
Applications of Finite-State Transducers in
Natural Language Processing

Lauri Karttunen

Xerox Research Centre Europe,
6, chemin de Maupertuis, F-38240 Meylan, France

karttunen@xrce.xerox.com http://www.xrce.xerox.com

Abstract. This paper is a review of some of the major applications
of finite-state transducers in Natural Language Processing ranging from
morphological analysis to finite-state parsing. The analysis and gener-
ation of inflected word forms can be performed efficiently by means of
lexical transducers. Such transducers can be compiled using an extended
regular expression calculus with restriction and replacement operators.
These operators facilitate the description of complex linguistic phenom-
ena involving morphological alternations and syntactic patterns. Because
regular languages and relations can be encoded as finite-automata, new
languages and relations can be derived from them directly by the finite-
state calculus. This is a fundamental advantage over higher-level linguis-
tic formalisms.

1 Introduction

The last decade has seen a substantial surge in the use of finite-state methods
in many areas of natural language processing. This is a remarkable comeback
considering that in the dawn of modern linguistics, finite-state grammars were
dismissed as fundamentally inadequate. Noam Chomsky’s seminal 1957 work,
Syntactic Structures [3], includes a short chapter devoted to “finite state Markov
processes”, devices that we now would call weighted finite-state automata. In this
section Chomsky demonstrates in a few paragraphs that

English is not a finite state language. (p. 21)

In any natural language, a sentence may contain discontinuous constituents em-
bedded in the middle of another discontinuous pair as in “If1 . . . either2 . . . or2
. . . then1 . . . ” It is impossible to construct a finite automaton that keeps track
of an unlimited number of such nested dependencies. Any finite-state machine
for English will accept strings that are not well-formed.

The persuasiveness of Syntactic Structures had the effect that, for many
decades to come, computational linguists directed their efforts towards more
powerful formalisms. Finite-state automata as well as statistical approaches dis-
appeared from the scene for a long time. Today the situation has changed in
a fundamental way: statistical language models are back and so are finite-state

S. Yu and A. Păun (Eds.): CIAA 2000, LNCS 2088, pp. 34–46, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Applications of Finite-State Transducers in Natural Language Processing 35

automata, in particular, finite-state transducers. One reason is that there is a
certain disillusionment with high-level grammar formalisms. Writing large-scale
grammars even for well-studied languages such as English turned out to be a
very hard task. With easy access to text in electronic form, the lack of robustness
and poor coverage became frustrating. But there are other, more positive reasons
for reasons for the renewed interest in finite-state techniques. In phonology, it
was discovered rather early [6] that the kind formal descriptions of phonological
alternations used by linguists were, against all appearances, finite-state models.
In syntax, it became evident that although English as a whole is not a finite-
state language, there are nevertheless subsets of English for which a finite-state
description is not only adequate but also easier to construct than an equiva-
lent phrase-structure grammar. Finally, considerable process has been made in
developing special finite-state formalisms that are suited for the description of
linguistic phenomena and, along with them, compilers that efficiently produce
automata from such a description. The automata in current linguistic applica-
tions are typically much too large and complex to be produced by hand.

The following sections will cover these positive developments in more detail.

2 Finite-State Morphology

Morphology is a domain of linguistics that studies the formation of words. It is
traditional to distinguish between surface forms and their analyses, called lem-
mas. The lemma for a surface form such as the English word bigger typically
consists of the traditional dictionary citation form of the word together with
terms that convey the morphological properties of the particular form. For ex-
ample, the lemma for bigger might be represented as big+Adj+Comp to indicate
that bigger is the comparative form of the adjective big.

There are two challenges in modeling natural-language morphology:

1. Morphotactics
Words are typically composed of smaller units of meaning, called morphemes.
The morphemes that make up a word must be combined in a certain order:
piti-less-ness is a word of English but *piti-ness-less is not. Most
languages build words by concatenation but some languages also exhibit
non-concatenative processes such as interdigitation and reduplication [2].

2. Morphological Alternations
The shape of a morpheme often depends on the environment: pity is realized
as piti in the context of less, die as dy in dying.

