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Abstract. Statistical approaches in speech technology, whether used for statistical language models, trees, hidden
Markov models or neural networks, represent the driving forces for the creation of language resources (LR), e.g., text
corpora, pronunciation and morphology lexicons, and speech databases. This paper presents a system architecture for
the rapid construction of morphologic and phonetic lexicons, two of the most important written language resources
for the development of ASR (automatic speech recognition) and TTS (text-to-speech) systems. The presented
architecture is modular and is particularly suitable for the development of written language resources for inflectional
languages. In this paper an implementation is presented for the Slovenian language. The integrated graphic user
interface focuses on the morphological and phonetic aspects of language and allows experts to produce good
performances during analysis. In multilingual TTS systems, many extensive external written language resources
are used, especially in the text processing part. It is very important, therefore, that representation of these resources
is time and space efficient. It is also very important that language resources for new languages can be easily
incorporated into the system, without modifying the common algorithms developed for multiple languages. In this
regard the use of large external language resources (e.g., morphology and phonetic lexicons) represent an important
problem because of the required space and slow look-up time. This paper presents a method and its results for
compiling large lexicons, using examples for compiling German phonetic and morphology lexicons (CISLEX), and
Slovenian phonetic (SIflex) and morphology (SImlex) lexicons, into corresponding finite-state transducers (FSTs).
The German lexicons consisted of about 300,000 words, SIflex consisted of about 60,000 and SImlex of about
600,000 words (where 40,000 words were used for representation using finite-state transducers). Representation
of large lexicons using finite-state transducers is mainly motivated by considerations of space and time efficiency.
A great reduction in size and optimal access time was achieved for all lexicons. The starting size for the German
phonetic lexicon was 12.53 MB and 18.49 MB for the morphology lexicon. The starting size for the Slovenian
phonetic lexicon was 1.8 MB and 1.4 MB for the morphology lexicon. The final size of the corresponding FSTs
was 2.78 MB for the German phonetic lexicon, 6.33 MB for the German morphology lexicon, 253 KB for SIflex
and 662 KB for the SImlex lexicon. The achieved look-up time is optimal, since it only depends on the length of
the input word and not on the size of the lexicon. Integration of lexicons for new languages into the multilingual
TTS system is easy when using such representations and does not require any changes in the algorithms used for
such lexicons.

Keywords: morphology, grapheme-to-phoneme conversion, text processing, lexicons, multilinguality, finite-state
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1. Introduction

During the last decade important efforts can be identi-
fied in the development of lexical knowledge databases,

including different linguistic knowledge types such
as syntactic, morphological, phonological, semantic,
and others. Every natural language processing system
(NLP) needs to manage linguistic knowledge and a
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high volume of lexical data, as well as incorporate effi-
cient computational techniques for performing linguis-
tic analysis. Practical NLP applications require large
lexical resources, but their construction is very time-
consuming. The appropriate tools for rapid resource
development are needed because the development of
natural language processing systems must be quick and
efficient. This paper describes a morphological analy-
sis and a grapheme-to-phoneme conversion tool with
a graphical interface that allows the rapid and reliable
construction of lexicons. Furthermore, a procedure is
described for the time and space optimal representation
of both lexicons.

A language resources (LR) development tool allows
experts to include, revise and validate lexical knowl-
edge, while achieving good performance of analysis
time. The linguistic knowledge included in the graph-
ical user interface focuses on the morphological and
phonetic aspects of inflectional languages, in this case
the Slovenian language. The emphasis in developing
this tool was to make this process as productive as
possible.

Today, many text corpora resources are available in
electronic form (e.g., Internet, CD-ROMs). In this work
most of the needed text corpora for the construction
of morphological and phonetic lexicon was available
on CD-ROMs (newspaper articles) or was downloaded
from the Internet. Also, texts from literature were avail-
able. The obtained text corpus consisted of about 31
million words. The tokenization of text into word to-
kens was performed after conversion into the text for-
mat, to obtain the list of root items for the construction
of morphological and phonetic lexicons.

In the following a definition of needed text resources
for the lexicons’ construction will be given and the data
preparation step described in more detail. The architec-
ture of the tool will then be presented, including all the
modules. The basic capabilities of the system will be
discussed and the notation used will be described. A
tool performance evaluation will also be reported and,
finally, a conclusion will be drawn.

2. System Architecture for Building
Morphological and Phonetic Lexicons

Figure 1 shows the system for the lexicons’ develop-
ment. This figure shows that the system architecture
consists basically of two levels. First, the data prepara-
tion step is performed, followed by the lexicon’s con-
struction. The lexicon’s construction consists of two

Figure 1. System architecture for building morphological and pho-
netic lexicons.

modules: a rule-based linguistic module and an au-
tomatic grapheme-to-phoneme conversion module. A
graphical user interface links all the modules together.
A more detailed description of the system modules is
given later. The architecture of the system is modular
and multilingually oriented. Appropriate system mod-
ules must be adopted for using the presented platform in
other languages. The tokenization module is capable of
multilingual text processing (Rojc et al., 1999), and the
statistical part of the grapheme-to-phoneme conversion
module is also multilingual, since it uses a data-driven
approach based on neural networks. The graphical user
interface currently supports the Slovenian language,
but can also be adapted for other languages. Almost
all the modules are written in the C++ programming
language. The exception is the graphical user interface,
which is written in Java language using Visual J++.
The whole system runs on all Windows platforms—
Windows 95/98 and Windows NT/2000/XP.

