize.'

5 Glosses in parentheses indicate derivations not explicitly indicated by a morpheme.

• 8 0

Kemal Oflazer Error-tolerant Finite-state Recognition

words and is a re-implementation, using Xerox two-level transducer technology (Kart-
tunen and Beesley 1992), of an earlier version of the same description by the author
(Oflazer 1993) (using the PC-KIMMO environment [Antworth 1990]). This description
of Turkish morphology has 31 two-level rules that implement the morphographemic
phenomena, such as vowel harmony and consonant changes across morpheme bound-
aries, and about 150 additional rules, again based on the two-level formalism, that
fine-tune the morphotactics by enforcing long-distance feature sequencing and co-
occurrence constraints. They also enforce constraints imposed by standard alternation
linkage among various lexicons to implement the paradigms. Turkish morphotactics
is circular, due to the presence of a relativization suffix in the nominal paradigm and
multiple causative suffixes in the verb paradigm. There is also considerable linkage
between nominal and verbal morphotactics, because derivational suffixation is produc-
tive. The minimized finite-state transducer constructed by composing the transducers
for root lexicons, morphographemic rules, and morphotactic constraints, has 32,897
states and 106,047 transitions, with an average fan-out of about 3.22 transitions per
state (including transitions with null surface symbols). It analyzes a given Turkish
lexical form into a sequence of feature-value tuples (instead of the more conventional
sequence of morpheme glosses) that are used in a number of natural language appli-
cations. The Xerox software allows the resulting finite-state transducer to be exported
in a tabular form, which can be imported to other applications.

This transducer has been used as input to an analyzer implementing the error-
tolerant recognition algorithm in Figure 6. The analyzer first attempts to parse the
input with t = 0, and if it fails, relaxes t up to 2 if it cannot find any parse with a
smaller t. It can process about 150 (correct) forms a second on a SPARCstation 10/41. 6
Below, we provide a transcript of a run: 7

ENTER WORD > eva
Threshold 0 ... i ...

ela => ((CAT
evla => ((CAT
ava => ((CAT
deva => ((CAT NOUN)(ROOT
eda => ((CAT NOUN)(ROOT
ela => ((CAT NOUN)(ROOT
enva => ((CAT NOUN)(ROOT
reva => ((CAT NOUN)(ROOT
evi => ((CAT NOUN)(ROOT
eve => ((CAT NOUN)(ROOT
ev => ((CAT NOUN)(ROOT
evi => ((CAT NOUN)(ROOT
eza => ((CAT NOUN)(ROOT
leva => ((CAT NOUN)(ROOT
neva => ((CAT NOUN)(ROOT
ova => ((CAT NOUN)(ROOT
ova => ((CAT VERB)(ROOT

ADJ)(ROOT ela))
ADJ)(ROOT evla))
NOUN)(ROOT av)(AGR 3SG)(POSS NONE)(CASE DAT))

deva)(AGR 3SG)(POSS NONE)(CASE NOM))
eda)(AGR 3SG)(POSS NONE)(CASE NOM))
ela)(AGR 3SG)(POSS NONE)(CASE NOM))
enva)(AGR 3SG)(POSS NONE)(CASE NOM))
reva)(AGR 3SG)(POSS NONE)(CASE NOM))
ev)(AGR 3SG)(POSS NONE)(CASE ACC))
ev)(AGR 3SG)(POSS NONE)(CASE OAT))
ev)(AGR 3SG)(POSS NONE)(CASE NOM))
ev)(AGR 3SG)(POSS 3SG)(CASE NOM))
eza)(AGR 3SG)(POSS NONE)(CASE NOM))
leva)(AGR 3SG)(POSS NONE)(CASE NOM))
neva)(AGR 3SG)(POSS NONE)(CASE NOM))
ova)(AGR 3SG)(POSS NONE)(CASE NOM))
ov)(SENSE POS)(MOOD OPT)(AGR 3SG))

ENTER WORD > ak111mnnikiler

6 No attempt was made to compress the finite-state recognizer. The Xerox infl program working on the
proprietary compressed representation of the same transducer can process about 1,000 forms/sec on
the same platform.

7 The outputs have been slightly edited for formatting. The feature names denote the usual
morphosyntactic features. C0NV denotes derivations to the category indicated by the second token with
a suffix or derivation type denoted by the third token, if any.

