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A method is presented for calculating a string B, 
belonging to a given regular language L, which is 
"nearest" (in number of  edit operations) to a given 
input string a. B is viewed as a reasonable "correction" 
for the possibly erroneous string a, where a was 
originally intended to be a string of L. The calculation 
of  B by the method presented requires time proportional 
to I ~ I, the number of  characters in a. The method 
should find applications in information retrieval, 
artificial intelligence, and spelling correction systems. 
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This set of edit operations was apparently first used by Irons 
[10] in 1963 and has been subsequently used in several compilers 
[1, 2] and compiler-writing systems [9, 10, 11]. 

All compilers must be prepared to accept 
"erroneous"  or syntactically illegal source strings. Most 
compilers handle such strings by a process called "error  
recovery." Error recovery usually proceeds by announc- 
ing the discovery of an "e r ror"  in the input string as 
soon as the leading substring of the input is determined 
to be the "head"  of no valid sentence of the language. 
Next, input string characters are skipped, until a char- 
acter can be added to the last previously-acceptable 
leading source substring. This process may overlook 
errors (in the skipped portion of the string), and may 
also announce the discovery of many more "er rors"  
than actually exist. La France [9, Sec. 1.2] gives an 
extensive discussion of this point. 

We have recently concentrated on developing error 
recovery or "correct ion" techniques based on a different 
principle. Rather than build error recovery into existing 
parsing algorithms as an after-the-fact adjustment, we 
have studied the possibility of  performing error correc- 
tion in advance of parsing. Thus, an error correction 
algorithm can be thought of  as a preprocessor which 
accepts the (possibly illegal) source string and translates 
that source string into a guaranteed syntactically legal 
string. An error-correction criterion is defined which 
has the property that a legal input string will be un- 
changed by the error correction algorithm; illegal 
strings will, of  course, be modified during error correc- 
tion. The general approach was developed at Cornell, 
in connection with the CORC [1] and PL/C [2] compilers. 

The principal error correction criterion we have in- 
vestigated we term the "minimum edit distance" cri- 
terion. We define a set ~ of "edit operat ions" which can 
be applied to a source string to modify it. One such set 
of edit operations is a subset of  those suggested by 
Morgan in [3]. 

1. Changing any single input character into any other 
single character. 
2. Inserting any single character into the source string. 
3. Deleting any single source character. 

The minimum edit distance criterion then seeks to find 
a translation of the source string: (a) which is syntacti- 
cally legal; and (b) which can be generated f rom the 
source string in the fewest possible edit operations. Each 
application of an edit operation to the source string is 
accompanied by an error indication; so this criterion 
minimizes the number of  error messages produced. Of  
course, if the input string is already legal, no error 
messages will be produced, and the translation pro- 
duced by error correction will be identical to the 
original source string. 

Apparently, the more complex (in the Chomsky 
hierarchy of languages) the underlying language is, the 
slower the error correction algorithm. Thus, we have 
developed an error correction algorithm for context free 
languages [4] which requires time of order n 3, where n 
characters appear in the input string. The present paper 
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describes an error correction method for the regular 
languages (those recognizable by a finite automaton) 
which requires time of order n, given an input of n 
characters. The algorithm is applicable to Morgan'.s 
spelling correction, certainly for what he terms "keyword 
spelling correction," and with some difficulty, to the 
general problems of correcting the spelling of either 
keywords or programmer-introduced names for vari- 
ables, labels, and functions. To apply it, one would 
construct a finite state automaton which would "accept"  
any valid keyword. One would then apply the correction 
algorithm, guided by this automaton, to the given input 
string. Other applications, for example to the problem 
of retrieving the "nearest"  of a finite set of strings to the 
given input, are also possible. 

The error correction problem has been deliberately 
couched in terms suggestive of  a constrained optimiza- 
tion problem. The "variables" of this problem are the 
edit operations (made specific as to where each applies 
in the source string, and what each does). The "con- 
straints" of the problem require that a sequence of edit 
operations be chosen which changes the given input into 
a syntactically valid string. The criterion function is the 
number of edit operations required. Obviously, the 
problem variables are all discrete (integers). Neverthe- 
less, this formulation of the problem is profitable be- 
cause it suggests the use of "dynamic programming" 
[5] to achieve a reasonably efficient correction al- 
gorithm. Dynamic programming will be applied to the 
input, one character at a time, to compute, in effect, the 
minimum edit distance from the given input string to 
some valid string of the language. The actual edit opera- 
tions which achieve correction in this minimum number 
of steps will be "reconstructed" by proceeding backward 
over the string, using edit distance information and 
"choice" information retained from the first " forward"  
pass over the input. 

