
Weighted Rational Transductions and their Application to Human
Language Processing

Fernando Pereira Michael Riley Richard Sproat

A T & T Bel l Labora to r ies
600 M o u n t a i n Ave.

M u r r a y Hil l , NJ 07974

A B S T R A C T
We present the concepts of weighted language, ~ansduction and au-
tomaton from algebraic automata theory as a general framework for
describing and implementing decoding cascades in speech and lan-
guage processing. This generality allows us to represent uniformly
such information sources as pronunciation dictionaries, language
models artd lattices, and to use uniform algorithms for building de-
coding stages and for optimizing and combining them. In particular,
a single automata join algorithm can be used either to combine in-
formation sources such as a pronunciation dictionary and a context-
dependency model during the construction of a decoder, or dynam-
ically during the operation of the decoder. Applications to speech
recognition and to Chinese text segmentation will be discussed.

1. I n t r o d u c t i o n

As is well known, many problems in human language process-
ing can be usefully analyzed in terms of the "noisy channel"
metaphor: given an observation sequence o, find which in-
tended message w is most likely to generate that observation
sequence by maximizing

P(w, o) = P(olw)P(w),

where P(olw) characterizes the transduction between in-
tended messages and observations, and P(w) characterizes
the message generator. More generally, the transduction be-
tween messages and observations may involve several inter-
mediate stages

P(so, sk)= P(sk Iso)P(so)
P(sklso)=~,, ,~_,P(sklsk-X)'"P(sllso) (1)

where P(sk Iso) is the probability of transducing so to sk
through the intermediate stages, assuming that each step in the
cascade is conditionally independent from the previous ones.
Each s t is a sequence of units in an appropriaterepresentation.
For instance, in speech recognition some of the intermediate
stages might correspond to sequences of units like phones or
syllables. A stralghtforwardbut useful observation is that any
such a cascade can be factored at any intermediate stage

P(sils~) = ~ P(s~lsk)P(skls.i) (2)
Sk

For computational reasons, sums and products in (1) are often
replaced by minirnizations and sums of negative log probabil-

ities, yielding the approximation

P(s0,sk) = P(sklso) + P(s0) (3)
P(s ls0) rain,, , ~ _ , E l < j _ < k P (s ~ l s j = l)

where X = - log X. In this formulation, assuming the ap-
proximation is reasonable, the most likely message so is the
one minimizing P(s0, sk).

Finally, each transduction in such a cascade is often modeled
by some finite-state device, for example a hidden Markov
model.

Although the above approach is widely used in speech and
language processing, usually the elements of the transduction
cascade are built by "ad hoc" means, and commonalities be-
tween them are not exploited. We will here outline how the
theory of weighted rational languages and transductions can
be used as a general framework for transduction cascades.
This theoretical foundation provides a rich set of operators
for combining cascade elements that generalizes the standard
operations on regular languages, suggests novel ways of com-
bining models of different parts of the decoding process, and
supports uniform algorithms for transduction and search at all
levels in the cascade. In particular, we developed a generic
join algorithm for combining any two consecutive levels of a
cascade, a generic best-path search algorithm, and a generic
interleaving of join and search for building pruned joins. In
addition, general finite-state minimization techniques are also
applicable to all levels of a cascade.

Weighted languages and transductions are generalizations of
the standard notions of language and transduction in formal
language theory [1, 2]. A weighted language is just a mapping
from strings over an alphabet to weights. A weighted trans-
duction is a mapping from pairs of strings over two alphabets
to weights. For example, when weights represent proba-
bilities and assuming appropriate normalization, a weighted
language is just a probability distribution over strings, and
a weighted trarisduction a joint probability distribution over
string pairs. The weighted rationallanguages and transducers
are those that can be represented by weighted finite-state ac-
ceptors (WFSAs) and weighted finite-state transducers (WF-
STs), as described in more detail in the next section. In this
paper we will be concerned with the weighted rational case,
although some of the theory can be profitably extended beyond
the finite-state case [3, 4].