The basic claim of finite-state approach to morphology is the relation between
the surface forms of a language and their corresponding lemmas can be described
can be modeled as a regular relation.1 If the relation is regular, it can be defined
using the metalanguage of regular expressions; and, with a suitable compiler,
the regular expression source code can be compiled into a finite-state transducer
that implements the relation computationally.
1 Some writers prefer the term rational relation.

36 L. Karttunen

In the resulting transducer, each path (= sequence of states and arcs) from
the initial to a final state represents a mapping between a surface form and its
lemma, also known as the lexical form. For example, the information that the
comparative of the adjective big is bigger might be represented in the English
lexical transducer by the path in Figure 1 where the zeros represent epsilon
symbols.2

Lexical side:

b

b

i

i

g

g

g

0

0

+Adj

e

0

r

+Comp

Surface side:
Fig. 1. A Path in a Transducer for English

For the sake of clarity, Figure 1 represents the upper and the lower side of the
arc label separately on the opposite sides of the arc. In the rest of the paper,
we use a more compact notation: the upper and the lower symbol are combined
into a single label of the form upper:lower if the symbols are distinct. Identity
pairs, e.g. b:b, are reduced to a single symbol. In standard notation, the path
in Figure 1 is labeled as

b i g 0:g +Adj:0 0:e +Comp:r.
An important characteristic of the finite-state transducers built at Xerox

is that they are inherently bidirectional: there is no privileged input side. The
path in Figure 1 can be traversed matching either the form bigger to produce
big+Adj+Comp, or vice versa. The same transducer can be used for analysis (sur-
face input, “upward” application) or for generation (lexical input, “downward”
application).

A single surface string can be related to multiple lexical strings. For exam-
ple, a morphological transducer for French applied upward to the surface string
suis may produce the four lexical strings shown in Figure 2. Ambiguity in
the downward direction is also possible, as in the relation of the lexical string
payer+IndP+SG+P1+Verb (“I pay”) to the surface strings paie and paye, which
are in fact alternate spellings in standard French orthography.

paie
paye

suivre+Imp+SG+P2+Verb
suivre+IndP+SG+P1+Verb

être+IndP+SG+P1+Verb
suivre+IndP+SG+P2+Verb

payer+IndP+SG+P1+Verb

suis

Lexical Transducer for French

Fig. 2. Morphological Ambiguities

2 The epsilon symbols and their placement in the string is not significant. We will
ignore them whenever it is convenient.

Applications of Finite-State Transducers in Natural Language Processing 37

At Xerox, such lexical transducers have been created for a great number
of languages including most of the European languages, Turkish, Arabic, Ko-
rean, and Japanese. The source descriptions are written using notations [12,9,
1] that are helpful shorthands for ordinary regular expressions. The construc-
tion is commonly done by creating two separate modules: a lexicon description
that defines the morphotactics of the language and a set of rules that define
regular alternations such as the gemination of g and the epenthetical e in the
surface form bigger. Irregular alternations such as être:suis are defined ex-
plicitly in the source lexicon. The separately compiled lexicon and rule networks
are subsequently composed together as in Figure 3.

Lexical Transducer

(a single FST)
.o.Compiler

Lexicon FST

Regular Expression
Rule FST

Regular Expression

Lexicon

Rules

Fig. 3. Creation of a Lexical Transducer

Lexical transducers may contain hundreds of thousands, even millions, of
states and arcs and an infinite number of paths in the case of languages such
as German that in principle allow noun compounds of any length. The regular
expressions from which such complex networks are compiled include high-level
operators that have been developed in order to make it possible to describe
constraints and alternations that commonly found in natural languages in a
convenient and perspicuous way. We will describe them in the following sections.

3 Basic Expression Calculus

The notation used in this section comes from the Xerox finite-state calculus.
It is described in detail in Chapter 2 of the forthcoming book by Beesley and
Karttunen [1]. We use uppercase letters, A, B, etc., as variables over regular
expressions. Lower case letters, a, b, etc., stand for symbols. There are two
special symbols: 0, the epsilon symbol, that stands for the empty string and ?,
the any symbol that represents the infinite set of symbols in some yet unknown
alphabet. The special meaning of 0, ?, and any other symbol can be canceled
by enclosing the symbol in double quotes.

