
Programming T.A. Standish
Languages Editor

Order-n Correction for
Regular Languages
Robert A. Wagner
Vanderbilt University

A method is presented for calculating a string B,
belonging to a given regular language L, which is
"nearest" (in number of edit operations) to a given
input string a. B is viewed as a reasonable "correction"
for the possibly erroneous string a, where a was
originally intended to be a string of L. The calculation
of B by the method presented requires time proportional
to I ~ I, the number of characters in a. The method
should find applications in information retrieval,
artificial intelligence, and spelling correction systems.

Key Words and Phrases: error correction, regular
languages, regular events, finite state automata,
compiler error recovery, spelling correction, string
best match problem, correction, corrector, errors,
nondeterministic finite-state automata

CR Categories: 4.12, 4.20, 5.22, 5.23, 5.42

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was supported by NSF grant GJ-33014 with
Vanderbilt University. Author's address: Department of Systems
and Information Sciences, Vanderbilt University, Box 6147 Station
B, Nashville, TN 37235.

This set of edit operations was apparently first used by Irons
[10] in 1963 and has been subsequently used in several compilers
[1, 2] and compiler-writing systems [9, 10, 11].

All compilers must be prepared to accept
"erroneous" or syntactically illegal source strings. Most
compilers handle such strings by a process called "error
recovery." Error recovery usually proceeds by announc-
ing the discovery of an "e r ror" in the input string as
soon as the leading substring of the input is determined
to be the "head" of no valid sentence of the language.
Next, input string characters are skipped, until a char-
acter can be added to the last previously-acceptable
leading source substring. This process may overlook
errors (in the skipped portion of the string), and may
also announce the discovery of many more "er rors"
than actually exist. La France [9, Sec. 1.2] gives an
extensive discussion of this point.

We have recently concentrated on developing error
recovery or "correct ion" techniques based on a different
principle. Rather than build error recovery into existing
parsing algorithms as an after-the-fact adjustment, we
have studied the possibility of performing error correc-
tion in advance of parsing. Thus, an error correction
algorithm can be thought of as a preprocessor which
accepts the (possibly illegal) source string and translates
that source string into a guaranteed syntactically legal
string. An error-correction criterion is defined which
has the property that a legal input string will be un-
changed by the error correction algorithm; illegal
strings will, of course, be modified during error correc-
tion. The general approach was developed at Cornell,
in connection with the CORC [1] and PL/C [2] compilers.

The principal error correction criterion we have in-
vestigated we term the "minimum edit distance" cri-
terion. We define a set ~ of "edit operat ions" which can
be applied to a source string to modify it. One such set
of edit operations is a subset of those suggested by
Morgan in [3].

1. Changing any single input character into any other
single character.
2. Inserting any single character into the source string.
3. Deleting any single source character.

The minimum edit distance criterion then seeks to find
a translation of the source string: (a) which is syntacti-
cally legal; and (b) which can be generated f rom the
source string in the fewest possible edit operations. Each
application of an edit operation to the source string is
accompanied by an error indication; so this criterion
minimizes the number of error messages produced. Of
course, if the input string is already legal, no error
messages will be produced, and the translation pro-
duced by error correction will be identical to the
original source string.

Apparently, the more complex (in the Chomsky
hierarchy of languages) the underlying language is, the
slower the error correction algorithm. Thus, we have
developed an error correction algorithm for context free
languages [4] which requires time of order n 3, where n
characters appear in the input string. The present paper

265 Communications May 1974
of Volume 17
the ACM Number 5

describes an error correction method for the regular
languages (those recognizable by a finite automaton)
which requires time of order n, given an input of n
characters. The algorithm is applicable to Morgan'.s
spelling correction, certainly for what he terms "keyword
spelling correction," and with some difficulty, to the
general problems of correcting the spelling of either
keywords or programmer-introduced names for vari-
ables, labels, and functions. To apply it, one would
construct a finite state automaton which would "accept"
any valid keyword. One would then apply the correction
algorithm, guided by this automaton, to the given input
string. Other applications, for example to the problem
of retrieving the "nearest" of a finite set of strings to the
given input, are also possible.

The error correction problem has been deliberately
couched in terms suggestive of a constrained optimiza-
tion problem. The "variables" of this problem are the
edit operations (made specific as to where each applies
in the source string, and what each does). The "con-
straints" of the problem require that a sequence of edit
operations be chosen which changes the given input into
a syntactically valid string. The criterion function is the
number of edit operations required. Obviously, the
problem variables are all discrete (integers). Neverthe-
less, this formulation of the problem is profitable be-
cause it suggests the use of "dynamic programming"
[5] to achieve a reasonably efficient correction al-
gorithm. Dynamic programming will be applied to the
input, one character at a time, to compute, in effect, the
minimum edit distance from the given input string to
some valid string of the language. The actual edit opera-
tions which achieve correction in this minimum number
of steps will be "reconstructed" by proceeding backward
over the string, using edit distance information and
"choice" information retained from the first " forward"
pass over the input.