Let F(j, S) equal the minimum number of edit opera- 
tions needed to change the first j characters of input 
string a into some string /~ which will cause the FSA 
which accepts our language to enter state S after reading 

It will develop that F(j,S) can be computed, given 
F(j-- 1, T) (for all states T which the FSA can be in), to- 
gether with the knowledge of a{j) ( thej th  character of 
input string a), and some information which depends on 
the language but not on ~. If there are [a[ characters in 
c~ and we proceed with the computation until F([aI ,S ) 
is available for all states S, then the number 

g([~!,R) = rain F(]~I,S), (1) 
.SEA 

where A is the set of"accept ing"  states of our FSA, gives 
the edit distance from c~ to the nearest string ¢/ acceptable 
to the FSA. The edit operations themselves can be speci- 
fied by examining successively information associated 
with the computation of F(]a], R) to determine which 
state T was involved in computing F([aI,R) from 
F(Ja l -  1, T), then finding that state U involved in calcu- 
lating F([~l-1, T) from F(la[-2, U), and so on. This 
results in tracing out, backward, the successive states 
that a "should"  have forced the FSA through, as each 
character of a was scanned. /3 is directly computable 
during this back-trace, as is the sequence of edit opera- 
tions needed to change a into/3. 

Notation. Let xIj ) be thejth character of string x, and 
x(i:j) be the string x(i).. .x(j), when j>_i, and the null 
string i f j < i .  (x(i:j) represents the substring of x con- 
sisting of characters i, i +  1, . . . , j of x.) 

Computation of F(j, S) 

We claim that, i f j  >_ 1, 

F(j,S) = man F(j--I ,T) q- V(T,S,a(j)), 
T 

(2) 

Dynamic Programming and Correction of Regular 
Lan gua ges 

A regular language is characterized by the fact that 
its sentences are precisely the set of sentences acceptable 
to some finite-state automaton (FSA). In turn, an FSA has 
a peculiarly useful property. Suppose the FSA has scanned 
the first j characters of an input string. Then the only 
information the FSA retains about the characters already 
scanned is contained in its" state." Furthermore,  regard- 
less of the input, the VSA can be in only one of a finite 
number of possible states. (For the moment, we will 
restrict our attention to deterministic FSA'S. This restric- 
tion will be relaxed later, permitting us to avoid the con- 
struction of an equivalent deterministic VSA from a non- 
deterministic FSA.) 

Let us take advantage of these properties of an FSA 
by defining a generalization of the criterion function for 
the optimization problem. 

where V(T,S,c) is equal to the smallest number of edit 
operations which will change the single character c into 
a string w(T,S) which will force the FSA from state T 
to state S. For  the case j = 0  (the initial condition), we 
claim that 

~0, if S is the "s ta r t "  state of the FSA, F(O,S) 
, otherwise. (3) 

Let G = mint  F(j--I,T) -+- V(T,S,a(j)) for any j .  
Then, if F(j--1 ,T) and V(T,S,a(j)) are correctly com- 
puted, surely F(j,S) < G. For the correctness of 
F(j-- 1, T) shows that a(l  :j-- 1) can be changed into 
/3, a string which places the FSA in state T, in F(j-- 1, T) 
operations. ~{j) can be changed to a string which takes 
the FSA from state T to  state S in V(T, S,a(j)) operations. 
So a(l  :j) can be changed into a string "r which forces 
the FSA into state S in G operations. So F(j,S) < G. 
Now suppose F(j, S) < G. Then there must exist a string 

which forces the FSA into state S such that fewer than 
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G operat ions  are needed to change a(1 :j) into 6. By a 
result of  Wagner  [6], 6 can be divided into two sub- 
strings 61 and 6., such that  6 = ~l&, and F(j,S) = 
D(a(l:j),~) = D(a(l:j--1),~) q- D(a(j),~2), where 
D(a,/3) is equal  to the smallest  number  of  edit opera t ions  
needed to change string a into string/3. 