An atomic expression consisting of a symbol pair such as a:b denotes a
relation containing the corresponding strings. An expression consisting of a single
symbol such as a denotes the language consisting of “a” or, alternatively, the
corresponding identity relation. The Xerox implementation intentionally does
not distinguish between a and a:a.

38 L. Karttunen

Complex regular expressions can be built up from simpler ones by means
of regular expression operators. Square brackets, [], are used for grouping ex-
pressions. Because both regular languages and regular relations are closed under
concatenation and union, the following basic operators can be combined with
any kind of regular expression:

A | B Union.
A B Concatenation.
(A) Optionality; equivalent to [A | 0].
A+ Iteration; one or more concatenations of A.
A* Kleene star; equivalent to (A+).

Although regular languages are closed under complementation and intersection,
regular relations are not [8]; thus the following operators can be combined only
with expressions that denote a regular language.

∼A Complement
\A Term complement; all single symbol strings not in A.
A & B Intersection
A - B Subtraction (minus)

Regular relations can be constructed by means of two basic operators:

A .x. B Crossproduct
A .o. B Composition

The crossproduct operator, .x., is used only with expressions that denote a
regular language; it constructs a relation between them. [A .x. B] designates
the relation that maps every string of A to every string of B.

4 Containment, Restriction, Replacement, and Marking

The syntax (though not the descriptive power) of regular expressions can be
extended by defining new operators that allow commonly used constructions
to be expressed more concisely. A simple example of a trivial but convenient
extension is the containment operator $.

$A =def [?* A ?*]

For example, $[a | b] denotes all strings that contain at least one “a” or
“b” somewhere.

The addition of new operators can be more than just a notational conve-
nience. A case in point is Koskenniemi’s [16] restriction operator =>.

A => L _ R Restriction; A only in the context of L _ R.

Applications of Finite-State Transducers in Natural Language Processing 39

Here A, L and R may denote any regular language. This expression designates
the language of strings that have the property that any string of A that occurs in
them is immediately preceded by some string from L and immediately followed
by some string from R. For example, a => b _ c includes all strings that contain
no occurrence of “a”, strings like “bac-bac” that completely satisfy the condition,
but no strings like “ab”. A special boundary symbol, .#., is used to indicate the
beginning or the end of the string. For example, a => _ .#. allows “a” only at
the end of a string.

The advantage of the restriction operator is that it encodes in a compact
way a useful condition that is difficult to express in terms of the more primitive
operators. The definition of [A => L _ R] is shown below.

A => L _ R =def [∼[[∼[?* L] A ?*] | [?* A ∼[R ?*]]]]

Another example of a useful high-level abstraction is the replace operator
->. As we will see shortly, there are many constructions involving this operator.
The simplest variant is unconstrained, obligatory replacement:

A -> B Replacement of A by B.

Transducers compiled from -> expressions are usually intended to be applied
downward; they can of course be inverted and applied in the other direction.
The component expressions, A and B, must denote regular languages but the
expression as a whole denotes a relation. The [A -> B] relation maps any upper-
language string to itself if the string contains no instance of A. Upper language
strings that contain instances of A are paired with lower-language strings that
are otherwise identical except that each A segment is replaced by some B string.
The definition [10] of simple replacement is shown below.

A -> B =def [[∼$[A - 0] [A .x. B]]* ∼$[A - 0]]

Two replace expressions linked with a comma indicate parallel replacement. For
example,

a -> b, b -> a

yields a transducer that exchanges the two letters mapping “abba” to “baab”.
High-level abstractions like A => L _ R and A -> B are conceptually easier

to operate with than the logically equivalent but very complex primitive for-
mulas, just as it is easier to write complex computer programs in a high-level
language rather than in a logically equivalent assembly language.

Instead of replacing the strings of a language by other strings, it is sometimes
useful just to mark them in some special way. In the Xerox calculus, an expression
of the form

A -> B ... C Marking A by B and C.