3. Tokenization and Word Selection Process

Some text pre-processing on the obtained text cor-
pus must be done before using this tool for build-
ing morphological and phonetic lexicons (e.g., for the
Slovenian language). Pre-processing algorithms must
be highly flexible and robust because of the general,
unrestricted nature of the text. As shown in Fig. 1, the
input text corpus (raw ASCII text) is fed into the tok-
enizer module (finite-state machine) (Rojc et al., 1999),
which emits hypotheses about tokens and segments the
input text into words.
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The tokenizer module is organized on a multilevel
basis. At the lowest level the lexical scanner separates
the input text into tokens. Some tokens may not be
in a canonical form appropriate for constructing mor-
phological and phonetic lexicons. In this case, the text
normalization processing level breaks such tokens into
their constituent words. All tokens such as date, hour,
cardinal numbers and ordinal numbers are expanded
into corresponding word forms during the tokenization
process in the tokenizer module (’expanding text pro-
cessing level’). The obtained words are sorted, and a
word frequency is assigned to each one. A final list of
items was defined by this procedure, using the 30,000
most frequent words in the input corpus (root forms).

4. Rule-Based Linguistic Representation Module

Figure 2 shows the graphical user interface of the sys-
tem (lexicons construction level). This interface visu-
ally presents all the information generated by the rule-
based linguistic module (e.g., adjectives). An expert

Figure 2. Graphical user interface of the system for building morphological and phonetic lexicons.

also is able to perform editing, correction, and verifica-
tion actions when using it. The morphological analysis
represents the main part of the system. The graphical
user interface consists of three panels. The first panel is
fixed and is intended as a starting point for any analysis
the expert needs to perform. The linguistic expert has to
load existing phonetic and morphological lexicons, or
create a new one. A list of all items to which phonetic
and morphology information will be assigned is also
loaded as input. All items on the list must be in the root
form and alphabetically ordered. Then the expert man-
ually chooses an item from the list or just types a new
one. Next, the expert verifies the type and position of
the stress and marks a suffix in the item if it exists. The
syntactic category for the corresponding item (part-of-
speech) is further chosen: noun, verb, adjective, num-
ber, pronoun, adverb, conjunction, interjection, article,
and predicative. This action opens the appropriate sec-
ond and third panels for corresponding parts-of-speech.
Based on this selection, the rule-based linguistic rep-
resentation component generates all attributes and val-
ues and enters them into their respective fields. The
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linguistic expert then verifies all the values and cor-
rects them if needed. The data control window serves
for verification of the generated data. The expert can
define the comparative forms of adjectives and adverbs
and the data for lemmas using the second panel. The
third panel is used for the declension or conjugative
forms of lemmas.

Currently this component works for the Slovenian
language only, but could be adapted for other lan-
guages by integrating the appropriate linguistic rules.
Slovenian, like other Slavic languages, is an inflectional
language, and the linguistic representation of a word
depends on complex contextual factors. Most general
linguistic rules were integrated into this component.
Because there are many exceptions in the Slovenian
language, a linguistic expert’s verification is required
following the automatic generation of all forms for
the current item’s linguistic category (POS—part of
speech). All items for processing are in their root form
and, as a result, all possible forms of the correspond-
ing item assigned with detailed linguistic information
are automatically defined. All the obtained results are
added to the existing morphological lexicon in the pre-
scribed format after the linguistic expert verifies them.

Some basic actions that must be performed for spe-
cific part-of-speech categorization are defined below:

• adjective: the comparison is performed automati-
cally and a conjugation/declension panel must be
activated,

• nouns: appropriate declension must be chosen and a
conjugation/declension panel activated,

• verbs: several panels for building various verb forms
must be activated and verified after automatic gener-
ation (infinitive, supine, participle, verb conjugation,
etc.),

• number: the expert determines gender, number,
etc. for the root form and activates a conjuga-
tion/declension panel,

• pronoun: its type, gender, person, number and case
are determined for the root form, and a conjugation/
declension panel also is activated,

• adverb: comparison is performed automatically and
the type chosen,

• conjunction: the type is determined,
• interjection: the type is determined,
• article: the type is determined, and
• predicative: the type and case are determined.

When the expert verifies the content of the second
panel, the information is saved in memory by push-

ing the ‘store data’ button. The expert then moves to
the third panel (conjugation/declension), where conju-
gation/declension forms of the root item are automati-
cally generated (adjective, nouns, verbs, and numbers).
In the Slovenian language there are many exceptions
that cannot always be correctly interpreted by the rule-
based linguistic representation component. Sometimes
the stress changes the position and type in the word dur-
ing the conjugation/declension process. Manual cor-
rections by an expert are needed because this is very
hard to predict correctly using rules.

5. Automatic Grapheme-to-Phoneme
Conversion Module

The words in their grapheme representation have to be
mapped onto their phonetic representation, i.e., into
their pronunciation for speech recognition and text-
to-speech synthesis. The availability of pronunciation
lexicons in their canonical form (a single phonemic
representation for each word) is very important in or-
der to be able to build grapheme-to-phoneme models.
In some languages this form can be derived from the
grapheme form by a set of pronunciation rules, but for
many languages (e.g., for the Slovenian language) this
relationship is complex and is usually handled by man-
ually produced pronunciation lexicons.

An automatic grapheme-to-phoneme conversion
module was added to make it easier for a linguistic
expert to develop the pronunciation lexicon. It consists
of two parts. The first part uses a rule-based approach,
and the second is based on a data-driven approach, us-
ing neural networks. The first part is intended for use
at the initial stage of phonetic lexicon construction,
when there is no material for training a neural net-
work. First, a rule-based stress assignment is done (in
cases where grapheme-to-phoneme conversion is de-
pendent on the stress position and stress type—e.g., as
in the Slovenian language), followed by a grapheme-to-
phoneme conversion procedure. Rule-based syllabifi-
cation on the phonetic transcriptions obtained can then
be performed. The result is verified and, if needed, cor-
rected by the linguistic expert. The generated phonetic
transcriptions are added to the phonetic lexicon after
they are corrected.

The data-driven approach using a neural network can
be used as soon as we have enough data in the phonetic
lexicon generated by the process described above. The
neural network, which was taken as the basis for this
part, is based on a method used and described in the
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SNNS (Stuttgarter Neuronaler Netz Simulator SNNS)
(Zell, 1994), which provides different training meth-
ods for a variety of applications. The data preparation,
generation of training patterns and the training of a
neural network are done completely automatically. A
standardized alignment between the letters in an entry
of the lexicon and the phones in corresponding pro-
nunciation form must be performed before building
models.