81

Computational Linguistics Volume 22, Number 1

Threshold 0 ... i ... 2 ...

ak1111nlnkiler =>
((CAT

ak1111nlnkiler =>
((CAT

ak1111ndakiler =>
((CAT

NOUN)(ROOT ak11)(CONV ADJ LI)
(CONV NOUN)(AGR 3SG) (POSS NONE)(CASE GEN)
(CONV PRONOUN REL)(AGR 3PL)(POSS NONE)(CASE NOM))

NOUN)(ROOT ak11)(CONV AD3 LI)
(CONV NOUN)(AGR 3SG)(POSS 2SG)(CASE GEN)
(CONV PRONOUN REL)(AGR 3PL)(POSS NONE)(CASE NOM))

NOUN)(ROOT akxl)(CONV ADJ LI)
(CONV NOUN)(AGR 3SG)(POSS 2SG)(CASE LOC)
(CONV ADJ REL)
(CONV NOUN)(AGR 3PL)(POSS NONE)(CASE NOM))

ENTER WORD > eviminkinn
Threshold 0 ... 1 ...

eviminkini =>
((CAT NOUN)(ROOT ev)(AGR 3SG)(POSS ISG)(CASE GEN)

(CONV PRONOUN REL)(AGR 3SG)(POSS NONE)(CASE ACC))
eviminkine =>

((CAT NOUN)(ROOT ev)(AGR 3SG)(POSS ISG)(CASE GEN)
(CONV PRONOUN REL)(AGR 3SG)(POSS NONE)(CASE DAT))

eviminkinin =>
((CAT NOUN)(ROOT ev)(AGR 3SG)(PGSS lSG)(CASE GEN)

(CONV PRONOUN REL)(AGR 3SG)(POSS NONE)(CASE GEN))

ENTER WORD > teeplerdeki
Threshold 0 ... I ...

tepelerdeki =>
((CAT NOUN)(ROOT tepe)(AGR 3PL)(POSS NONE)(CASE LOC)

(CONV ADJ REL))
teyplerdeki =>

((CAT NOUN)(ROOT teyb)(AGR 3PL)(POSS NONE)(CASE LOC)
(CONV ADJ REL))

ENTER WORD > uygarla~tlramadlklarmllzdanml§slnlzcaslna
Threshold 0 ... 1 ...

uygarla§tmramadlklarlmlzdanm1~slnlzcaslna =>
((CAT ADJ)(ROOT uygar)(CONV VERB LAS)(VOICE CAUS)(SENSE NEG)

(CONV ADJ DIK)(AGR 3PL)(POSS IPL)(CASE ABL)
(CONV VERB)(TENSE NARR-PAST)(AGR 2PL)
(CONV ADVERB CASINA)(TYPE MANNER))

ENTER WORD > okatulna
Threshold 0 ... 1 ... 2 ...

82

Kemal Oflazer Error-tolerant Finite-state Recognition

okutulma =>
((CAT

okutulma =>
((CAT

okutulan =>
((CAT

okutulana =>
((CAT

okutulsa => ((CAT

okutula =>

VERB)(RODT oku)(VOICE CAUS)(VOICE PASS)(SENSE NEG)
(MOOD IMP)(AGR=2SG))

VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS)
(CONV NOUN MA)(TYPE INFINITIVE)
(AGE 3SG)(POSS NONE)(CASE NOM))

VEKB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS)
(CONV ADJ YAN))

VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS)
(CONV ADJ YAN)(CONV NOUN)(AGR 3SG)(POSS NONE)(CASE DAT))
VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS)
(MOOD COND)(AGE 3SG))

(CAT VERB)(ROOT oku)(VOICE CAUS)(VOICE PASS)(SENSE POS)
(MOOD OPT)(AGR 3SG))

In an application context, the candidates that are generated by such a morphological
analyzer can be disambiguated or filtered to a certain extent by constraint-based tag-
ging techniques (see Oflazer and Kuru6z 1994; Voutilainen and Tapanainen 1993) that
take into account syntactic context for morphological disambiguation.