40 L. Karttunen

yields a transducer that maps any upper language string to a lower-language
string that is identical to it except that any instance of A is preceded by a string
from B and followed by a string from C. Here A, B and C may denote any regular
language. In practice, however, B and C are usually atomic expressions. For ex-
ample, a | e | i | o | u -> "[" ... "]" yields a transducer that encloses
vowels between square brackets leaving the rest of the text unchanged. The
relation includes pairs such as

i c e c r e a m
[i]c[e]c r[e][a]m

4.1 Constraining Replacement and Marking

Replacement and marking can be constrained in many different ways: by con-
text, by direction of application, by length of the pattern to be replaced or
marked. The basic technique for compiling constrained replacement and mark-
ing transducers was invented in the early 1980’s by Kaplan and Kay [7] for
Chomsky-Halle-type rewrite rules [4]. It was also used very early for Kosken-
niemi’s two-level rules [16,14,12]. The idea was finally explained in detail in
Kaplan and Kay’s 1994 paper [8]. There is now a rich literature on this topic
[10,17,5,11,15,18]. The details vary but the basic method involves composing
together a cascade of networks that introduce various auxiliary symbols into
the input string, constrain their distribution, and finally eliminate the auxiliary
alphabet. As there is no space to explore the compilation issue in a technical
way, we will only explain the syntax of constrained replacement and marking
expressions and give a few examples of the corresponding transducers without
explaining how the expressions are compiled.

The transducers compiled from the simple replacement and marking expres-
sions are in general ambiguous in the sense that a string in the upper language
of the relation is paired with more than one lower-language string. For example,
a | a a -> "[" ... "]" yields a marking transducer than maps the upper
language string “aaa” into three different lower-language strings:

a a a a a a a a a
- - - - --- --- -
[a][a][a] [a][a a] [a a][a]

The -> operator does not constrain the selection of the alternate substrings for
replacement or marking. In this case, the upper language string can be factored
or parsed in three different ways.

For many applications, it is useful to define another version of replacement
and marking that in all such cases yields a unique outcome. The longest-match,
left-to-right replace operator, @->, defined in [11], imposes a unique factoriza-
tion on every input. The upper language substrings to be marked or replaced
are selected from left to right, not allowing any overlaps. If there are alternate
candidate strings starting at the same location, only the longest one is chosen.
Thus a | a a @-> "[" ... "]" denotes a relation that unambiguously maps

Applications of Finite-State Transducers in Natural Language Processing 41

“aaa” to “[aa][a]”. The transducers corresponding to the -> and @-> variant of
this expressions are shown in Figure 4.3

?

]

[
0:[a

]?[0:]

a0:]

?

]

[

0:[

0:]

a

a

0:]

a | a a @-> "[" ... "]"a | a a -> "[" ... "]"

Fig. 4. An Ambiguous and an Unambiguous Marking Transducer

Replacement and marking contexts can be specified using same notation as
for restriction: L R, where L is the left context, R is the right context, and
marks the site of the upper language string that is replaced or marked. In the case
of a restriction expression, the interpretation of context is self-evident because
a restriction denotes a set of strings. This is not the case for replacement and
marking. Replacement and marking expressions must specify whether L and R
pertain to the upper or the lower side of the relation. The Xerox calculus provides
specific markers ||, //, \\ and \/ to distinguish between the four possible cases:

|| L _ R L and R both on the upper side
// L _ R L on the lower, R on the upper side
\\ L _ R L on the upper, R on the lower side
\/ L _ R L and R both on the lower side

To see the difference between, say || and //, versions let us consider two variants
of a phonological rule that shortens a double “aa” in the context of another
double “aa” in the preceding syllable. Here C represents any consonant.

Rule 1. a a -> a || a a C+ _ (Slovak)
Rule 2. a a -> a // a a C+ _ (Gidabal)

Vowel shortening is a very common type of morphological alternation under
many different kinds of context conditions. Interestingly, in some languages such
as Slovak the shortening depends on the lexical (upper side) context whereas
in languages such as Gidabal (an Australian language), it is conditioned by the
surface side.4 The hypothetical lexical form “baacaadaafaa” would be realized
quite differently in these two languages:

b a a c a a d a a f a a b a a c a a d a a f a a
b a a c a d a f a b a a c a d a a f a

Rule 1 Rule 2
3 The symbol ? in an arc label represents an unknown symbol; in this case, any

symbol other than [,], and a. By convention, the leftmost state is the start state,
final states are indicated by double circles.