262

The notion of weighted rational transduction arises from the
combination of two ideas in automata theory: rational trans-
ductions, used in many aspects of formal language theory [2],
and weighted languages and automata, developed in pattern
recognition [5, 6] and algebraic automata theory [7, 8, 9].
Ordinary (unweighted) rational transductions have been suc-
cessfully applied by researchers at Xerox PARC [10] and at
the University of Paris 7 [11], among others, to several prob-
lems in language processing, includifig morphological anal-
ysis, dictionary compression and syntactic analysis. Hidden
Markov Models and probabilistic finite-state language mod-
els can be shown to be equivalent to WFSAs. In algebraic
automata theory, rational series and rational transductions [8]
are the algebraic counterparts of WFSAs and WFSTs and
give the correct generalizations to the weighted case of the
standard algebraic operations on formal languages and trans-
ductions, such as union, concatenation, intersection, restric-
tion and composition. We believe the work presented here
is among the first to apply these generalizations to human-
language processing.

Our first application is to speech recognition decoding. We
show that a conventional HMM decoder can be naturally
viewed as equivalent to a cascade of weighted transductions,
and that our approach requires no modification whatsoever
when context dependencies cross higher-level unit boundaries
(for instance, cross-word context-dependent models).

Our second application is to the segmentation of Chinese text
into words, and the assignment of pronunciations to those
words. In Chinese orthography, most characters represent
(monosyllabic) 'morphemes', and as in English, 'words' may
consist of one or more morphemes. Given that Chinese does
not use whitespace to delimit words, it is necessary to recon-
struct the grouping of characters into words. This reconstruc-
tion can also be thought of as a transduction problem.

2. Theory
In the transduction cascade (1), each step corresponds to a
mapping from input-output pairs (r, s) to probabilities P(s l r) .
More formally, steps in the cascade will be weighted trans-
ductions T : 27 x F* ~ K where 27 and F* the sets of
strings over the alphabets Z and F, and K is an appropriate set
of weights, for instance the real numbers between 0 and 1 in
the case of probabilities. We will denote by T - 1 the inverse
of T defined by T(t, s) = T(s, t).

The right-most step of (1) is not a transduction, but rather an
information source, in that case the language model. We will
represent such sources as weighted languages L : Z* ~ K.

Given two transductions S : Z* x F* ~ K and T : F* x A* ---~
K, we can define their composition S o T by

(S o T)(r, t) = E S(r, s)T(s, t) (4)
sEI"*

For example, i f S represents P(sk Isj) and T P(sj Isi) in (2),

Figure 1: Recognition Cascade

is is clear that S o T represents P(sk Isi).

A weighted transduction S : Z* × F* --. K can be applied to a
weighted language L : Z* ~ K to yield a weighted language
over F. It is convenient to abuse notation somewhat and use
M o S for the result of the application, defined as

(L o S)(t) = E L(s)S(s,t) (5)
sEF °

Furthermore, if M is a weighted language over F, we can
reverse apply S to M, written S o M = M o (S - :) . For
example, i fS represents P(sk [so) and M represents P(so) in
(1), then S o M represents P(po, pk).

Finally, given two weighted languages M, N : Z* ~ K we
define their intersection, also by convenient abuse of notation
written M o N as:

(M o N)(t) ='M(s)N(s) (6)

In any cascade R1 o . . . o Rm, with the Ri for 1 < i < m
appropriate transductions and R1 and Rm transductions or
languages, it is easy to see that the order of association of
the o operators does not matter. For example, if we have
L o S o T o M, we could either apply S to L, apply T to
the result and intersect the result with M, or compose S with
T, reverse apply the result to M and intersect the result with
L. We are thus justified in our use of the same symbol for
composition, application and intersection, and we will in the
rest of the paper use the term "(generalized) composition" for
all of these operations.

For a more concrete example, consider the transduction cas-
cade for speech recognition depicted in Figure 1, where A is
the transduction from acoustic observation sequences to phone
sequences, D the transduction from phone sequences to word
sequences (essentially a pronunciation dictionary) and M a
weighted language representing the language model. Given a
particular sequence of observations o, we can represent it as
the trivial weighted language O that assigns 1 to o and 0 to
any other sequence. Then O o A represents the acoustic likeli-
hoods of possible phone sequences that generate o, O o A o D
the aeoustic-lexical likelihoods of possible word sequences
yielding o, and O o A o D o M the combined acoustic-lexical-
linguistic probabilities of word sequences generating o. The
word string w with the highest weight (0 o A o D o M)(w)
is precisely the most likely sentence hypothesis generating o.

