
MULTILINGUAL SYLLABIFICATION USING
WEIGHTED FINITE-STATE TRANSDUCERS

George Anton Kiraz and Bernd M¨obius

Bell Labs – Lucent Technologies, Murray Hill, NJ 07974, USA

Just as vowels with consonants are the matter of sylla-
bles, so also syllables are the matter for the construc-
tion of nouns and verbs, and of the elements which are
made out of them.

Antony the Rhetorician of Tagrit (y c. 445?)
Knowledge of Rhetoric, Book Five, Canon One

ABSTRACT

This paper describes an approach to syllabification that has been
incorporated into the English and German text-to-speech systems
at Bell Labs. Implemented as a weighted finite-state transducer,
the syllabifier is easily integrated – via mathematical composition
– into the finite-state based text analysis component of the text-
to-speech system. The weights are based on frequencies of onset,
nucleus and coda types obtained from training data. While the
training data is language-dependent, the formal approach is mul-
tili ngual.

1. INTRODUCTION

In recent years finite-state transducers (FSTs) have become in-
creasingly popular as a flexible and mathematically elegant com-
putational model for the conversion and mapping between symbol
strings, most notably in the domains of phonology and morphol-
ogy. In this paper we illustrate the implementation in FST tech-
nology of a syllabifier in the framework of the Bell Labs multilin-
gual text-to-speech (TTS) system [7].

Syllabification is an important component of any TTS system. In
many languages the pronunciation of phonemes is a function of
their location in the syllable relative to the syllable boundaries.
Location in the syllable also has a strong effect on the duration of
the phone, and is therefore a crucial piece of information for any
model of segmental duration [9].

Syllabification can be achieved by writing a declarative grammar
of possible locations of syllable boundaries in polysyllabic words.
An extremely simplistic, constraint-based model of syllabification
might state that each word in the utterance consists of one or more
syllables of the structure C*VC*, i.e., of an obligatory syllable nu-
cleus (V) optionally preceded or followed, or both, by any number
of consonants (C). By assigning a higher cost to the last conso-
nant of each syllable, we can enforce the syllable boundary to be
placed as early as possible, thereby implementing the well-known
maximal onset principle. The grammar would finally terminate
every non-final syllable in the word by a syllable boundary sym-
bol [8, p. 49f.].

A more realistic model of syllabification is presented in the re-
mainder of this paper. In keeping with the multilingual design of
the Bell Labs TTS system, our approach is applicable to any lan-

guage. It relies, however, on the phonotactics and syllable struc-
ture of each particular language. Forillustration purposes we con-
centrate here on English and German. Section 2 discusses aspects
of syllable structure and phonotactics in these two languages.

The text analysis component of our TTS system consists of a mul-
titude of modules which operate on different levels of linguistic
description and analysis. This heterogeneous system has been
implemented in a unified framework, viz. weighted finite-state
transducer (WFST) technology. Despite the differences in the for-
malisms applied to different sub-tasks of text analysis, the linguis-
tic descriptions can all be compiled into WFSTs.

Section 3 presents a finite-state model for syllabification. The
syllabifier is implemented as a weighted finite-state transducer.
The transducer is constructed by obtaining syllables as well as
their structure and frequencies from a training database. Observed
frequencies of onset, nucleus and coda types are converted into
weights, which are then associated with the pertinent transitions
between states in the transducer.

Illustrations of the properties and performance of the syllabifier
are given in Section 4, with concluding remarks in Section 5.

2. SYLLABLE STRUCTURE

The phonotactics of English and German allow complex conso-
nant clusters in both the onset and the coda of syllables. The max-
imum number of consonants in the onset is 3 in both languages.
In German codas, clusters of up to 5 (or 6, if contractions such as
du schrumpfst's[du: Srumpfsts] “you shrink it” are considered,
too) consonants can be observed, whereas English allows up to
four coda consonants. Thus, the maximum number of consecu-
tive consonants across syllable boundaries is 9 in German and 7
in English.