4 This example is due to Martin Kay (p.c.).

42 L. Karttunen

In a language like Slovak, the last three syllables would all shorten yielding
“baacadafa” whereas a language like Gidabal would show the alternating pattern
“baacadaafa”.

The two replacement transducers compiled from Rule 1 and Rule 2 are shown
in Figure 5.

?

C
C

C

a
?

?

?
C

?

a
a a

C

a:0?

C
C

C

a
?

?

a:0
?

C

?

a
a a

C

a a -> a || a a C+ _ a a -> a // a a C+ _

Fig. 5. Two Vowel-Shortening Rules

Contextual constraints may be combined with the directional left-to-right
and longest match constraints. For example, if C and V stand for consonants
and vowels, respectively, a simple syllabification rule may be expressed in the
following way:

C* V+ C* @-> ... "-" || _ C V

This marking expression yields an unambiguous transducer that inserts a hyphen
after each longest available instance of the C* V+ C* pattern that is followed by
a consonant and vowel. The relation it encodes consists of pairs of strings such
as

s t r u k t u r a l i s m i
s t r u k - t u - r a - l i s - m i .

In this case, the choice between || and // makes no difference but the two other
context markers, \\ and \/ could not be used here.

The syllabification transducer is a simple finite-state parser: it recognizes and
marks instances of a regular language in a text. In the next section we will show
a more sophisticated example of this kind.

5 Finite-State Syntax

Although the syntax of a natural language cannot in general be described by a
finite-state, or even a context-free grammar there are many subsets of natural
language that can be correctly described by very simple means, for example,
names and titles, addresses, prices, dates, etc. In this section, we examine one
such case in detail: a grammar for dates.

For the sake of illustration, let us consider here only one of several common
date formats, expressions such as

Applications of Finite-State Transducers in Natural Language Processing 43

Tuesday
July 25 Tuesday, July 25
July 25, 2000 Tuesday, July 25, 2000

In the following we assume that a date expression consists of a day of the
week, a month and a date with or without a year, or a combination of the two.
Note that this description of the syntax of date expressions presents the same
problem we encountered in the a | aa @-> a example in the previous section.
Long date expressions, such as “Tuesday, July 25, 200”, contain smaller well-
formed date expressions, e.g. “July 25”, that should be ignored in the context
of a larger date. In order to simplify the presentation, we stipulate that date
expressions are contiguous strings, including the internal spaces and commas.

To facilitate the specification of the date language we first define some auxil-
iary terms and then use them to define a language of dates and a parser for the
language. The complete set of definitions is shown below:

1To9 = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
0To9 = "0" | 1To9
Day = Monday | Tuesday | | Saturday | Sunday
Month = January | February | | November | December
Date = 1To9 | [1 | 2] 0To9 | 3 ["0" | 1]
Year = 1To9 (0To9 (0To9 (0To9)))
AllDates = Day | (Day ", ") Month " " Date (", " Year)

From these definitions we can compile a small finite-state automaton,
AllDates, with 13 states and 96 arcs that describes a language of about 30
million date expressions for the period from January 1, 1 to December 31, 9999.

A parser for the language can be compiled from the following simple regular
expression.

AllDates @-> "[" ... "]"

It yields a transducer of 23 states and 321 arcs that marks maximal date expres-
sions in the manner illustrated by the following text:

Today is [Tuesday, July 25, 2000] because yesterday was [Monday]
and it was [July 24] so tomorrow must be [Wednesday, July 26].

Because of the left-to-right, longest-match constraints associated with the @->
operator, the transducer brackets only the maximal date expressions.