N o w  after reading 6x, the FSA must  be in some state, 
say state T. 6t is then a correction of  c ~ ( l : j -  1) which 
forces the FSA into state T. So D(a(l:j--1),6~) 3> 
F(j-- 1, T) by definition of F(j-- 1, T). Also, 62 forces the 
VSA from state T t o  state S. So D(a(j),62) >_ V(T,S,a(j)). 
We have G > F(j,S) = O(,~(l:j),6) >_ F( j - - I ,T)  
+ V(T,S,a(j)) > G for some state T, a contradict ion.  
Hence  G = F(j,S).  

F o r  the purposes  of  this a lgor i thm,  we assume 
that  the numbers  V(T, S, c) are stored in random-access  
m e m o r y ,  for each charac ter  c, and for each ordered 
pair  of  (possibly identical) states T and S. To  show the 
pract ical i ty of  this a lgor i thm,  we must  show that  only 
a finite (hopefully small) amoun t  of  space must  be de- 
voted to the s torage of  V(T,S,c) values, and we must  
also show that  these values are independent  of  the par-  
t icular input  string read. This will permit  the V(T,S,c) 
values to be compu ted  once, and then used to correct  
m a n y  different input  strings. 

Storing the V(T, S, c) Information 

V(T,S,c),  for states T a n d  S and input character  c, 
gives the n u m b e r  of  edit opera t ions  needed to change c 
into a str ing/3 which will force the FSA f rom state T to 
state S. Al though there are an infinity of  characters  c 
which may  possibly appear  in the input string, we can 
easily show that  only the finite input  a lphabet  I of  the 
FSA, plus one representat ive of  the infinity of  characters  
not  in I,  needs to be considered. 

A theorem of  Wagner  [6] shows that  a single char~ 
acter  x can be changed to a string/3 in max (l/3[, l) edit 
opera t ions ,  if x 05 /3, and in [/31-1 edit opera t ions  if 
x E /3. (If  x ~ /3, then x can be changed to the first 
charac ter  of/3, and the other  characters  of/3 can be in- 
serted following the modified x. I f  I/3[ = 0, so that /3  is 
the emp ty  string, this yields one edit opera t ion  (a dele- 
t ion);  otherwise it yields I/3[ edit operat ions.  I f  x C /3, 
so that  x = /3(i), say, insert /3(1:i--1) before x, 
/3(i+1:1/3]) after x, for a total  of  [/31-1 edit opera-  
tions.) So, if x 05 I and y 05 /, neither x nor  y can be 
accepted by any state of  the FSA. Hence,  in any string 13 
which drives the FSA f rom state T to state S appears  
nei ther  x, nor  y. So ]/3! edit opera t ions  are needed to 
correct  either x or y to/3, so that  V(T, S,x) = V(T, S,y). 
Obviously,  only one of  these numbers  needs to be stored. 

Reasoning  similar to that  outl ined above suggests 
that  V(T, S, c) can be reduced to an integer P(T, S), plus 
a one-bi t  indicator  L(T,S ,c)  for each character  in the 
set I 12 {z}, where z is a charac ter  not  in I. For  we argue 
that,  if P(T,S)  is equal  to the length of  the shortest  
string which forces the FSA f rom state T to state S, then 

V(T,S,c) equals P(T,S) if P(T,S) > 0 and i f c  ap- 
pears in none of  the possible shortest  strings which force 
the FSA f rom state T to state S; V(T,S,c) = 1, if 
P(T,S) = 0; and V(T,S,c)  = P(T,S) -- 1, otherwise.  
S o i f w e l e t L ( T , S , c )  = I if c appears  in at least one of  
the shortest  length strings which force the FSA f rom state 
T to state S, and L(T,S ,c)  = 0, otherwise,  then 

I L  if P(T,S) = O, 
V(T,S,c) = ~ (7,S) -- L(T,S,c) ,  otherwise. 

Note  that  even i fc  C v, where Iv] > I/3] > 0, where both 
3' and/3 force the FSA f rom T t o  S, 13"1-- 1 edit opera t ions  
are needed to change c into 3", while [/3[ edit opera t ions  
suffice to change c into/3. Since ]3'1 > 1/31, ]3'1--1 >_ /3, 
so it is no worse to correct  c to/3 than to 3'. Thus,  no 
string 3' whose length is longer than the shortest  nonnul l  
str ing/3 which forces the FSA f rom state T to state S 
need be considered. 