Certain restrictions exist as to which consonants, or classes of
consonants (see Table 1), can occur in which position within the
onset or coda of a syllable. For instance, in both languages there
are only a few possible onset clusters with three consonants, and
no phones other than obstruents can occurbeforean obstruent in
the onset. In codas, only combinations and alternations of voice-
less dental stops and fricatives are possible in positions 2 through
4 in English, and 3 through 5 (or 6) in German, and after the first
obstruent no phones other than obstruents can occur in the coda.
Examples for the longest consonant clusters in English and Ger-
man onsets and codas are given in Tables 2 and 3, respectively.

Sonorants (nasals, liquids, and glides) can only occur adjacent to
the syllable nucleus. This pattern is sometimes referred to as the
sonority principle, which ranks phone classes according to their
natural acoustic sonority, which in turn is a correlate of the de-

class description German phones English phones

P unvoiced stops d p t k p t k
B voiced stops b d g b d g
S unvoiced fricatives f s S ç x h f W sS h
Z voiced fricatives v z c v � zc
N nasals m n= m n=
L liquids, glides l r R j l r j w
V vowels, diphthongs i: y: e: ø:�: u: o: a: ai au Ay i: ei u: ou ai au Ay

i y � œu A a� � i � æu A � a� �

Table 1: Classes of English and German phones.

Onsets
class clusters examples

SPL sp + l/r/j split sprite spurious
st + r/j street studious
sk + l/r/j/w sclerosis script skewer squid

Codas
class clusters examples

LPPS lpts lkts sculpts mulcts
LPSP ltst waltzed
LSSS lfWs twelfths
NPPS mpts=kts prompts adjuncts
NPSP mpst=kst glimpsed jinxed
PSPS ksts texts
PSSS ksWs sixths

Table 2: English allows up to 3 consonants in the onset and up
to 4 consonants in the coda of a syllable. The longest consonant
clusters are restricted to a small number of distinct types.

Onsets
class clusters examples

SPL Sp + l/r Splitter Spritze
St + r Streit
sk + l/r Sklerose Skrupel

Codas
class clusters examples

NPSSPS mpfsts schrumpfst's
NPSSP mpfst schrumpfst

ntSst plantschst
NPPSP mptst promptst
NSPSP nftst sanftst

Table 3: Similar to English, German allows up to 3 consonants
in the onset of a syllable, but up to 6 consonants can occur in the
coda. The longest consonant clusters are represented by only a
small number of distinct types.

gree of constriction of the vocal tract. We have argued elsewhere
[5] that this ranking is not entirely consistent with actual acoustic
measurements and is certainly not a valid descriptor of syllable
structure across languages.

The complexity of syllable onset and coda structures poses prob-
lems for a syllabification algorithm because, despite of the above-
mentioned restrictions, ambiguous and multiple alternative syl-
lable boundary locations are usually observed in polysyllabic
words.

Determining the syllable boundary is important because the pro-
nunciation of most phonemes is a function of their position in the
syllable. This is most evident in the case of phonologically voiced
obstruents in German: the voicing opposition for stops and frica-
tives is neutralized in the syllable coda. For instance, the phono-
logical minimal pairBund“union” – bunt“colorful” is in fact ho-
mophonic: [bunt]. In English, voiceless stops are aspirated when
they constitute the onset of a stressed syllable (e.g., [t] intop).
They are not aspirated, however, if they are preceded in the onset
by [s] (e.g., [t] instop), followed in the onset by [l,r] (e.g., [t] in
stress), or if they occur in the coda (e.g., [t] inpot).

3. THE FINITE-STATE MODEL

Finite-state techniques are not new in the field of phonology.
Their usage to model phonological conditional changes has
been suggested as early as 1972 by Johnson [2], and later—
independently—by Kay and Kaplan [4]. In the past decade or so,
finite-state transducers have been used ubiquitously in the domain
of phonology—as well as in morphology—not only in modeling
phonological (and morphological) regular rewrite rules, but also
for all sorts of mappings between string descriptions. The mathe-
matical features and elegance of these simple devices makes them
attractive for such purposes and, as we show here, for modeling
multilingual syllabification.