Exactly the same construction could have been carried out
with weights combined by rain and sum instead of sum and
product in the definitions of application and intersection, and

263

Language Transduction
singleton
scaling
sum
concatenation
power

closure

{u}(v) = I i f fu = v
(kL)(u) = kL(u)
(L + M)(u) = L(u) + M(u)
(LM)(w) = ~uv=~o L(u)M(v)

L°(e) = I
L°(u ~ e) = 0
L n+l = LL"

L* = ~ k > o Lk

{(u, v)}(w,z) = 1 i f fu = w and v = z
(kT)(u, = kT(, v)
(S + T)(u, v) = S(u, v) + T(u, v)
(ST)(t , w) : E , , : t , ~ . = w S(r, u)T(s, v)

T°(e, e) = 1
= 0

Tn + 1 : T T n

T* = ~k >o Tk

Table 1: Rational Operations

in that case the string w with the lowest weight (O o A o D o
M)(w) 'would the best hypothesis. More generally, the sum
and product operations in (4), (5) and (6) can be replaced by
any two operations forming an appropriate semiring [7, 8, 9],
of which numeric addition and multiplication and numeric
minimum and addition are two examples 1

Generalized composition is thus the main operation involved
in the construction and use of transduction cascades. As we
will see in a moment, for rational languages and transductions,
all instances of generalized composition are implemented by
a uniform algorithm, the join of two weighted finite automata.
In addition to those operations, weighted languages and trans-
ductions can be constructed from simpler ones by the opera-
tions shown in Table 1, which generalize in a straightforward
way the regular operations well-known from traditional au-
tomata theory [1]. In fact, the rational languages and trans-
ductions are exactly those that can be built from singletons by
applications of scaling, sum, concatenation and closure.

For example, assume that for each word w in a lexicon we are
given a rational transduction D,o such that D~ (p, w) is the
probability that w is realized as the phone sequence p. Note
that this crucially allows for multiple pronunciations for w.
Then the rational transduction (~ D,o) * gives the probabil-
ities for realizations of word sequences as phone sequences
(ignoring possible cross-word dependencies, which will be
discussed in the next section).

Kleene's theorem states that regular languages are exactly
those representable by finite-state acceptors [1]. Its gener-
alization to the weighted case and to transducers states that
weighted rational languages and transducers are exactly those
that can be represented by finite automata [8]. Furthermore,
all the operations on languages and transductions we have
discussed have finite-automata counterparts, which we have
implemented. Any cascade representable in terms of those
operations can thus be implemented directly as an appropri-
ate combination of the programs implementing each of the
operations.

lAdditional conditions to guarantee the existence of certain infinite sums
may be necessary for certain semirings, for details see [7] and [8].

In the present setting, a K-weighted finite automaton.,4 con-
sists of a finite set of states Qa and a finite set Aa of transitions

s//~ ql
q --, between states, where x is an element of the set of
transition labels AA and k E K is the transition weight. An
associative concatenation operation u • v must defined be-
tween transition labels, with identity element ect. As usual,
each automaton has an initial state iA and a final state as-
signment, which we represent as column vector of weights
FA indexed by states:. A K-weighted finite automaton with
AA = Z* is just a weighted finite-state acceptor (WFSA). On
the other hand, ifAA = Z* x F* with concatenation defined
by (r, s) . (u, v) = (ru, sv), we have a weightedfinite-state
transducer (WFST).

As usual, we can define a path in an automa-
ton .,4 as a sequence of connected transitions /3 =
(q0, xl, kl, ql), • •. , (qra-1, Xm, kin, qm). Such a path has la-
bel LA(p) = xl z,~, weight Wa(15) = k l ' ' "krn and
final weight F - W~ (p) = WA(pP)FA(qm). We call ff reduced if

it is the empty path or i f x l # e, and we write p ~,~ p' if k is
the sum of the weights of all reduced paths with label u from
q to q~.