5.1. String Alignment

In many languages the number of phones in a word’s
pronunciation and the number of letters in an ortho-
graphic transcription of a word are not a one-to-one
match. Letters usually can be mapped either to zero,
one, or two phones. When letters in some contexts cor-
respond to no phone, they are marked with an empty
symbol ( epsilon ). The alignment task actually be-
comes an introduction of epsilons into the phonemic
representation so that it matches the length of the
grapheme representation. The explicit listing of the
phones (or multi-phones) to which each letter in the
alphabet may correspond, irrespective of the context,
is defined before doing string alignment. This task can
be done in an interactive process over the training set
from the phonetic lexicon. In the list of allowable map-
pings, the vowels have a much longer list of potential
phones. The input of the algorithm used is the list of
allowable mappings and input lexicon. The probability
of one grapheme G matching with phoneme P is esti-
mated during processing, and DTW is used to introduce
epsilons at positions maximizing the probability of the
word’s alignment path. Once the dictionary is aligned,
the association probabilities can be computed again,
and so on until convergence.

Algorithm for alignment of strings:

//initialize prob(G,P) the probability of G matching P
1. for each wordi in training set

counting all possible G/P associations for all
possible epsilon positions in the phonetic
transcription using DTW.

//EM loop
2. for each wordi in training set

alignment path = arg max
∏

i,i prob(Gi,Pj)
compute new p(G,P) on alignment path

3. if(prob != new p) goto 2

The grapheme-to-phoneme conversion is performed in
two steps. In the first, stress marks are inserted. In the
second, the graphemes are converted into phonemes,
and the syllable breaks are inserted in the phoneme
string. The neural networks are constantly learned
off-line during the lexicons’ development and then
integrated into the grapheme-to-phoneme conversion
module to increase their performance. A multilayer per-
ceptron (MLP) feedforward network with one hidden
layer was used as the basic neural network model. A
back propagation algorithm was chosen as the learning
algorithm for both networks.

5.2. Syllabification

Marking syllables is a very important and necessary
operation in text-to-speech synthesis systems because
in many languages the pronunciation of phonemes is a
function of their location in the syllable, relative to the
syllable boundaries. Phoneme location in the syllable
also has an important role for the duration of the phone
and represents significant information for any module
that predicts segmental duration in a TTS system.

The word “multilingual” describes a system which
uses common algorithms for multiple languages. A
collection of language-specific TTS systems cannot
be considered as a multilingual system. In a multilin-
gual TTS system all the language- specific information
should be stored in data tables, and all the algorithms
should be shared among all languages. In accordance
with this goal, the following subsections present the
construction of a syllabification model using weighted
finite-state transducers (Kiraz and Möbius, 1998). It
can be used for any language, but this paper illustrates
its use for the Slovenian language. The syllabification
process is implemented as a weighted finite-state trans-
ducer, which was constructed using marked syllables in
the SIflex dictionary (60,000 entries) (Rojc and Kačič,
2000). The weights of the corresponding weighted
finite-state transducer were determined according to
the statistical results of processing syllable structures
and frequencies. The frequencies of the onset, nucleus,
and coda types were converted into weights that are
associated with the corresponding transitions of the
finite-state transducer.

5.2.1. Syllable Structure of the Slovenian Language.
The Slovenian language allows complex consonant
clusters in the onset and coda of syllables. The classes
of Slovenian phones are presented in Table 1. Some
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Table 1. Classes of Slovenian phones.

Class Description Slovenian phones

P unvoiced stops p t k

B voiced stops b d g

S unvoiced fricatives f s S x

Z voiced fricatives z Z

N nasals m n

L liquids, glides l r v j

V vowels i: e: E: a: O: o:
u: i E a O u @

Table 2. Slovenian language allows up to 3 consonants
in the onset of the syllable and 4 consonants in the coda
of the syllable.

Onsets Codas

Class Clusters Class Clusters

PLL klj LSP jst

SPL skr LSPN jstn

SNL Snj SPP stk

LLL vrv BLL brv

ZBL zbr BLP brt

examples of complex consonant clusters are given in
Table 2. Statistical results show that the Slovenian lan-
guage allows up to four consonants in the onset and
up to four consonants in the coda of the syllable. De-
termining the syllable boundary correctly is important
because the pronunciation of most phonemes is a func-
tion of their position in the syllable. Syllable bound-
aries also influence phoneme duration. The syllabifica-
tion process is implemented as a weighted finite-state
transducer (WFST) that is constructed from a list of syl-
lables. The weights of the finite-state transducer were
determined using frequencies of onset, nucleus, and
coda types obtained from the statistical processing of
training data (syllables). They play a significant role in
obtaining the correct syllabification, especially in the
case of consonant clusters.

5.2.2. Finite-State Automata and Finite-State
Transducers. Finite-state machines are used in
many areas of natural language processing. Their
use is motivated mainly by considerations of space
and time efficiency from the computational point of
view. Linguistically, the use of finite-state machines
(Mohri, 1996; Berstel and Reutenauer, 1988) is very

convenient because they allow an easy description for
most of the relevant local phenomena in a language.
They also provide compact representation of the
language-specific lexical rules needed for knowledge
representation. These features of finite-state machines
are of major importance in the field of multilingual text
processing, large scale lexical representation, etc. This
paper presents a multilingual syllabification module
using weighted finite-state transducers and later a
string-string finite-state transducer for representation
of large scale morphological and phonetic lexicons.
An approach is presented for compiling such lexicons
into finite-state transducers that are their time and
space optimal representation. The effects of using
finite-state transducers for representation of external
natural language resources are a great reduction in
the memory required by the lexicons and the optimal
access time (required for obtaining information) that
is independent of the size of the lexicons.

Finite-State Automata (FSA). Finite-state automata
(FSA) (Mohri, 2000) can be seen simply as an oriented
graph with labels on each arc. Fundamental theoretical
properties make FSAs very flexible, powerful and effi-
cient. FSAs can be seen as defining a class of graphs and
also as defining languages (Aho et al., 1974 ; Hopcroft
and Ullman, 1979; Kuich and Salomaa, 1986).