One of the attractive features of finite-state transducers is that they
are closed under mathematical composition; that is, if transducer
T1 maps the strings1 into the strings2, and transducerT2 maps
the strings2 into the strings3, then the transducerT3, which is
constructed by taking the composition of the original transducers,
maps the strings1 into the strings3. The composition of the two
transducers is described by the expression

Phonetic String

Intermediate Stringn�1

Intermediate String1

Surface String

�

�
	

�

�
	

Tn

...

T1

Figure 1: Cascade model: a series of transducers converts an or-
thographic input string into a phonetic output string by means of
sequential composition. Additional transducers, e.g. for syllabifi-
cation, can be inserted into the cascade.

T3 = T1 � T2 (1)

This feature allows, for example, a number of transducers to be
applied in cascade form to an orthographic string (the input) to
produce a phonetic string (the output) in a TTS system. Inserting
additional transducers in the middle of this cascade is modular and
fairly straightforward. Consider the cascade in Figure 1, which is
made ofn transducers. One can easily add an additional trans-
ducer betweenTi andTi+1; 1 � i < n, to take care of syllabifi-
cation; we shall designate the latter withT�. The only additional
symbol that appears at the output ofT� is the syllable boundary
symbol, '�' . As long as this symbol is part of the alphabets of
Ti+1 throughTn, no other modification is required for the entire
cascade.

In both English and German, morpheme boundaries frequently
override default syllabification in compounded words. For this
reason, the position in whichT� is inserted in the cascade is
crucial as the syllabifier needs to know about the morphological
structure of its input. For instance, if the syllabifier is faced with
the English phone sequence [naitreit], it will produce [nai–treit]
by default. This would be the correct syllabification of “nitrate”
but not of its homophone “nightrate” (the latter ought to be syl-
labified as [nait–reit]). This distinction is of relevance to TTS for
at least two reasons: First, the acoustic properties of [r] differ de-
pending upon the left context phone. The phonologically voiced
consonant [r] is often initially or completely devoiced in the con-
text of a preceding voiceless obstruent, such as [t] in this case, in
the onset of the same syllable. The acoustic inventory of our TTS
system includes two entries representing the diphone [r-ei], one of
which is used only in the context mentioned above, and the other
in all other contexts. The choice of the proper diphone depends
on the existence, or absence, of a syllable boundary marker after
[t]. Second, the duration assigned to [t] in our example depends

on whether it is in the coda of the first or in the onset of the second
syllable.

Another attractive feature of transducers is their bidirectionality.
Inverting the transducers in Figure 1 produces a system that maps
a phonetic string into an orthographic string. Hence, the inverse
of T�, denoted byT�1� , becomes a desyllabifier whose usefulness
lies in the eye of the beholder!

The syllabifier described here is implemented as a weighted finite-
state transducer; that is, each transition may be associated with a
certainweight [6]. The construction of the transducer is based
on training data with an additional mechanism for hand-tuning.
The remainder of this section describes the procedure followed in
constructing the syllabification transducer,T� .

3.1. Training From Data

The syllabification transducer is constructed from training data
consisting of syllabified phonological words, which we shall call
the training database. Various sources can be used to obtain the
training database. For example, the current German syllabifier
makes use of theCelex Lexical Database(release 2) [1], while the
English syllabifier employs data from the Bell Labs pronunciation
module, an in-house program, as well.

The procedure is as follows. First, a list of all the syllables
in the training database is obtained. For example, the En-
glish phonological wordabductionsproduces the three syllables
[æb�d�k�S�nz]. This list is fed into a program that splits the
syllables into plausible onsets, nuclei and codas. The above word
produces the following onsets, nuclei and codas:

Onset Nucleus Coda
æ b

d � k
S � nz

Second, sets of plausible onsets, nuclei and codas, with their fre-
quencies of occurrence, are computed. This gives the statistics
of each onset, nucleus and coda in the training data regardless of
context. As a way of illustration, Table 4 gives the set of English
nuclei found in the Celex database.