The language of automaton .,4 is defined as

f~I~(~)

where I.a(u) is the set of paths in .,4 with label u that start in
the initial state i.d. Obviously, if .,4 is an acceptor, [.A] is a
weighted language, and i fA is a transducer [,4]] is a weighted
transduction. The appropriate generalization of Kleene's the-
orem to weighted acceptors and transducers states that under
mild conditions on the weights (which for instance are satis-
fied by the rain, sum semiring), weighted rational languages
and transductions are exactly those defined by weighted au-
tomata as outlined here [8].

Weighted acceptors and transducers are thus faithful imple-
mentations of rational languages and transductions, and all

2The usual notion of final state can be encoded this way by setting
FA(q) = 1 ffq is final, FA(q) = 0 otherwise.

264

(a) ~ 1 ~ = ~ . . " o . ~

(b)

oi:E/pi Oi:e../pi O/:Jpi

(d) o ~ ~ - , ' (~)

Figure 2: Models as Automata

the operations on these described above have corresponding
implementations in terms of algorithms on automata. In par-
ticular, generalized composition corresponds to the join of
two automata.

Given two automata ..4 and B and a new label set J , and
a partial label jo in function ~ : A~ x An ~ J, we define
their jo in by t~ as a new automaton C with label set J , states
Qc = Q ~ x Qt~, initial state ic = (i.a, it3), final weights
Fc(q, q') = F~(q)Ft3(q) and transitions

(p,p') (q, q') i ff k = ab (7)

~ = y ~ z ,p ~.~q ,p' ~bq ~

Different choices of t~ correspond to the instances of gen-
eralized composition: for intersection, Aa = An = Z*,
z = V ~ z i f f z = y = z; for composition, AA = Z* x F*,
At3 = F* x A* and (z, z) = (z, y) ~ (y, z); and for appli-
cation = AaZ*, As = Z* x F* and y = z ~ (z, y). Thus
join is the automata counterpart of generalized composition,
and we will use the composition symbol indiferently in what
follows to represent either composition or join.

The operation between automata thus defined has a direct
dynamic-programming implementation in which reachable
join states (q, q') are placed in a queue and extended in turn
usng (7). By organizing this queue according to the weights
of least-weight paths from the start state, we can combine join
computation with search for lowest-weight paths, and subau-
tomata of the join with states reachable by paths with weights
within a beam of the best path.

3. Speech Recognition
In our first application, we elaborate on how to describe a
speech recognizer as a transduction cascade. Recall we de-
compose the problem into a language, O, of acoustic observa-
tion sequences, a transduction, A, from acoustic observation

sequences to phone sequences, a transduction, D, from phone
sequences to word sequences and a weighted language, M,
specifying the language model (see Figure 1). Each of these
can be represented as a finite-state automaton (to some ap-
proximation).

The trivial automaton for the acoustic observation language,
O, is defined for a given utterance as depicted in Figure 2a.
Each state represents a fixed point in time ti, and each transi-
tion has a label, oi, drawn from a finite alphabet that quantizes
the acoustic waveform between adjacent time points and is as-
signed probability 1.0.

The automaton for the acoustic observation sequence to phone
sequence transduction, A, is defined in terms of phone models.
A phone model is defined as a transducer from a subsequence
of acoustic observation labels to a specific phone, and assigns
to each subsequence a likelihood that the specified phone
produced it. Thus, different paths through a phone model
correspond to different acoustic realizations of the phone.
Figure 2b depicts a common topology for such a phone model.
A is then defined as the closure of the sum ofthephone models.

The automaton for the phone sequence to word sequence trans-
duction, D, is defined similarly to that for A. We define a word
model as a transducer from a subsequence of phone labels to
a specific word, which assigns to each subsequence a like-
lihood that the specified word produced it. Thus, different
paths through a word model correspond to different phonetic
realizations of the word. Figure 2c depicts a common topol-
ogy for such a word model. D is then defined as the closure
of the sum of the phone models.

Finally, the language model, M, is commonly an N-gram
model, encodable as a WFSA. Combining these automata,
(0 o A o D o M) (w) is thus an automaton that assigns a
probability to each word sequence, and the highest-probability
path through that automaton estimates the most likely word
sequence for the given utterance.