Definition. A finite-state automaton A is a 5-tuple
(�, Q, i, F, E) where � is a finite set called the al-
phabet, Q is a finite set of states, i ∈ Q is the initial
state, F ⊆ Q is the set of final states and E ⊆ Q ×
(� ∪ {∈}) × Q is the set of edges. FSAs have been
shown to be closed under union, Kleen star, concatena-
tion, intersection and complementation, thus allowing
for natural and flexible descriptions. In addition to their
flexibility due to their closure properties, FSAs can also
be turned into canonical forms that allow for optimal
time and space efficiency.

Finite-State Transducer (FST). FSTs (Mohri, 2000)
can be interpreted as defining a class of graphs, a class
of relations on strings, or a class of transductions on
strings. Based on the first interpretation, an FST can be
seen as an FSA in which each arc is labeled by a pair of
symbols rather than by a single symbol (Crochemore,
1986).

Definition. A finite-state transducer T is a 6-tuple
(�1, �2, Q, i, F, E) such that:
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• �1 is a finite alphabet, namely the input alphabet,
• �2 is a finite alphabet, namely the output alphabet,
• Q is a finite set of states,
• i ∈ Q is the initial state,
• F ⊆ Q is the set of final states,
• E ⊆ Q × �∗

1 × �∗
2 × Q is the set of edges.

As with FSAs, FSTs are also powerful because of their
various closure and algorithmic properties. In this paper
the following conventions are followed when describ-
ing an FST: final states are depicted by a bold circle; ε

represents an empty string; and the initial state (labelled
0) is the leftmost state appearing in the figure.

5.2.3. Weighted Finite-State Model for Multilingual
Syllabification. Let’s mark syllabification finite-state
transducer as Tsyll. Such a transducer contains one ad-
ditional symbol, ‘-’ in the alphabet, that marks the syl-
lable boundaries. The correct syllable boundary is very
important for TTS systems. The duration prediction
of segments depends on whether the segment is in the
coda, nucleus, or onset of a given syllable. Another fea-
ture that can be used is that the finite-state transducers
(FST) are bi-directional. If the transducers are inverted,
the system that maps a phonetic string back to its ortho-
graphic string is obtained. Such a transducer is actually
a de-syllabifier T −1

syll . The syllabifier presented in this
paper is implemented as a weighted finite-state trans-
ducer. The corresponding weights were determined
during training using the SIflex phonetic lexicon for
the Slovenian language.

5.2.4. Construction of Onset, Nuclei and Coda
Automata. The construction of a syllabification
transducer for the Slovenian language is presented in
the following. The SIflex lexicon was used as the train-
ing material. The lexicon already contains some syl-
labified phonological words, for instance:

/afrika
/a: - f r i - k a
af∗er
a - f ∗E r
ag\ent
a - g \E n t
· · ·

In the phonetic lexicon the phonetic transcription is
written using SAMPA symbols for the Slovenian lan-
guage (Sampa, 1998). In the above entries the symbol
‘-’ marks syllable breaks, and the symbols ‘∗’, ‘/’, and

Table 3. The sets of Slovenian nuclei found in
the SIflex dictionary, together with the number
of observations (f). Weights for the transitions
between states of the automaton for each nucleus
are obtained by calculating the reciprocal of each
nucleus type’s frequency.

Nucleus f 1/f · 103

a 7227 0.13837

i 5940 0.16835

O 6017 0.166196

O: 1881 0.531632

io: 3 333.33

E 6314 0.158378

E: 2156 0.463822

u 2002 0.499501

i: 5819 0.171851

o: 4433 0.225581

@ 2915 0.343053

u: 2277 0.439174

a: 7799 0.128222

e: 5665 0.176523

@r 836 1.19617

‘\’ are stress marks, corresponding to the three differ-
ent types of stress that exist in the Slovenian language
(long and narrow, long and wide, short and wide).

First, a list of all the syllables in the training database
was obtained. Four syllables were obtained for the
Slovenian word [pacientov (patient’s)] with phonetic
transcription [p a − ts i − j ∗E n − t o w]. Each sylla-
ble in the list of syllables is then split into plausible
onsets, nuclei, and codas. As an example, the sylla-
ble components obtained for the phonological word
[p a − ts i − j ∗E n − t o w] are presented in Table 4.

Then the sets of plausible onsets, nuclei, and co-
das are computed with their occurrence frequencies.
Statistics for each onset, nucleus and coda in the train-
ing data are actually performed regardless of the con-
text. The set of Slovenian nuclei found in the SIflex

Table 4. Syllable structure for the Slovenian
word “pacientov” (patient’s).

Onset Nucleus Coda

p a

ts i

j ∗E n

t o w
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dictionary is given in Table 3. Each of the three sets
(onsets, nuclei and codas) is compiled into a weighted
finite-state transducer by taking the disjunction of
its members. The corresponding frequencies are con-
verted into weights by taking their reciprocals. The re-
sult of this module is three finite-state automata (ac-
ceptors), marked as: Ao (onsets), An (nuclei), and Ac

(codas):

Ao =
⋃

(o, f )∈ξ

o〈1/ f 〉 (1)

An =
⋃

(o, f )∈ψ

n〈1/ f 〉 (2)

Ac =
⋃

(o, f )∈ζ

c〈1/ f 〉 (3)

In these formulae the values in the angle brackets rep-
resent the corresponding weights associated with the
preceding symbol in an expression where ξ represents
the set of onsets, ψ the set of nuclei and ζ the set of
codas.