Let F(j, S) equal the minimum number of edit opera-
tions needed to change the first j characters of input
string a into some string /~ which will cause the FSA
which accepts our language to enter state S after reading

It will develop that F(j,S) can be computed, given
F(j-- 1, T) (for all states T which the FSA can be in), to-
gether with the knowledge of a{j) (thej th character of
input string a), and some information which depends on
the language but not on ~. If there are [a[characters in
c~ and we proceed with the computation until F([aI ,S)
is available for all states S, then the number

g([~!,R) = rain F(]~I,S), (1)
.SEA

where A is the set of"accept ing" states of our FSA, gives
the edit distance from c~ to the nearest string ¢/ acceptable
to the FSA. The edit operations themselves can be speci-
fied by examining successively information associated
with the computation of F(]a], R) to determine which
state T was involved in computing F([aI,R) from
F(Ja l - 1, T), then finding that state U involved in calcu-
lating F([~l-1, T) from F(la[-2, U), and so on. This
results in tracing out, backward, the successive states
that a "should" have forced the FSA through, as each
character of a was scanned. /3 is directly computable
during this back-trace, as is the sequence of edit opera-
tions needed to change a into/3.

Notation. Let xIj) be thejth character of string x, and
x(i:j) be the string x(i).. .x(j), when j>_i, and the null
string i f j < i . (x(i:j) represents the substring of x con-
sisting of characters i, i + 1, . . . , j of x.)

Computation of F(j, S)

We claim that, i f j >_ 1,

F(j,S) = man F(j--I ,T) q- V(T,S,a(j)),
T

(2)

Dynamic Programming and Correction of Regular
Lan gua ges

A regular language is characterized by the fact that
its sentences are precisely the set of sentences acceptable
to some finite-state automaton (FSA). In turn, an FSA has
a peculiarly useful property. Suppose the FSA has scanned
the first j characters of an input string. Then the only
information the FSA retains about the characters already
scanned is contained in its" state." Furthermore, regard-
less of the input, the VSA can be in only one of a finite
number of possible states. (For the moment, we will
restrict our attention to deterministic FSA'S. This restric-
tion will be relaxed later, permitting us to avoid the con-
struction of an equivalent deterministic VSA from a non-
deterministic FSA.)

Let us take advantage of these properties of an FSA
by defining a generalization of the criterion function for
the optimization problem.

where V(T,S,c) is equal to the smallest number of edit
operations which will change the single character c into
a string w(T,S) which will force the FSA from state T
to state S. For the case j = 0 (the initial condition), we
claim that

~0, if S is the "s ta r t " state of the FSA, F(O,S)
, otherwise. (3)

Let G = mint F(j--I,T) -+- V(T,S,a(j)) for any j .
Then, if F(j--1 ,T) and V(T,S,a(j)) are correctly com-
puted, surely F(j,S) < G. For the correctness of
F(j-- 1, T) shows that a(l :j-- 1) can be changed into
/3, a string which places the FSA in state T, in F(j-- 1, T)
operations. ~{j) can be changed to a string which takes
the FSA from state T to state S in V(T, S,a(j)) operations.
So a(l :j) can be changed into a string "r which forces
the FSA into state S in G operations. So F(j,S) < G.
Now suppose F(j, S) < G. Then there must exist a string

which forces the FSA into state S such that fewer than

266 Communications May 1974
of Volume 17
the ACM Number 5

G operat ions are needed to change a(1 :j) into 6. By a
result of Wagner [6], 6 can be divided into two sub-
strings 61 and 6., such that 6 = ~l&, and F(j,S) =
D(a(l:j),~) = D(a(l:j--1),~) q- D(a(j),~2), where
D(a,/3) is equal to the smallest number of edit opera t ions
needed to change string a into string/3.

N o w after reading 6x, the FSA must be in some state,
say state T. 6t is then a correction of c ~ (l : j - 1) which
forces the FSA into state T. So D(a(l:j--1),6~) 3>
F(j-- 1, T) by definition of F(j-- 1, T). Also, 62 forces the
VSA from state T t o state S. So D(a(j),62) >_ V(T,S,a(j)).
We have G > F(j,S) = O(,~(l:j),6) >_ F(j - - I ,T)
+ V(T,S,a(j)) > G for some state T, a contradict ion.
Hence G = F(j,S).

F o r the purposes of this a lgor i thm, we assume
that the numbers V(T, S, c) are stored in random-access
m e m o r y , for each charac ter c, and for each ordered
pair of (possibly identical) states T and S. To show the
pract ical i ty of this a lgor i thm, we must show that only
a finite (hopefully small) amoun t of space must be de-
voted to the s torage of V(T,S,c) values, and we must
also show that these values are independent of the par-
t icular input string read. This will permit the V(T,S,c)
values to be compu ted once, and then used to correct
m a n y different input strings.