However, this regular-expression grammar is not optimal. The AllDates lan-
guage includes a large number of syntactically correct but semantically invalid
date expressions. For example, there is no “April 31, 2000”, “February 29, 1900”,
or “Sunday, September 29, 1941”. April only as 30 days in any year; unlike year
2000, year 1900 was not a leap year; and September 29, 1941 fell on a Monday.

All these three types of imperfections can be corrected within the finite-
state calculus. For each of these three types on invalid dates we can define a
regular language that excludes such expressions. By intersecting these constraint
languages with the AllDates language, we can define a language that contains
only semantically valid dates. Figure 6 illustrates the idea.

44 L. Karttunen

Dates
Valid

InMonth
MaxDays LeapDays

AllDates

WeekDayDates

Fig. 6. Refinement by Intersection

We need three constraints:

MaxDaysInMonth Restriction on the distribution of 30 and 31.
LeapDays Restriction on February 29.
WeakDayDate Restrictions on weekdays and dates

In fact, all the constraints can be expressed by means of the restriction operator
=> defined in the previous section. For example, to build the leap day constraint
we first need to define the language of leap years, that is the language of all
numbers divisible by four but subtracting centuries such as 1900 that are not
divisible by 400.

Even = "0" | 2 | 4 | 6 | 8
Odd = 1 | 3 | 5 | 7 | 9
N = 1To9 0To9*
Div4 = [((N) Even) ["0" | 4 | 8]] | [(N) Odd [2 | 6]]
LeapYears = Div4 - [[N - Div4] "0" "0"]

Here we first define Div4 as the infinite set of natural numbers that are divisible
by four. This set consists of two parts: numbers that end in 0, 4, or 8 possibly
preceded by an even number and numbers that end in 2 or 6 preceded by an
odd number. Finally, we define LeapYears as the set of numbers divisible by
4 subtracting centuries that are not multiples of 400. Note that the expression
[N - Div4] "0" "0" denotes numbers with two final zeros that are preceded
by a number that is not divisible by four. For example, it includes “1900” but
not “2000”. Because LeapYears is defined as Div4 minus this set, it follows that
the string “2000” is in the language but “1900” is not.

Once the language of leap years is defined, the distribution of “February 29”
in date expressions can be constrained with the following simple restriction.

LeapDays = February " " 2 9 ", " => _ LeapYears .#.

In other words: a date expression containing “February 29, ” must terminate
with a leap year. The boundary symbol, .#., is necessary here to mark the end
of the year string in order to rule out expressions like “February 29, 1969” which

Applications of Finite-State Transducers in Natural Language Processing 45

would qualify if we were allowed to take into account only the first three digits
since year 196 is a leap year in the Gregorian calendar.

The construction of the WeakDayDate constraint is not as trivial but not as
difficult as it might initially seem. See [13] for details. Having constructed the
auxiliary constraint languages we can define the language of valid dates as

ValidDates = AllDates & MaxDaysInMonth & LeapDays & WeekDayDates

The network contains 805 states, 6472 arcs, and about 7 million date expressions.
We could now construct a parser that recognizes only valid dates. But we ac-

tually can do something more interesting, namely, define a parser that recognizes
all date expressions and marks them as valid, “[VD”, or invalid, “[ID”:

ValidDates] @-> "[VD" ... "]" ,
[AllDates - ValidDates] @-> "[ID" ... "]"

This parallel replacement expression compiles into a 2699 state, 20439 arc trans-
ducer in about 15 seconds on a Sun workstation. The time includes the com-
pilation of all the auxiliary expressions and constraints discussed above. The
following example illustrates the effect of the transducer on a sample text.

The correct date for today is [VD Tuesday, July 25, 2000].
Today is not [ID Tuesday, July 26, 2000].

6 Conclusion

Although regular expressions and the algorithms for converting them into finite-
state automata have been part of elementary computer science for decades, the
restriction, replacement, and marking expressions we have focused on are rel-
atively recent. They have turned out to be very useful for linguistic applica-
tions in particular for morphology, tokenization, and shallow parsing. Descrip-
tions consisting of regular expressions can be efficiently compiled into finite-state
networks, which in turn can be determinized, minimized, sequentialized, com-
pressed, and optimized in other ways to reduce the size of the network or to
increase the application speed. Many years of engineering effort have produced
efficient runtime algorithms for applying networks to strings.