4. Applications to Spelling Correction

Spelling correction is an important application for error-tolerant recognition. There
has been substantial work on spelling correction (see the excellent review by Ku-
kich [1992]). All methods essentially enumerate plausible candidates that resemble the
incorrect word, and use additional heuristics to rank the results. 8 Most techniques
assume a word list of all words in the language. These approaches are suitable for
languages like English, for which it is possible to enumerate such a list. They are not
directly suitable or applicable to languages like German, which have very produc-
tive compounding, or agglutinative languages like Finnish, Hungarian, or Turkish,
in which the concept of a word is much larger than what is normally found in a
word list. For example, Finnish nouns have about 2,000 distinct forms, while Finnish
verbs have about 12,000 forms (Gazdar and Mellish 1989, 59--60). Turkish is similar:
nouns, for instance, may have about 170 different forms, not counting the forms for
adverbs, verbs, adjectives, or other nominal forms, generated (sometimes circularly)
by derivational suffixes. Hankamer (1989) gives much higher figures (in the millions)
for Turkish; presumably he took derivations into account in his calculations.

Some recent approaches to spelling correction have used morphological analysis
techniques. Veronis (1988) presents a method for handling quite complex combinations
of typographical and phonographic errors (phonographic errors are the kind usually
made by language learners using computer-aided instruction). This method takes into
account phonetic similarity, in addition to standard errors. Aduriz et al. (1993) present
a two-level morphology approach to spelling correction in Basque. They use two-
level rules to describe common insertion and deletion errors, in addition to the two-
level rules for the morphographemic component. Oflazer and G6zey (1994) present
a two-level morphology approach to spelling correction in agglutinative languages
using a coarser morpheme-based morphotactic description rather than the finer lexi-

8 Ranking is dependent on the language, the application, and the error model. It is an important
component of the spelling correction problem, but is not addressed in this paper.

83

Computational Linguistics Volume 22, Number 1

Recognizer for the word list
abacus, abacuses, abalone, abandone, abandoned, abandoning
access.

Figure 7
A finite-state recognizer for the word list: abacus, abacuses, abalone, abandone, abandoned,
abandoning, access.

cal/surface symbol approach presented here. The approach presented in Oflazer and
G6zey 1994 generates a valid sequence of the lexical forms of root and suffixes and
uses a separate morphographemic component that implements the two-level rules to
derive surface forms. However, that approach is very slow, mainly because of the un-
derlying PC-KIMMO morphological analysis and generation system, and cannot deal
with compounding because of its approach to root selection. More recently, Bowden
and Kiraz (1995) have used a multitape morphological analysis technique for spelling
correction in Semitic languages which, in addition to insertion, deletion, substitution,
and transposition errors, allows for various language-specific errors.

For languages like English, all inflected forms can be included in a word list, which
can be used to construct a finite-state recognizer structured as a standard letter-tree
recognizer (with an acyclic graph) as shown in Figure 7. Error-tolerant recognition can
be applied to this finite-state recognizer. Furthermore, transducers for morphological
analysis can be used for spelling correction, so the same algorithm can be applied
to any language whose morphology has been described using such transducers. We
demonstrate the application of error-tolerant recognition to spelling correction by con-
structing finite-state recognizers in the form of letter trees from large word lists that
contain root and inflected forms of words for 10 languages, obtained from a number of
resources on the Internet (Table 1). The Dutch, French, German, English (two different
lists), Italian, Norwegian, Swedish, Danish, and Spanish word lists contained some or
all inflected forms in addition to the basic root forms. The Finnish word list contained
unique word forms compiled from a corpus, although the language is agglutinative.

For edit distance thresholds 1, 2, and 3, we selected 1,000 words at random from
each word list and perturbed them by random insertions, deletions, replacements, and
transpositions, so that each misspelled word had the required edit distance from the
correct form. Kukich (1992), citing a number of studies, reports that typically 80%
of misspelled words contain a single error of one of the unit operations, although

84

Kemal Oflazer Error-tolerant Finite-state Recognition

Table 1
Statistics about the word lists used.

Language Words Arcs Average Maximum Average
Word W o r d Fan-out

Length Length

Finnish 276,448 968,171 12.01 49 1.31
English-1 213,557 741,835 10.93 25 1.33
Dutch 189,249 501,822 11.29 33 1.27
German 174,573 561,533 12.95 36 1.27
French 138,257 286,583 9.52 26 1.50
English-2 104 ,216 265,194 10.13 29 1.40
Spanish 86,061 257,704 9.88 23 1.40
Norwegian 61,843 156,548 9.52 28 1.32
Italian 61,183 115,282 9.36 19 1.84
Danish 25,485 81,766 10.18 29 1.27
Swedish 23,688 67,619 8.48 29 1.36

Table 2
Correction Statistics for Threshold 1.