5.2.5. The Phonotactic Automaton. The following
presents the language-dependent step. The syllabic
phonotactics can be described for the Slovenian lan-
guage by the extended regular expression:

Aphonem = Opt(Ao)An Opt(Ac)

Opt(Ao) = Ao ∪ ε (4)

Opt(Ac) = Ac ∪ ε

Here, Opt represents the optional operator, and ε de-
notes the empty string. The above equation accepts
an optional onset from automaton Ao, followed by an
obligatory nucleus from automaton An , followed by
an optional coda from Ac. This is the only language-
dependent expression. Other languages may use dif-
ferent expressions. In some languages, such as Arabic
and Syriac, the onset is an obligatory part of the syllable
and not optional (Kiraz, 1998). In this case the optional
operator defined in the equation must be omitted.

The syllabification automaton, denoted by Asyll,
must accept a sequence of syllables, each followed by
a syllable boundary marker ‘-’ (except the last one).
This can be achieved by the expression:

Asyll = Aphonem(−Aphonem)∗ (5)

This automaton defines a syllable from Aphonem, that is
followed by zero or more occurrences of the boundary
marker ‘-’ and a syllable from Aphonem.

5.2.6. The Syllabification Transducer. The above
automaton Asyll accepts a sequence of one or more
syllables, each (except the last one) followed by the
syllable boundary marker ‘-’. What is actually needed
is a finite-state transducer that will insert the syllable
boundary marker ‘-’ after each syllable except the last
one. This is simply achieved by computing the iden-
tity transducer for automaton Aphonem and replacing the
above marker ‘-’ with a mapping ‘ε:-’. The obtained
syllabification transducer is then:

Tsyll = Id(Aphonem)((ε :-)Id(Aphonem))∗ (6)

The Id operator produces the identity transducer of its
argument. The transducer Tsyll is shown in Fig. 3.

5.2.7. Post-Processing. As shown in Table 3, some
nucleus types, like (io:) for example, have an extremely
low number of observations in the training data. In
this case this indicates probable erroneous entries in
the training database. Corresponding weights derived
from the frequencies of nucleus types must be manu-
ally corrected (Kiraz and Möbius, 1998). Hand-tuning
is also important when dealing with training databases
for which data are scarce. In such cases it is not feasible
to use databases for training. It is possible, however, to
construct a syllabification transducer manually. One of
the important features is that weighted transducers are
very efficient regarding mathematics. The consequence
is that it is easy to perform hand-tuning. First, a partial
duplicate set of ψ can be created, that contains only the
nuclei to be finely tuned, and in which each nucleus is
paired with the adjustment in weight. Let’s mark this

Figure 3. The final syllabification transducer constructed accord-
ing to Slovenian syllabic phonotactics. The constructed transducer
inserts a syllable boundary marker ‘-’ after each non-final syllable.
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new set as ψ ′. The automaton for hand-tuned nuclei A′
n

can then be defined as:

A′
n =

( ⋃
(n′, f )∈ψ ′

n′〈1/ f 〉
) ⋃ ( ⋃

(n, f )∈ψ−ψ ′
n〈0〉

)
(7)

As shown in Eq. (7), the first part is equal to the expres-
sion for nuclei automaton An , but computes the weights
for the hand-tuned nuclei instead. To complete this set,
this part is joined with the disjunction of the remaining
non-hand tuned nuclei (ψ − ψ ′), where each element
in ψ − ψ ′ is given a weight of zero.

The new automaton has now to be merged with the
old one. The new automaton incorporates both An and
A′

n . This process can be accomplished simply by us-
ing an intersection operation of the two automata, thus
obtaining the new automaton Anuclei:

Anuclei = An ∩ A′
n (8)

This explanation comes from the theory of weighted
automata. When no weights are used, the intersection
operation of two automata produces a third automaton,
which accepts strings that both of the original two ma-
chines accept, and the weights of the common paths in
the original two machines are added in the final result.
This calculation is shown in Fig. 4. The computation
of expressions for Aonsets and Acodas can be done in the
same way. A new equation for the phonotactic automa-
tons can be defined using new automata:

Aphonem = Opt(Aonsets)Anuclei Opt(Acodas) (9)

It is very important that hand tuning be done before the
construction of Tsyll. The equation Anuclei = An ∩ A′

n

Figure 4. Mathematical intersection between two weighted au-
tomata. States marked with 0 are starting states, and states marked
with 1 are final states. Final automaton (right) accepts strings that
both left automata accept. Final weights are obtained simply by sum-
ming up weights on common paths of the original two automata.

(also for Aonsets and Acodas) can only be computed be-
tween automata because the accepting automata are
closed under the intersection, and the finite-state trans-
ducers are not.

5.2.8. Conclusions on the Syllabification Perfor-
mance. Slovenian syllable phonotactics can be de-
scribed by the same extended regular expression as in
the cases of German and English. The onset and coda
parts of the syllable are optional, whereas the nucleus
part is obligatory and also defines the number of sylla-
bles in the word. The weights of the transitions in the
syllabification transducer were obtained from training
data derived directly from the frequencies of the onset,
nucleus and coda types. They obviously play a signifi-
cant role in obtaining the correct syllabification, espe-
cially in the case of consonant clusters. The approach
presented describes a time and space optimal solution
for syllabification and can be applied to any language.
A syllabification transducer for the Slovenian language
was constructed for illustration purposes. When the list
of all syllables was obtained, the splitting of all sylla-
bles was performed, and the corresponding frequencies
of onsets, nucleus and codas also were calculated. Fre-
quencies were used in the construction of the syllabifi-
cation weighted finite-state transducer. The final trans-
ducer for the Slovenian language consists of 4 states,
where state 0 represents the starting state. States 2 and 3
represent the final states (Fig. 3). The constructed trans-
ducer was tested on the test database (every tenth entry
in the SIflex phonetic lexicon −6,000, which were ex-
cluded from the training set). The syllabification trans-
ducer during testing did not produce any unacceptable
syllabification.

5.3. Verification of Automatically Generated
Phonetic Transcriptions

To verify the automatically generated phonetic tran-
scription, the expert must open the window that visually
presents the phonetic transcription (performed with the
automatic grapheme-to-phoneme conversion module).
This window is shown in Fig. 5. The user is actually
able to switch between using rule-based or data-driven
(using a neural network) approaches. Only unique or-
thographic words are sent to the grapheme-to-phoneme
transcription module since a lot of inflectional forms
for corresponding items are the same.