Regular expressions have a clean, declarative semantics. At the same time
they constitute a kind of high-level programming language for manipulating
strings, languages, and relations. Although regular grammars can cover only
limited subsets of a natural language, there can be an important practical ad-
vantage in describing such sublanguages by means of regular expressions rather
than by some more powerful formalism. Because regular languages and relations
can be encoded as finite automata, they can be more easily manipulated than
context-free and more complex languages. With regular expression operators,
new regular languages and relations can be derived directly without rewriting
the grammars for the sets that are being modified. This is a fundamental advan-
tage over higher-level formalisms.

46 L. Karttunen

References

1. Kenneth R. Beesley and Lauri Karttunen. Finite-State Morphology: Xerox Tools
and Techniques. Cambridge University Press, 2000. To appear.

2. Kenneth R. Beesley and Lauri Karttunen. Finite-state non-concatenative morpho-
tactics. In Lauri Karttunen Jason Eisner and Alain Thériault, editors, SIGPHON-
2000, pages 1–12, August 6 2000. Proceedings of the Fifth Workshop of the ACL
Special Interest Group in Computational Phonology.

3. N. Chomsky. Syntactic Structures. Mouton, Gravenhage, Netherlands, 1957.
4. Noam Chomsky and Morris Halle. The Sound Pattern of English. Harper and

Row, New York, 1968.
5. Edmund Grimley-Evans, George Anton Kiraz, and Stephen G. Pulman. Compiling

a partition-based two-level formalism. In Proceedings of the 16th International
Conference on Computational Linguistics, Copenhagen, 1996.

6. C. Douglas Johnson. Formal Aspects of Phonological Description. Mouton, The
Hague, 1972.

7. Ronald M. Kaplan and Martin Kay. Phonological rules and finite-state transducers.
In Linguistic Society of America Meeting Handbook, Fifty-Sixth Annual Meeting,
New York, December 27-30 1981. Abstract.

8. Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

9. Lauri Karttunen. Finite-state lexicon compiler. Technical Report ISTL-NLTT-
1993-04-02, Xerox Palo Alto Research Center, Palo Alto, CA, April 1993.

10. Lauri Karttunen. The replace operator. In ACL’95, Cambridge, MA, 1995. cmp-
lg/9504032.

11. Lauri Karttunen. Directed replacement. In ACL’96, Santa Cruz, CA, 1996. cmp-
lg/9606029.

12. Lauri Karttunen and Kenneth R. Beesley. Two-level rule compiler. Technical
Report ISTL-92-2, Xerox Palo Alto Research Center, Palo Alto, CA, October 1992.

13. Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller.
Regular expressions for language engineering. Journal of Natural Language Engi-
neering, 2(4):305–328, 1996.

14. Lauri Karttunen, Kimmo Koskenniemi, and Ronald M. Kaplan. A compiler for two-
level phonological rules. Technical report, Xerox Palo Alto Research Center and
Center for the Study of Language and Information, Stanford University, June 25
1987.

15. André Kempe and Lauri Karttunen. Parallel replacement in finite-state calculus.
In COLING’96, Copenhagen, August 5–9 1996. cmp-lg/9607007.

16. Kimmo Koskenniemi. Two-level morphology: A general computational model for
word-form recognition and production. Publication 11, University of Helsinki,
Department of General Linguistics, Helsinki, 1983.

17. Mehryar Mohri and Richard Sproat. An efficient compiler for weighted rewrite
rules. In ACL’96, Santa Cruz, CA, 1996.

18. Gertjan van Noord and Dale Gerdemann. An extendible regular expression com-
piler for finite-state approaches in natural language processing. In O. Boldt,
H. Juergensen, and L. Robbins, editors, Workshop on Implementing Automata;
WIA99 Pre-Proceedings, Potsdam Germany, 1999.

	Introduction
	Finite-State Morphology
	Basic Expression Calculus
	Containment, Restriction, Replacement, and Marking
	Constraining Replacement and Marking

	Finite-State Syntax
	Conclusion