The finite-state modeling for speech recognition that we have
just described is hardly novel. In fact, it is equivalent to
that presented in [12], in the sense that it generates the same
weighted language. However, the transduction cascade ap-
proach presented here allows one to view the computations in
new ways.

For instance, because composition, o, is associative, we see
that the computation of max,o(O o A o D o M) (w) can be
organized in several ways. A conventional integrated-search,
speech recognizer computes maxw(O o (A o D o M)) (w) .
In other words, the phone, word, and language models are,
in effect, compiled together into one large transducer which
is then applied to the input observation sequence [12]. On
the other hand, one can use a more modular, staged compu-
tation, maxw(((O o A) o D) o M) (w) . In other words, first
the acoustic observations are transduced into a phone lattice
represented as an automaton labeled by phones (phone recog-

265

nition). 'This lattice is in turn transduced into a word lattice
(word recognition), which is then joined with the language
model (language model application) [13].

The best approach may depend on the specific task, which
determines the size of intermediate results and the whether
finite-state minimization is fruitful. By having a general
package to manipulate these automata, we have been able
to experiment with various alternatives. For many tasks, the
complete; network, O o A o D o M, is too large to compute
explicitly, regardless of the order in which the operations are
applied. The solution that is usually taken is to interleave the
best path computation with the composition operations and to
retain only a portion of the intermediate results by discarding
unpromising paths.

So far, our presentation has used context-independent phone
models. In other words, the likelihoods assigned by a phone
model in A assumed conditional independence from neigh-
boring phones. However, it has been shown that context-
dependent phone models, which model a phone in the context
of its adjacent phones, are very effective for improving recog-
nition performance [14].

We can include context-dependent models, such as triphone
models, in our presentation by expanding our 'atomic models'
in A to one for every phone in a distinct triphonic context.
Each model will have the same form as in Figure 2b, but
will have different likelihoods for the different contexts. We
could also try to directly specify D in terms of the new units,
but this is problematic. First, even if each word in D had
only one phonetic realization, we could not directly substitute
its spelling in terms of context-dependent units, since the
cross-word units must be specified (because of the closure
operation). In this case, a common approach is to either
use left (right) context-independent units at the word starts
(ends), or to build a fully context-dependent lexicon, but have
special computations that insure the correct models are used at
word junctures. In either case, this disallows use of phonetic
networks as in Figure 2c.

There is, however, a natural solution to these problems using a
a finite-state transduction. We leave D as defined before, but
interpose a new transduction, C, between A and D, to convert
between context-dependent and context-independent units. In
other words, we now compute maxw (O o A o C o D o M) (w).

The form of C for triphonic models is depicted in Figure 2d.
For each context-dependent phone model, 7, which corre-
sponds to the (context-independent) phone 7re in the context of
7q and 7rr, there is a state qle in C for the biphone 7rlre, a state
qcr for 7rcTr~ and a transition from qtc to q~ with input label
7 and output label 7rr. We have constructed such a transducer
and have been able to easily convert context-independent pho-
netic networks into context-dependent networks for certain
tasks. In those cases, we can implement full-context depen-
dency with no special-purpose computations.

4. Chinese Text Segmentation
Our second application is to text processing, namely the to-
kenization of Chinese text into words, and the assignment
of pronunciations to those words. In Chinese orthography,
most characters represent (monosyllabic) morphemes, and as
in English, words may consist of one or more morphemes.
Given that Chinese does not use whitespace to delimit words,
it is necessary to 'reconstruct' the grouping of characters into
words. For example, we want to say that the sentence [] 3~
l ~ , ~ g ~ - ~ "How do you say octopus in Japanese?", con-
sists of four words, namely [] 3~ ri4-wen2 'Japanese', ~ ,
zhangl-yu2 'octopus', ~ g ~ zen3-mo 'how', and -~ shuol
'say'. The problem with this sentence is that [] ri4 is also
a word (e.g. a common abbreviation for Japan) as are 3~
Y~ wen2-zhangl 'essay', and ~, yu2 'fish', so there is not a
unique segmentation.