Average Average Average Time Average Average
Language Misspelled Correction to F ir s t Number of % of

Word Time Solution Solutions Space
Length (msec) (msec) Found Searched

Finnish 11.08 45.45 25.02 1.72 0.21
English-1 9.98 26.59 12.49 1.48 0.19
Dutch 10.23 20.65 9.54 1.65 0.20
German 11.95 27.09 14.71 1.48 0.20
French 10.04 15.16 6.09 1.70 0.28
English-2 9.26 17.13 7.51 1.77 0.35
Spanish 8.98 18.26 7.91 1.63 0.37
Norwegian 8.44 16.44 6.86 2.52 0.62
Italian 8.43 9.74 4.30 1.78 0.46
Danish 8.78 14.21 1.98 2.25 1.00
Swedish 7.57 16.78 8.87 2.83 1.57

Turkish (FSR) 8.63 17.90 7.41 4.92 1.23

in specific applications the percentage of such errors is lower. Our earlier s tudy of
an error model developed for spelling correction in Turkish indicated similar results
(Oflazer and G/izey 1994).

Tables 2, 3, and 4 present the results from correcting these misspelled word lists
for edit distance thresholds 1, 2, and 3, respectively. The runs were per formed on a
SPARCstation 10/41. The second column in these tables gives the average length of
the misspelled string in the input list. The third column gives the time in milliseconds
to generate all solutions, while the fourth column gives the time to find the first
solution. The fifth column gives the average number of solutions generated from the
given misspelled strings with the given edit distance. Finally, the last column gives
the percentage of the search space (that is, the ratio of forward-traversed arcs to the
total number of arcs) that is searched when generat ing all the solutions.

85

Computational Linguistics Volume 22, Number 1

Table 3
Correction Statistics for Threshold 2.

Language
Average Average Average Time Average Average

Misspelled Correction to F irs t Number of % of
Word Time Solution Solutions Space

Length (msec) (msec) Found Searched

Finnish 11.05 312.26 162.49 13.54 1.30
English-1 9.79 232.56 108.69 7.90 1.51
Dutch 10.24 148.62 68.19 9.35 1.25
German 12.05 169.88 96.55 3.33 1.14
French 9.88 95.07 37.52 6.99 1.44
English-2 9.12 129.29 55.64 12.56 2.28
Spanish 8.78 125.35 48.80 10.24 2.49
Norwegian 8.36 112.06 42.13 27.27 3.47
Italian 8.41 57.87 25.09 8.09 2.36
Danish 9.15 82.39 34.80 13.25 4.23
Swedish 7.44 90.59 16.47 36.37 6.84
Turkish (FSR) 8.59 164.81 57.87 55.12 11.12

Table 4
Correction Statistics for Threshold 3.

Average Average Average Time Average Average
Language Misspelled Correction to First Number of % of

Word Time Solution Solutions Space
Length (msec) (msec) Found Searched

Finnish 11.08 1217.56 561.70 157.39 3.86
English-1 9.73 1001.43 413.60 87.09 5.30
Dutch 10.30 610.52 256.90 71.89 4.07
German 11.82 582.45 305.80 21.39 3.14
French 9.99 349.41 122.38 41.58 4.00
English-2 9.36 519.83 194.69 97.24 6.97
Spanish 8.90 507.46 176.77 88.31 7.79
Norwegian 8.47 400.57 125.52 199.72 8.98
Italian 8.34 198.79 66.80 55.47 6.41
Danish 9.25 228.55 47.9 97.85 8.69
Swedish 7.69 295.14 36.89 267.51 14.70
Turkish (FSR) 8.57 907.02 63.59 442.17 60.00

4.1 Spelling Correction for Agglutinative Word Forms
The t ransducer for Turkish developed for morphological analysis, using the Xerox
software, was also used for spelling correction. However , the original t ransducer had
to be simplified into a recognizer for two reasons. First, for morphological analysis,
the concurrent generation of the lexical gloss string requires that occasional transitions
with an empty surface symbol be taken to generate the gloss properly. Secondly, in
morphological analysis, a given surface form may have m an y morphological interpre-
tations. This diversity must be accounted for in morphological processing. In spelling
correction, however, the presentat ion of only one surface form is sufficient. To remove
all empty transitions and analyses with the same surface form from the Turkish trans-
ducer, a recognizer recognizing only the surface forms was extracted using the Xerox
tool ifsm. The resulting recognizer had 28,825 states and 118,352 transitions labeled

86

Kemal Oflazer Error-tolerant Finite-state Recognition

with just surface symbols. The average fan-out of the states in this recognizer was
about 4. This transducer was then used to perform spelling correction experiments in
Turkish.