The grapheme-to-phoneme transcription module re-
ceives only non-duplicated words as input and returns
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Figure 5. Grapheme-to-phoneme conversion window.

the corresponding phonetic transcriptions with sylla-
ble break marks ‘-’ and stress marks. The linguistic
expert verifies the results and submits everything into
the phonetic lexicon. The control window in Fig. 5 can
be used for inspection (of applied rules) to identify
problems in the case of errors in the phonetic tran-
scription obtained (when the rule-based approach is
used).

5.4. Notation and Attribute/Value Tables

The notation format of the system’s output for building
morphological and phonetic lexicons consists of linear
strings of characters representing the morphosyntac-
tic information to be associated with word forms. The
string was constructed by following the philosophy of
the Intermediate Format proposed in the EAGLES Cor-
pus proposal (Leech and Wilson, 1994). It consists of
agreed upon symbols in predefined and fixed positions.
The categories used, with their relevant attributes and
values, are based on EAGLES documents (MULTEXT
project, 1996).

6. Using the Finite-State Transducer Theory for
Representation of Very Large Scale Lexicons

In general, when representing lexicons by automata,
many entries share the same codes (strings, repre-
senting some piece of information). Thus, the num-
ber of codes is small compared to the number of en-
tries. Newly developed lexicons are becoming more
and more accurate, and the number of codes can in-
crease considerably. This increase in the number of
codes also increases the smallest possible size of such
lexicons. Different codes need to be distinguished dur-
ing the construction of the automaton. Therefore, the
space required for an efficient hashing of the codes
can also become costly. Since morphological and pho-
netic lexicons can be viewed as a list of string pairs,
their representation using finite-state transducers seems
to be very appropriate (Mohri, 1994, 2000, 2001).
The results given at the end of this paper also con-
firm this assumption. Representation of lexicons using
finite-state transducers, also provides reverse look-up
capability.

6.1. Compilation Process of Large Scale Lexicons
into Finite-State Transducers

6.1.1. Lexicon Preparation. The methods used in
the compilation of large scale lexicons into finite-state
transducers (FST) assume that lexicons are given as
large lists of strings and not as a set of rules as, for
instance, was considered by Mehryar Mohri (1996).
Morphological and phonetic lexicons can be viewed
as a list of string pairs. Some items from German
phonetic and morphological lexicons are shown in
Fig. 6.

As with automata, direct construction of the sequen-
tial transducer representing a large-scale lexicon is im-
possible because the construction leads to a blow up
for a large number of entries. The lexicon is split into
several parts, to avoid this. Construction of the corre-
sponding sequential transducers, including a minimiza-
tion operation, then follows. When using union, de-
terminization, and minimization operations, only one
transducer representing the whole lexicon is obtained
at the end (Fig. 7).

6.1.2. Determinization of Finite-State Transducers.
The algorithm used is close to the powerset construc-
tion used for the determinization of automata (Mohri,
1996). The main difference is that, in this case, states
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Figure 6. German phonetic (a) and morphological lexicons (b). German morphological lexicon is coded according to CISLEX specification
(Guenthner and Maier, 1994).

Figure 7. Lexicons preparation.

for the sets with strings need to be provided. These
strings correspond to a delay in emission which is due
to the fact that outputs corresponding to a given input
can be different. Only the longest common prefix of
outputs can be kept, and subsets represent actual pairs
(state, string). The pseudocode for the algorithm to de-
terminize a transducer T1 is given in Fig. 8.

At each step a new state q2 is considered, as can be
seen in line 5 of Fig. 8. State q2 is a final state only if
it contains a pair (q, w), where q is final in T1. String
w is the final output at the state q2. In line 10, each

input label a of the transitions leaving the states of
the subset q2 is considered. A transition is constructed
from state q2 to state δ2(q2, a) with output σ2(q2, a).
Output σ2(q2, a) represents the longest common pre-
fix of the output labels of all the transitions leaving
the states q of q2 with input label a, when left con-
catenated with their delayed string w. State δ2(q2, a)
is the subset made of pairs (q ′, w′). Here q ′ is a state
reached by one of the transitions with input label a
in T1, and w′ = [σ2(q2, a)]−1wσ1(q, a, q ′) is the de-
layed string that could not be outputted earlier in the
algorithm. String [σ2(q2, a)]−1wσ1(q, a, q ′) is a well
defined string, because [σ2(q2, a)] is a prefix of all
wσ1(q, a, q ′), as can be seen from line 10.

In Fig. 10 the result of using the determinization
algorithm on the transducer from Fig. 9 (obtained us-
ing the union operation) is shown. In this example the
number of states of the determinized transducer T2 is
already less than in T1.

Experiments show that this method is very efficient
in constructing transducers for representation of large
lexicons. The disadvantage of this algorithm is that the
outputs are pushed toward the final states, which creates
a long delay in emission. Fortunately, sequential trans-
ducers can be minimized as shown in the next section.
An important characteristic of the minimization algo-
rithm is that it pushes back outputs as much as possible
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Figure 8. Pseudocode for determinization algorithm (Mohri, 1996).

Figure 9. Union operation done on a few word items in the German
phonetic lexicon (T1).

toward the initial state. In such a way the problem just
mentioned can be eliminated.

6.1.3. Minimization of Finite-State Transducers.
Sequential transducers allow very fast look-up. Min-
imization algorithms also help to make them space ef-
ficient (Watson, 1993, 1995; Mohri, 1996, 2000). The
whole minimization procedure for sequential transduc-
ers actually consists of two different algorithms. One

Figure 10. Finite-state transducers T2 (top) and T3 (bottom) ob-
tained after performing determinization and prefixation algorithms
on the finite-state transducer shown in Fig. 9.

is an algorithm for computing the prefix of a non-
deterministic automaton (Mohri, 1994), and the other
is a classical algorithm for the minimization of au-
tomata (Bauer, 1988; Watson, 1993, 1995). This section
presents an algorithm for the computation of the prefix,
as it is independent of the sequential transducer con-
cept, and will describe the entire algorithm that allows
the derivation of minimal sequential transducers.