Each of the three sets (onsets, nuclei and codas) is then compiled
into a weighted finite-state automaton by taking the disjunction
of its members. The frequencies are converted into weights by
taking their reciprocal as shown in the last column of Table 4.
This results in three automata:Ao, An, andAc, which accept
onsets, nuclei and codas, respectively.

More formally, letO;N andC be the sets of onsets, nuclei and
codas, respectively; each element in the set is a pair(C;F), where
C is the constituent in question (i.e., onset, nucleus or coda) and
F is its frequency in the training database. Then we construct the
three automataAo, An, andAc from the sets as follows:

Ao =
[

(o;f)2O

oh1=fi (2)

Nucleus f 1=f � 10�3

� 62500 0.016
A 12048 0.083
� 5076 0.197
ei 21739 0.046
i: 30303 0.033
ai 15873 0.063
ou 13698 0.073
� 22727 0.044
u: 10752 0.093
au 4878 0.205
Ay 1672 0.598
� 15151 0.066
æ 25000 0.040
� 26315 0.038
�� 7 142.857
i 71428 0.014
i� 1 1000.000
a 13157 0.076
u 3154 0.317

Table 4: The set of English syllable nuclei found in the Celex
database, with number of observations (f). Weights for the tran-
sitions between states in the nucleus automaton are obtained by
taking the reciprocal of the frequency of each nucleus type.

An =
[

(n;f)2N

nh1=fi (3)

Ac =
[

(c;f)2C

ch1=fi (4)

A weight given in angle brackets is associated with the preceding
symbol in an expression.

3.2. The Phonotactic Automaton

HavingAo, An, andAc at hand, one is ready to construct an au-
tomaton that enforces phonotactic constraints. This is a language-
dependent step. For both English and German, syllabic phonotac-
tics is described by the extended regular expression

Aph = Opt(Ao)An Opt(Ac) (5)

whereOpt is the optional operator defined as

Opt(A) = A [� (6)

and� denotes the empty string. In other words, eq. 5 accepts an
optional onset fromAo, followed by an obligatory nucleus from
An, followed by an optional coda fromAc. The above automaton
accepts one syllable at a time.

The syllabification automaton, denoted byA�, needs to accept a
sequence of syllables, each—except for the last—followed by a
boundary marker '�' . This is achieved by the expression

0

2n1:n1

...

nj:nj
1

Eps:-

3

c1:c1

...

ck:ck

o1:o1

...

oi:oi

n1:n1

...

nj:nj

Eps:-

Figure 2: The syllabification transducer, depictingi onsets
(shown as o1,� � �, oi), j nuclei (shown as n1,� � �, nj) andk co-
das (shown as c1,� � �, ck). State 1 (in bold) is the initial state,
double circles denote final states; ' Eps' stands for�. The automa-
ton maps each symbol on the transitions between two states onto
themselves (e.g., o1:o1), and inserts the syllable boundary marker
'�' after each non-final syllable, by mapping�:�.

A� = Aph(�Aph)
� (7)

That is, a syllable fromAph followed by zero or more occurrences
of a) the boundary marker '�' , and b) a syllable fromAph.

3.3. The Syllabification Transducer

The automatonA� acceptsa sequence of one or more syllables,
each—but the last—followed by the syllable boundary marker
'�' . We need to transform this into a transducer whichinserts
a '�' after each—but the last—syllable.

This is simply achieved by computing the identity transducer for
Aph and replacing '�' in eq. 7 with a mapping '�:�' . In other
words, the syllabification transducer is

T� = Id(Aph)

�
(�:�)Id(Aph)

��
(8)

TheId operator produces the identity transducer of its argument
[3]. That is, each symbola on a transition in the argument be-
comes a mappinga:a. The transducerT� is depicted in Figure 2.

As mentioned above, the only language-dependent expression is
Aph in eq. 5. Other languages may use different expressions. For
example, in languages where the onset is obligatory, as in Arabic
and Syriac (considering the glottal stop [d] as a consonant), one
omits the optional operator applied toAo in eq. 5.