Storing the V(T, S, c) Information

V(T,S,c), for states T a n d S and input character c,
gives the n u m b e r of edit opera t ions needed to change c
into a str ing/3 which will force the FSA f rom state T to
state S. Al though there are an infinity of characters c
which may possibly appear in the input string, we can
easily show that only the finite input a lphabet I of the
FSA, plus one representat ive of the infinity of characters
not in I, needs to be considered.

A theorem of Wagner [6] shows that a single char~
acter x can be changed to a string/3 in max (l/3[, l) edit
opera t ions , if x 05 /3, and in [/31-1 edit opera t ions if
x E /3. (If x ~ /3, then x can be changed to the first
charac ter of/3, and the other characters of/3 can be in-
serted following the modified x. I f I/3[= 0, so that /3 is
the emp ty string, this yields one edit opera t ion (a dele-
t ion); otherwise it yields I/3[edit operat ions. I f x C /3,
so that x = /3(i), say, insert /3(1:i--1) before x,
/3(i+1:1/3]) after x, for a total of [/31-1 edit opera-
tions.) So, if x 05 I and y 05 /, neither x nor y can be
accepted by any state of the FSA. Hence, in any string 13
which drives the FSA f rom state T to state S appears
nei ther x, nor y. So]/3! edit opera t ions are needed to
correct either x or y to/3, so that V(T, S,x) = V(T, S,y).
Obviously, only one of these numbers needs to be stored.

Reasoning similar to that outl ined above suggests
that V(T, S, c) can be reduced to an integer P(T, S), plus
a one-bi t indicator L(T,S ,c) for each character in the
set I 12 {z}, where z is a charac ter not in I. For we argue
that, if P(T,S) is equal to the length of the shortest
string which forces the FSA f rom state T to state S, then

V(T,S,c) equals P(T,S) if P(T,S) > 0 and i f c ap-
pears in none of the possible shortest strings which force
the FSA f rom state T to state S; V(T,S,c) = 1, if
P(T,S) = 0; and V(T,S,c) = P(T,S) -- 1, otherwise.
S o i f w e l e t L (T , S , c) = I if c appears in at least one of
the shortest length strings which force the FSA f rom state
T to state S, and L(T,S ,c) = 0, otherwise, then

I L if P(T,S) = O,
V(T,S,c) = ~ (7,S) -- L(T,S,c) , otherwise.

Note that even i fc C v, where Iv] > I/3] > 0, where both
3' and/3 force the FSA f rom T t o S, 13"1-- 1 edit opera t ions
are needed to change c into 3", while [/3[edit opera t ions
suffice to change c into/3. Since]3'1 > 1/31,]3'1--1 >_ /3,
so it is no worse to correct c to/3 than to 3'. Thus, no
string 3' whose length is longer than the shortest nonnul l
str ing/3 which forces the FSA f rom state T to state S
need be considered.

Computation of P(T, S) and L(T, S, c)

The compu ta t ion of P(T,S) and L(T,S ,c) can he
accompl ished using a slight modificat ion of a s tandard
a lgor i thm for comput ing the shortest distance in a
graph between all pairs of nodes. Let the length of an
arc in the FSA'S transi t ion d iagram, G, be equal to the
number of input symbols read during a transi t ion a long
that arc. Define Pk(T,S) as equal to the length of the
shortest path f rom state T to state S in G, passing only
through states numbered k or less. Then P°(T,S) is
equal to the one-arc distance f rom T to S (infinite if no
arc of G connects T directly to S). Pk+I(T,S) =
min(Pk(T , S), Pk(T, k+ 1) 9- Pk(k+ 1, S)).

Define

1, if character c is accepted by some arc
Lk(T,S,c) = along a path of length Pk(T,S) f rom

T to S,
0, otherwise.

Then Lk+~(T, S, c) can be compu ted during the compu ta -
t ion of Pk+l(T, S).

'Lk(T ,k+l ,c) V Lk(k+l ,S ,c) ,
if Pk(T,S) >

Pk(T,k--t-1) -Jr Pk(k'-}- l ,S) ;
Lk(T,k'-}-l,c) V L~(k+l ,S ,c)

Lk+I(T,S,c) = V Lk(T,S,c),
if Pk(T,S) =

pk(T, kq-l) -q- pk(kq-l ,S);
Lk(T, S, c),

otherwise.

Here , a V b = 0, if a = b = 0, 1, otherwise.