In the first set of experiments, three word lists of 1,000 words each were gener-
ated from a Turkish corpus, and words were perturbed as described before, for error
thresholds of 1, 2, and 3, respectively. The results for correcting these words are pre-
sented in the last rows (labeled Turkish [FSR]) of the tables above. It should be noted
that the percentage of search space searched may not be very meaningful in this case
since the same transitions may be taken in the forward direction more than once.

In a separate experiment that would simulate a real correction application, about
3,000 misspelled Turkish words (again compiled from a corpus) were processed by
successively relaxing the error threshold starting with t = 1. Of this set of words,
79.6% had an edit distance of 1 from the intended correct form, while 15.0% had an
edit distance of 2, and 5.4% had an edit distance of 3 or more. The average length
of the incorrect strings was 9.63 characters. The average correction time was 77.43
milliseconds (with 24.75 milliseconds for the first solution). The average number of
candidates offered per correction was 4.29, with an average of 3.62% of the search space
being traversed, indicating that this is a very viable approach for real applications. For
comparison, the same recognizer running as a spell checker (t = 0) can process correct
forms at a rate of about 500 words/sec.

5. C o n c l u s i o n s

This paper has presented an algorithm for error-tolerant finite-state recognition that en-
ables a finite-state recognizer to recognize strings that deviate mildly from some string
in the underlying regular set. Results of its application to error-tolerant morphologi-
cal analysis and candidate generation in spelling correction were also presented. The
approach is very fast and applicable to any language with a list of root and inflected
forms, or with a finite-state transducer recognizing or analyzing its word forms. It
differs from previous error-tolerant finite-state recognition algorithms in that it uses a
given finite-state machine, and is more suitable for applications where the number of
patterns (or the finite-state machine) is large and the string to be matched is small.

In some cases, however, the proposed approach may not be efficient and may be
augmented with language-specific heuristics: For instance, in spelling correction, users
(at least in Turkey, as indicated by our error model [Oflazer and Gfizey 1994]) usually
replace non-ASCII characters with their nearest ASCII equivalents because of inconve-
niences such as nonstandard keyboards, or having to input the non-ASCII characters
using a sequence of keystrokes. In the last spelling correction experiment for Turk-
ish, almost all incorrect forms with an edit distance of 3 or more had three or more
non-ASCII Turkish characters, all of which were rendered with the nearest ASCII ver-
sion (e.g., ya~g~n~m~zde (on our birthday) was written as yasgunumuzde). These forms
could surely be found with appropriate edit distance thresholds, but at the cost of gen-
erating many words containing more substantial errors. Under these circumstances,
one may use language-specific heuristics first, before resorting to error-tolerant recog-
nition, along the lines suggested by morphological-analysis-based approaches (Aduriz
et al. 1993; Bowden and Kiraz 1995).

Although the method described here does not handle erroneous cases where omis-
sion of space characters causes joining of otherwise correct forms (such as inspite of),
such cases may be handled by augmenting the final state(s) of the recognizers with a
transition for space characters and ignoring all but one of such space characters in the
edit distance computation.

87

Computational Linguistics Volume 22, Number 1

Acknowledgments
This research was supported in part by a
NATO Science for Stability Grant
TU-LANGUAGE. I would like to thank
Xerox Advanced Document Systems, and
Lauri Karttunen of Xerox Parc and of Rank
Xerox Research Centre (Grenoble), for
providing the two-level transducer
development software. Kemal Olkii and
Kurtulu~ Yorulmaz of Bilkent University
implemented some of the algorithms. I
would like to thank the anonymous
reviewers for suggestions and comments
that contributed to the improvement of the
paper in many respects.

References
Aduriz, I., et al. (1993). A Morphological

Analysis-based Method for Spelling
Correction. In Proceedings, Sixth Conference
of the European Chapter of the Association for
Computational Linguistics, Utrecht, The
Netherlands, 463-464.