The task of segmenting and pronouncing Chinese text is nat-
urally thought of as a transduction problem. The Chinese
dictionary s is represented as a WFST D. The input alphabet
is the set of Chinese characters, and the output alphabet is the
union of the set of Mandarin syllables with the set of part-
of-speech labels. A given word is represented as a sequence
of character-to-syllable transitions, terminated in an e-to-part-
of-speech transition weighted by an estimate of the negative
log probability of the word. For instance, the word ~ , 'oc-
topus' would be represented as the sequence of transductions
~:zhangllO.O ~:yu210.O c:noun/13.18. A dictionary in this
form can easily be minimized using standard algorithms.

An input sentence is represented as an unweighted acceptor S,
with characters as transition labels. Segmentation is then ac-
complished by finding the lowest weight string in S o D*. The
result is a string with the words delimited by part-of-speech
labels and marked with their pronunciation. For the example
at hand, the best path is the correct segmentation, mapping
the input sequence [] 3~ c ~ ~, c~ F~ c-~ ~ to the sequence
ri4 wen2 noun zhangl yu2 noun zen3 mo adv shuo l verb.

As is the case with English, no Chinese dictionary covers all
of the words that one will encounter in Chinese text. For
example, many words that are derived via productive mor-
phological processes are not generally to be found in the dic-
tionary. One such case in Chinese involves words derived via
the nominal plural affix r~l -men. While some words in ~I
will be found in the dictionary (e .g . , / ! !~ tal-men 'they';
~ ren2-men 'people'), many attested instances will not:
for example, ~ f ~ jiang4-men '(military) generals', ~
qingl-wal-men 'frogs'. Given that the basic dictionary is
represented as a finite-state automaton, it is a simple matter
to augment the model just described with standard techniques
from finite-state morphology ([15, 16], inter alia). For in-

3We are currently using the 'Behavior Chinese-English Electronic Dic-
tionary', Copyright Number 112366, from Behavior Design Corporation,
R.O.C.; we also wish to thank United Informaties, Inc., R.O.C. for providing
us with the Chinese text corpus that we used in estimating lexieal probabil-
ities. Finally we thank Dr. Jyun-Sheng Chang for kindly providing us with
Chinese personal name corpora.

266

stance, we can represent the fact that f] attaches to nouns by
allowing e-transitions from the final states of noun entries, to
the initial state of a sub-transducer containing f] . However,
for our purposes it is not sufficient merely to represent the
morphological decomposition of (say) plural nouns, since we
also want to estimate the cost of the resulting words. For
derived words that occur in our corpus we can estimate these
costs as we would the costs for an underived dictionary en-
try. So, ~] jiang4-men ' (military)generals' occurs and
we estimate its cost at 15.02; we include this word by allow-
ing an e-transition between ~ and f~, with a cost chosen so
that the entire analysis o f ~] ends up with a cost of 15.02.
For non-occurring possible plural forms (e.g., ~ / / ~ f] nan2-
gual-men 'pumpkins') we use the Good-Turing estimate (e.g.
[17]), whereby the aggregate probability of previously unseen
members of a construction is estimated as N1/N, where N is
the total number of observed tokens and N1 is the number of
types observed only once; again, we arrange the automaton
so that noun entries may transition to f] , and the cost of the
whole (previously unseen) construction comes out with the
value derived from the Good-Turing estimate.

Another large class of words that are generally not to be found
in the dictionary are Chinese personal names: only famous
names like ~ j , ~ 'Zhou Enlai' can reasonably be expected
to be in a dictionary, and even many of these are missing. Full
Chinese personal names are formally simple, being always
of the form FAMILY+GIVEN. The FAMILY name set is re-
stricted: there are a few hundred single-character FAMILY
names, and about ten double-character ones. Given names
are most commonly two characters long, occasionally one-
character long: there are thus four possible name types. The
difficulty is that GIVEN names can consist, in principle, of any
character or pair of characters, so the possible GIVEN names
are limited only by the total number of characters, though
some characters are certainly far more likely than others. For
a sequence of characters that is a possible name, we wish to
assign a probabilityto that sequence qua name. We use a vari-
ant of an estimate proposed in [18]. Given a potential name
of the form F1 G1 G2, where F1 is a legal FAMILY name and
G1 and G2 are Chinese characters, we estimate the probabil-
ity of that name as the product of the probability of finding
any name in text; the probability of F1 as a FAMILY name;
the probability of the first character of a double GIVEN name
being G1; the probability of the second character of a double
GIVEN name being G2; and the probability of a name of the
ftyrm SINGLE-FAMILY+DOUBLE-GIVEN. The first proba-
bility is estimated from a count of names in a text database,
whereas the last four probabilities are estimated from a large
list of personal names. This model is easily incorporated into
the segmenter by building a transducer restricting the names
to the four licit types, with costs on the transitions for any
particular name summing to an estimate of the cost of that
name. This transducer is then summed with the transducer
implementing the dictionary and morphological rules, and the
transitive closure of the resulting transducer computed.