The following notations are used in the algorithm
described:

• GT the transpose of G (the automaton obtained from
G by reversing each transition);

• Trans[u] the set of transitions leaving u ∈ V ;
• TransT [u] the set of transitions entering u ∈ V ;
• t.v the vertex reached by t and t.l, its label, for any

transition t in Trans[u] (resp. in TransT [u]), u ∈ V ;
• out-degree[u] the number of edges leaving u ∈ V ;
• in-degree[u] the number of edges entering u ∈ V ;
• E the set of edges of G.

1. First, πu , the greatest common prefixes of all its
leaving transitions, are computed:

πu ←


 �

t ∈ Trans[u]
t.v ∈ scc

t.l Xt.v


 ∧


 �

t ∈ Trans[u]
t.v /∈ scc

t.l




if u /∈ F,

πu ← ε else;

2. Then if πu �= ε, a change of variables can be
made: Yu ← πu Xu . This second step is equiva-
lent to storing the value πu and solving the system
modified by the following operations:

∀ t ∈ Trans[u], t.l ← π−1
u t.l,

∀ t ∈ TransT [u], t.l ← t.lπu .
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The number of times these two operations are per-
formed can be limited by storing in array N the num-
ber of empty labels leaving each state u of the strongly
connected component scc. While N [u] �= 0, there is
no use performing these operations as the value of πu

is ε. Also in the case that N [u] = 0 right after the
computation of πu , the πu will remain equal to ε, as
changes of variables will only affect suffixes of the
transitions leaving u. This information can be stored
using an array F , in order to avoid performing step 1
in such situations or when u is a final state. In the al-
gorithm a queue Q is used, containing the set of states
u with N [u] = F[u] = 0, for which the two opera-
tions above need to be performed, and an array INQ
indicating for each state u whether it is in queue Q.

The above operations are started by initializing N
and F to 0 for all states in scc, and by enqueuing in
queue Q an arbitrarily chosen state u of the strongly
connected component scc. Each time the transition of
a state v of TransT [u] is modified, v is added to Q if
N [v] = F[u] = 0. The property of scc’s (strongly
connected component) and the initialization of N and
F assure that each state of scc will be enqueued at least
once. Steps 1 and 2 are performed until queue Q = ∅.
This must happen as, except for the first time, step 1
is performed for a state u if N [u] = 0. After the com-
putation of the greatest common prefix, N [u] = 0 is
obtained, and then u will never be enqueued again,
or N [u] �= 0 and then a new non-empty factor πu

of P(u) has been identified. It is obvious, then, that
each state u is enqueued at most (|P(u)| + 2) times in
Q, and after, at most, (|Pmax| + 2) steps, Q = ∅ is
obtained.

Once Q = ∅, it is easy to see that the system of equa-
tions has a trivial solution: ∀ u ∈ scc, Xu = ε. It has
a unique solution. Therefore, the system is resolved.
Concatenating the factors πu involved in the changes
of variables corresponding to the state u gives the value
of P(u). The set of operations (2) are obviously equiv-
alent to multiplying the label of each transition joining
the states u and v, (v ∈ scc), on the right by P(v)
and on the left by [P(u)]−1 if u is in scc. Thus the
transformations described above do modify the transi-
tions leaving or entering states of scc as desired. The
pseudocode described in Fig. 11 gives an algorithm that
computes p(G) from G. In the algorithm, V (GSCC) rep-
resents the set of states of the component graph of G.
For each u in V (GSCC), SCC[u] stands for the strongly
connected component corresponding to u. The func-
tion GCP(G, u) called in the algorithm is such that it

Figure 11. Pseudocode for the prefixation algorithm on finite-state
transducers (Mohri, 2000).

returns p, which is the greatest common prefix of all
transitions leaving u (p = ε if u ∈ F). It replaces each
of these transitions by dividing them on the left by p
and counts and stores in N [u] the number of empty
transitions. If N [u] = 0 after the computation of the
greatest common prefix, or if u is a final state, the F[u]
becomes 1.

The computation of the greatest common prefix of
n(n > 1) words requires at most (|p| + 1) · (n − 1)
comparisons, where p is the result of this computation
(Mohri, 2000). This operation consists of comparing
the letters of the first word to those of the (n −1) others
until a mismatch or end of a word occurs. The same
comparisons allow obtaining the division on the left by
p and the number of empty transitions. In case only one
transition leavesv, the computation of the greatest com-
mon prefix can be assumed to be in O(1). Therefore, the
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Figure 12. Finite-state transducer T4 obtained using minimization
algorithm in the sense of automata from T3.

cost of a call of the function GCP for a state v(∈V − F)
is O((|p| + 1) (out-degree(v) − 1) + 1). Here p is the
greatest common prefix of the transitions leaving v.

Given a sequential transducer T , the application of
the prefix computation algorithm (Mohri, 2000) to the
output automaton of T has no effect on the states of
T or on its transition function. Only the output func-
tion σ of T changes. A minimal ST, that computes
the same function as T , can be obtained by applying
the prefix computation algorithm to the output automa-
ton of T , and also the minimization algorithm, in the
sense of automata, to the resulting transducer (Watson,
1993, 1995). Figure 10 (transducer T3) shows the result
obtained after performing a prefix computation algo-
rithm on the sequential transducer T2 in this partic-
ular case. The application of the prefix computation
algorithm on T2 leads to the transducer T3, which com-
putes the same function. Only outputs differ from those
of T2. In Fig. 12 the final obtained transducer is pre-
sented using a minimization algorithm in the sense of
automata.