Antworth, Evan L. (1990). PC-KIMMO: A
Two-level Processor for Morphological
Analysis. Summer Institute of Linguistics,
Dallas, Texas.

Bowden, Tanya and Kiraz, George A. (1995).
A Morphographemic Model for Error
Correction in Nonconcatenative Strings.
In Proceedings, 33 rd Annual Meeting of the
Association for Computational Linguistics,
Boston, MA, 24-30.

Damerau, E J. (1964). A Technique for
Computer Detection and Correction of
Spelling Errors. Communications of the
Association for Computing Machinery, 7(3):
171-176.

Du, M. W. and Chang, S. C. (1992). A Model
and a Fast Algorithm for Multiple Errors
Spelling Correction. Acta Informatica, 29:
281-302.

Gazdar, Gerald and Mellish, Chris. (1989).
Natural Language Processing in PROLOG,
An Introduction to Computational Linguistics.
Addison-Wesley Publishing Company,
Reading, MA.

Hankamer, Jorge. (1989). "Morphological
Parsing and the Lexicon." In Lexical
Representation and Process, edited by
W. Marslen-Wilson. MIT Press, 392-408.

Hopcroft, John E. and Ullman, Jeffrey D.
(1979). Introduction to Automata Theory,
Languages, and Computation.
Addison-Wesley Publishing Company,
Reading, MA.

Karttunen, Lauri. (1994). Constructing
Lexical Transducers. In Proceedings, 16 th

International Conference on Computational
Linguistics, Kyoto, Japan, 1: 406-411,
International Committee on
Computational Linguistics.

Karttunen, Lauri and Beesley, Kenneth R.
(1992). "Two-level Rule Compiler."
Technical Report, XEROX Palo Alto
Research Center.

Karttunen, Lauri; Kaplan, Ronald M.; and
Zaenen, Annie. (1992). Two-level
Morphology with Composition. In
Proceedings, 15 th International Conference on
Computational Linguistics, Nantes, France,
1: 141-148. International Committee on
Computational Linguistics.

Kukich, Karen. (1992). Techniques for
Automatically Correcting Words in Text.
ACM Computing Surveys, 24: 377-439.

Myers, Eugene W. and Miller, Webb. (1989).
Approximate Matching of Regular
Expressions. Bulletin of Mathematical
Biology, 51(1): 5-37.

Oflazer, Kemal. (1993). Two-level
Description of Turkish Morphology. In
Proceedings, Sixth Conference of the European
Chapter of the Association for Computational
Linguistics, Utrecht, The Netherlands, 472.
(A full version appears in Literary and
Linguistic Computing, 9(2): 137-148.)

Oflazer, Kemal and Giizey, Cemalettin.
(1994). Spelling Correction in
Agglutinative Languages. In Proceedings,
4 th Conference on Applied Natural Language
Processing, Stuttgart, Germany, 194-195.

Oflazer, Kemal and Kuru6z, ilker. (1994).
Tagging and Morphological
Disambiguation of Turkish Text. In
Proceedings, 4 th Conference on Applied
Natural Language Processing, Stuttgart,
Germany, 144-149.

Roche, Emmanuel and Schabes, Yves.
(1995). Deterministic Part-of-speech
Tagging with Finite-state Transducers.
Computational Linguistics, 21(2): 227-253.

Schneider, Mordechay; Lira, H.; and Shoaff,
William. (1992). The Utilization of Fuzzy
Sets in the Recognition of Imperfect
Strings. Fuzzy Sets and Systems, 49:
331-337.

Sproat, Richard. (1992). Morphology and
Computation. MIT Press, Cambridge, MA.

Veronis, Jean. (1988). Morphosyntactic
Correction in Natural Language
Interfaces. In Proceedings, 13 th International
Conference on Computational Linguistics,
708-713. International Committee on
Computational Linguistics.

88

Kemal Oflazer Error-tolerant Finite-state Recognition

Voutilainen, Atro and Tapanainen, Pasi.
(1993). Ambiguity Resolution in a
Reductionistic Parser. In Proceedings, Sixth
Conference of the European Chapter of the
Association for Computational Linguistics,

Utrecht, The Netherlands, 394-403.
Wu, Sun and Manber, Udi. (1991). "Fast

Text Searching with Errors." Technical
Report TR91-11, Department of
Computer Science, University of Arizona.

89