References
1. M. A. Harrison, Introduction to Formal Language Theory.

Reading, Massachussets: Addison-Wesley, 1978.

2. J. Berstel, Transductions and Context-Free Languages. No. 38
in LeitF~iden der angewandten Mathematik and Mechanik
LAMM, Stuttgart, Germany: Teubner StudienbOcher, 1979.

3. R. Teitelbaum, "Context-free error analysis by evaluation of
algebraic power series," in Proc. Fifth Annual A CM Symposium
on Theory of Computing, (Austin, Texas), pp. 196-199, 1973.

4. B. Lang, "A generative view of ill-formed input processing,"
in ATR Symposium on Basic Research for Telephone Interpre-
tation, (Kyotu, Japan), Dec. 1989.

5. A. Paz, Introduction to Probabilistic Automata. Academic,
1971.

6. T. R. Booth and R. A. Thompson, "Applying probability mea-
sures to abstract languages," IEEE Trans. Computers, vol. C-22,
pp. 442--450, May 1973.

7. S. Eilenberg, Automata, Languages, andMachines, vol. A. San
Diego, California: Academic Press, 1974.

8. W. Kuich and A. Salomaa, Semirings, Automata, Languages.
No. 5 in EATCS Monographs on Theoretical Computer Sci-
ence, Berlin, Germany: Springer-Verlag, 1986.

9. J. Berstel and C. Reutenauer, Rational Series and Their Lan-
guages. No. 12 in EATCS Monographs on Theoretical Com-
puter Science, Berlin, Germany: Spnnger-Verlag, 1988.

10. R. M. Kaplan and M. Kay, "Regular models of phonological
rule systems;' Computational Linguistics, 1994. To appear.

11. E. Roche, Analyse Syntaxique Transformationelle du Francais
par Transducteurs et Lexique-Grammaire. PhD thesis, Univer-
sit6 Paris 7, 1993.

12. L. R. Bahl, E Jelinek, and R. Mercer, "A maximum likeli-
hood approach to continuous speech recognition;' 1EEE Trans.
PAMI, vol. 5, pp. 179-190, Mar. 1983.

13. A. Ljolje and M. D. Riley, "Optimal speech recognition us-
ing phone recognition and lexical access;' in Proceedings of
ICSLP, (Banff, Canada), pp. 313-316, Oct. 1992.

14. K.-E Lee, "Context dependentphonetic hidden Markov models
for continuous speech recognition," IEEE Trans. ASSP, vol. 38,
pp. 599--609, Apr. 1990.

15. K. Koskenniemi, Two-LeveI Morphology: a General Computa-
tional Model for Word.Form Recognition and Production. PhD
thesis, University of Helsinki, Helsinki, 1983.

16. E. Tzoukermann and M. Liberman, "A finite-state morpholog-
ical processor for Spanish:' in COLING-90, Volume 3, pp. 3:
277-286, COLING, 1990.

17. K. W. Church and W. Gale, "A comparison of the enhanced
Good-Turing and deleted estimation methods for estimating
probabilities of English bigrams," Computer Speech and Lan-
guage, vol. 5, no. 1, pp. 19-54, 1991.

18. J.-S. Chang, S.-D. Chen, Y. Zheng, X.-Z. Liu, and S.-J.
Ke, "Large-corpus-based methods for Chinese personal name
recognition. (In Chinese]);' Journal of Chinese Information
Processing, vol. 6, no. 3, pp. 7-15, 1992.

267