7. Results

The German (CISLEX (Guenthner and Maier, 1994))
and the Slovenian large scale phonetic and morpholog-

Figure 13. Achieved reduction in the number of states obtained during the first step of compilation process—10 randomly chosen transducers
(a) German phonetic lexicon. (b) German morphology lexicon.

ical lexicons were used for the lexicons’ compilations.
In the compilation process a large set of proprietary pro-
grams written in C++ were used that perform many
operations efficiently on finite-state transducers and
finite-state automata, including determinization, mini-
mization, union, intersection, compaction, prefixation,
and local extension.

The following algorithms were used during the
construction of corresponding finite-state transduc-
ers: union, determinization, prefix computation, and
classical minimization algorithms of finite-state au-
tomaton (Hopcroft et al., 1979; Watson, 1993, 1995;
Mohri, 2001). A prefix computation algorithm was ap-
plied before the minimization algorithms. It pushes
the output labels towards the initial state as much as
possible.

In the first step of compilation, a significant reduc-
tion in the number of states was achieved, which is evi-
dent from Fig. 13. This is another reason for following
the procedure described under Section 7.3.3 (Fig. 10).
The number of states has already decreased as expected
after application of the determinization algorithm. The
number of states obviously remain unchanged after per-
forming the prefix computation algorithm. This algo-
rithm works only on the output automaton of the corre-
sponding transducer. It pushes back outputs as much as
possible toward the initial state. The effect of the pre-
fix computation algorithm can only be noticed at the
end of the compilation process, when much smaller
finite-state transducers are obtained than in the case
where only a classical minimization algorithm would
be performed after determinization. The explanation
for this can be found in Fig. 10 (transducers T2 and
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Figure 14. Increasing number of output codes in the first step of compilation process—10 randomly chosen transducers (a) German phonetic
lexicon. (b) German morphological lexicon.

T3). In the transducer T3 there are, after performing
the prefix computation algorithm, newly created ε/ε

transition labels. These empty transition labels are the
result of pushing back outputs towards the initial state.
This is why much smaller transducers are obtained after
performing the minimization algorithm in the sense of
automata.

As shown in Fig. 14, the number of output codes
increased after determinization and the prefix compu-
tation algorithm were performed. In those cases where
the prefix computation is not performed, the final num-
ber of codes would be significantly smaller, but the
final transducer would be much bigger (more states
and transitions). According to the experiments, it only
makes sense to have more codes and a much smaller

Figure 15. Achieved reduction of the number of states obtained in the second step of compilation process—10 randomly chosen transducers
(a) German phonetic lexicon. (b) German morphological lexicon.

transducer. It is also interesting that in the compilation
of the morphological lexicon, many more output codes
are generated as in the case of the phonetic lexicon
(Fig. 14). The reason is that the morphological lexi-
con is comprised of much more information than the
phonetic lexicon. In the second step of the compilation
process, the same situation regarding state reduction
can be observed as in the first step (Fig. 15). Only
the reduction in the number of states is smaller, and
there is no significant increase in the number of output
codes (Fig. 16). In Table 5 the final results are given
for the obtained finite-state transducers for the German
phonetic and morphological lexicons. The number of
input codes is the same for both lexicons, and the num-
ber of output codes is twice as big in the case of the
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Figure 16. Increasing number of output codes in the second step of compilation process—10 randomly chosen transducers (a) German phonetic
lexicon. (b) German morphological lexicon.

morphological lexicon. The reason is that the informa-
tion field in the morphological lexicon is substantially
longer (Fig. 6).

The same representation using finite-state transduc-
ers was also performed on the SIflex and SImlex
Slovenian lexicons. The starting size was 1.8 MB
(60,000 items) for SIflex and 1.4 MB for SImlex
(40,000 items). The final size achieved using the pre-
sented algorithms was 352 KB for SIflex and 662 KB
for SImlex.

Table 5. The final finite-state transducers representing German
phonetic (FST1) and German morphological (FST2) lexicons
(300,000 items).

FST1 FST2

Number of input codes 61 61

Number of output codes 34,879 87,204

Size of output vocabulary 343 KB 3,6 MB

Number of states 112,498 169,613

Number of transitions 200,801 325,839

Size of ASCII file 6,6 MB 11,53 MB

Size of bin file 2,78 MB 6,33 MB

Table 6. The final finite-state transducers representing
Slovenian phonetic (FST1) (60,000 items) and Slovenian
morphological lexicons (FST2) (40,000 items).

FST1 FST2

Number of states 69,498 90,613

Number of transitions 90,801 130,839

Size of bin file 252 KB 662 KB

8. Conclusions

Currently, six linguistic experts are working intensively
with this system, in order to build Slovenian morpho-
logical and phonetic lexicons. Following more than
a year of intensive work, the system was evaluated
as a very efficient tool for the expert. The linguis-
tic experts find it very easy to use, accurate enough
in automatic generation of linguistic descriptions for
items and also in grapheme-to-phoneme transcriptions.
Errors can be corrected quickly and easily without ex-
tensive typing, mostly using a mouse. They are able
to verify approximately 100 root items in 15 hours.
Because the Slovenian language is a very inflectional
language, on average 30 inflectional forms per root
item are generated (during the analysis of verbs, up to
200 inflectional forms can be generated). This means
that, on average, 3000 inflectional forms for 100 root
items are achieved. The phonetic lexicon is, on average,
ten times smaller than the morphologic lexicon, since
many duplicated inflectional forms are obtained during
conjugation/declension. The SImlex morphologic lex-
icon currently contains more than 600,000 items (root
items plus corresponding inflectional forms) and a pho-
netic lexicon that is approximately ten times smaller
(60,000 items). It is planned to use the Slovenian pho-
netic lexicon for research work in the field of automatic
continuous speech recognition for the Slovenian lan-
guage. Both phonetic and morphological lexicons will
be used for Slovenian TTS synthesis.

Minimal memory usage and fast look-up times
are desired when using lexicons in run-time systems.
Lexicons can be quite huge; it is, therefore, very im-
portant that their representation be optimal. As shown
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in this paper, the representation of lexicons using
finite-state transducers fulfil’s both requirements. They
provide fast look-up time, double side look-up, and
compactness.
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