Computation of P(T, S) and L(T, S, c) 

The compu ta t ion  of  P(T,S) and L(T,S ,c)  can he 
accompl ished using a slight modificat ion of a s tandard  
a lgor i thm for comput ing  the shortest  distance in a 
graph between all pairs of  nodes. Let the length of  an 
arc in the FSA'S transi t ion d iagram,  G, be equal  to the 
number  of  input symbols  read during a transi t ion a long 
that  arc. Define Pk(T,S) as equal  to the length of  the 
shortest  path f rom state T to state S in G, passing only 
through states numbered  k or less. Then P°(T,S) is 
equal  to the one-arc  distance f rom T to S (infinite if no 
arc of  G connects  T directly to S). Pk+I(T,S) = 
min(Pk(T ,  S), Pk(T, k+ 1) 9- Pk(k+ 1, S)). 

Define 

1, if character  c is accepted by some arc 
Lk(T,S,c  ) = along a path  of  length Pk(T,S) f rom 

T to S, 
0, otherwise. 

Then Lk+~(T, S, c) can be compu ted  during the compu ta -  
t ion of  Pk+l(T, S). 

'Lk(T ,k+l ,c )  V Lk(k+l ,S ,c ) ,  
if Pk(T,S) > 

Pk(T,k--t-1) -Jr Pk(k'-}- l ,S) ; 
Lk(T,k'-}-l,c) V L~(k+l ,S ,c)  

Lk+I(T,S,c) = V Lk(T,S,c),  
if Pk(T,S) = 

pk(T, kq-l) -q- pk(kq-l ,S); 
Lk(T, S, c), 

otherwise. 

Here ,  a V b = 0, if a = b = 0, 1, otherwise. 

These formulas  can be used to compute  Pt(X, Y) and 
L~(X, Y,c) for  all states X and Y and all characters  c, 
then P2(X, Y) and L2(X, Y,c), and ult imately Pt(X, Y) 
and Lt(X, Y,c), where there are t states in the FSA. 
P(X,Y)  = P' (X,Y) ,  and L(X,Y)  = L ' (X ,Y) ,  by 
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definition of Pk(X, Y) and Lk(X, Y,c). This technique 
closely follows the strategy of Floyd's algorithm [7]. 

Modifications Necessary To Handle NDA 

Automated techniques for constructing FSA'S from 
other descriptions of languages often produce non- 
deterministic finite state automata (NDA's) as a first step. 
(See, for example, Gries [8 pp. 40-42].) Algorithms are 
known for transforming Nr)A'S into FSA's, which accept 
an identical set of strings. However, these algorithms 
may sometimes increase drastically the number of states 
in the automaton. Since time and space required by our 
algorithm grows proportional to P~, where P is the 
number of states of the FSA, adaption of the algorithm 
to handle an NDA seemed worthwhile. 

It developed that very little change in the basic 
algorithm was necessary for this adaption. For an NDA 
differs from an FSA primarily because it allows the same 
input character to be accepted along several arcs leading 
out of state T to other states S, U, etc. A recognizer, 
which " runs"  the automaton, can thus be faced with an 
ambiguity as to which state to enter next. But in our 
case, we seek only to calculate the edit-distance required 
to force the automaton into each possible state; we 
don' t  care, during the forward pass of the algorithm, 
which state the automaton actually enters. Thus, the 
only change necessary to adapt our algorithm to an 
NDA lies in the eq. (3). This, we must rewrite as 

l ~  if S is any of the possible start 
F(O,S) = states of the NDA, (3') 

, else. 

All other calculations remain unchanged. The "back- 
ward" pass then traces out a completely valid sequence 
of state transitions, related to states of the NDA directly. 
This amounts to a "parse" of the (corrected) input 
string. 
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Conclusion 

We have sketched an algorithm which, given a 
string a and an FSA Q whose input alphabet size is [II 
and number of states is [QI, can correct a to a string 
acceptable to Q in time of order [~l ,Ial  2. Space pro- 
portional to [Q[2*I/I + I,~I*IQI is also needed by this 
algorithm. The algorithm can be easily adapted to 
handle nondeterministic rsa's. This makes it unnecessary 
to transform an NDA to its equivalent FSA, a transforma- 
tion which usually increases the number of states in the 
automaton. The algorithm as adapted for nondetermin- 
istic finite state automata serves equally well as a "rec- 
ognizer" for the set of strings acceptable to the autom- 
aton. An input string o~ must be accepted if and only 
if the algorithm calculates an edit-distance of 0 for a. 
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