These formulas can be used to compute Pt(X, Y) and
L~(X, Y,c) for all states X and Y and all characters c,
then P2(X, Y) and L2(X, Y,c), and ult imately Pt(X, Y)
and Lt(X, Y,c), where there are t states in the FSA.
P(X,Y) = P' (X,Y) , and L(X,Y) = L ' (X ,Y) , by

267 Communications May 1974
of Volume 17
the ACM Number 5

definition of Pk(X, Y) and Lk(X, Y,c). This technique
closely follows the strategy of Floyd's algorithm [7].

Modifications Necessary To Handle NDA

Automated techniques for constructing FSA'S from
other descriptions of languages often produce non-
deterministic finite state automata (NDA's) as a first step.
(See, for example, Gries [8 pp. 40-42].) Algorithms are
known for transforming Nr)A'S into FSA's, which accept
an identical set of strings. However, these algorithms
may sometimes increase drastically the number of states
in the automaton. Since time and space required by our
algorithm grows proportional to P~, where P is the
number of states of the FSA, adaption of the algorithm
to handle an NDA seemed worthwhile.

It developed that very little change in the basic
algorithm was necessary for this adaption. For an NDA
differs from an FSA primarily because it allows the same
input character to be accepted along several arcs leading
out of state T to other states S, U, etc. A recognizer,
which " runs" the automaton, can thus be faced with an
ambiguity as to which state to enter next. But in our
case, we seek only to calculate the edit-distance required
to force the automaton into each possible state; we
don' t care, during the forward pass of the algorithm,
which state the automaton actually enters. Thus, the
only change necessary to adapt our algorithm to an
NDA lies in the eq. (3). This, we must rewrite as

l ~ if S is any of the possible start
F(O,S) = states of the NDA, (3')

, else.

All other calculations remain unchanged. The "back-
ward" pass then traces out a completely valid sequence
of state transitions, related to states of the NDA directly.
This amounts to a "parse" of the (corrected) input
string.

Acknowledgments. The author wishes to acknowledge
the contribution of Jean-Pierre Levy to this work.
During a conversation with him, the existence of
algorithms for efficiently correcting several classes of
formal languages became clear. Mr. Levy's develop-
ment of these ideas appears in [12].

i

Received November 1972; revised June 1973

References
1. Conway, R.W., and Maxwell, W.L. CORC--the Cornell
computing language. Comm. ACM 6, 9 (Sept. 1966), 317-321.
2. Morgan, H.L., and Wagner, R.A. PL/C--A high performance
compiler for PL/I. Proc. 1971 SJCC, Vol. 38, AFIPS Press,
Montvale, N.J., pp. 503-510.
3. Morgan, H.L. Spelling correction in systems programs.
Comm. ACM 13, 2 (Feb. 1970), 90-94.
4. Wagner, R.A. An n 3 minimum edit distance correction
algorithm for context free languages. Tech. Rep., Systems and
Information Science Dep., Vanderbilt U., Nashville, Tenn., 1972.
5. Nemhauser, G,L. b~troduction to Dynamic Programmhtg.
Wiley, New York, 1966.
6. Wagner, R.A. The string-to-string correction problem. Tech.
Rep., Systems and Information Sciences Dep., Vanderbilt U.,
Nashville, Tenn., 1971.
7. Floyd, R.W. Algorithm 97--Shortest path. Comm. ACM 5,
6 (June 1962), 345.
8. Gries, D. Compiler Construction Jbr Digital Computers. Wiley,
New York, 1971.
9. LaFrance, J.E. Syntax-directed error recovery for compilers.
Ph.D. Th., Rep. No. 459, Dep. of Comput. Sci., U. of Illinois at
Urbana-Champaign, Urbana, 111., June 1971.
10. Irons, E.T. An error-correcting parse algorithm. Comm.
ACM 13, 11 (Nov. 1963), 669-673.
11. Leinus, R. Error detection and recovery in syntax-directed
compilers. Ph.D. Th., U. of Wisconsin, Madison, Wis., 1970.
12. Levy, J-P. Automatic correction of syntax errors in
programming languages. Ph.D. Th., Dep. of Comput. Sci.,
Cornell U., Ithaca, N.Y. 1971.

Conclusion

We have sketched an algorithm which, given a
string a and an FSA Q whose input alphabet size is [II
and number of states is [QI, can correct a to a string
acceptable to Q in time of order [~l ,Ial 2. Space pro-
portional to [Q[2*I/I + I,~I*IQI is also needed by this
algorithm. The algorithm can be easily adapted to
handle nondeterministic rsa's. This makes it unnecessary
to transform an NDA to its equivalent FSA, a transforma-
tion which usually increases the number of states in the
automaton. The algorithm as adapted for nondetermin-
istic finite state automata serves equally well as a "rec-
ognizer" for the set of strings acceptable to the autom-
aton. An input string o~ must be accepted if and only
if the algorithm calculates an edit-distance of 0 for a.

268 Communications May 1974
of Volume 17
the ACM Number 5