01
a/0.1

b/0.2

(a)A1

01
a/0.3

b/0.6

(b)A2

0 1
a/0.4

b/0.8

(c)A1 \A2

Figure 3: Intersection of weighted automata. States shown in bold are initial states,double circles indicate final states. The intersection
of two automata (a) and (b) produces a third automaton (c) that accepts the strings that both of the original two machines accept. In
weighted automata, the weights of common paths in the original machines are summed up.

3.4. Hand-Tuning

While the procedure of constructing the syllabification transducer
from training data is automatic, somepost hochand-tuning may
still be required. For example, Table 4 includes two nucleus types
([��] and [i�]) whose numbers of observations are extremely
low, indicating an artifact induced in the training process or pos-
sibly erroneous entries in the database. The weights derived from
the frequencies of these nucleus types have to be manually cor-
rected.

Hand-tuning becomes even more crucial when dealing with ex-
otic languages where training data is either scarce or entirely not
extant. In the latter case, the syllabifier is constructed solely by
means of hand-tuning.

The mathematical elegance of weighted transducers makes hand-
tuning not a difficult task. Say the nucleus [i�] is associated with
the weight1000 � 10�3, but based on some observation needs
to be hand-tuned to the value of0:014 � 10�3 (the value of its
monophthong counterpart [i] in Table 4).

To achieve this, a partial duplicate set ofN can be created, which
contains only the nuclei that are to be fine-tuned, and where each
nucleus is paired with the adjustment in weight that needs to be
performed (e.g., for [i�], (0:014� 1000)� 10�3). Let this new
set be calledN 0. Then, the automaton for the hand-tuned nuclei,
A0n, becomes

A0n =

� [
(n0 ;f)2N 0

n0h1=fi

�[� [
(n;f)2N�N 0

nh0i

�
(9)

The first component in eq. 9 is identical to the expressionAn in
eq. 3, but computes the weights for the hand-tuned nuclei instead.
To complete this set, it is unioned with a disjunction of the remain-
ing non-hand tuned nuclei (i.e.,N �N 0), where each element in
N �N 0 is given a weight of zero.

Now, the new automaton which incorporates bothAn andA0n, de-
noted byAnuclei, is simply the intersection of the two automata,

Anuclei = An \A0n (10)

How does it come to pass that intersection produces the desired re-
sult? This lies in the definition of intersecting weighted automata.
When no weights are used, the intersection of two automata pro-
duces a third automaton that accepts the strings that both of the
original two machines accept. In the weighted version the same
applies, with the addition that the weights of common paths in the
original machines areaddedin the result. This is illustrated in
Figure 3.

Similarly, one computes expressions forAonsets and Acodas.
These are incorporated in eq. 5 to form the new expression

Aph = Opt(Aonsets)Anuclei Opt(Acodas) (11)

In turn, this expression is incorporated in eq. 8, which buildsT� .

It is crucial that the hand-tuning is donebeforeT� is constructed,
for the simple reason that eq. 10 (as well as the expressions for
Aonsets andAcodas) make use of intersection, an operation under
which accepting automata are closed, but transducers are not.

4. ILLUSTRATIONS

After having given a formal account of our approach in the pre-
vious section, we provide a few concrete examples that illustrate
certain aspects and properties of the finite-state syllabifier.

The first example is a case in German where only one legal syl-
labification is possible in a cluster of four consecutive consonants.
The nounKünstler [kynstl�] “artist” is correctly syllabified as
[kynst–l�] by our syllabifier. Any other syllabification would re-
quire onsets ([nstl, stl, tl]) or codas ([nstl]) that are not inO or C,
the sets of plausible onsets and codas collected from the training
database.

The second example illustrates the case of a polysyllabic German
word where more than one syllabification is plausible. The noun
Fenster[f�nst�] “window” can be syllabified as [f�n–st�] h75i,
[f�ns–t�] h74i, or [f�nst–�] h87i (with weights shown in angle

brackets). Obviously, [f�ns–t�], with the smallest weight, is the
most probable solution, reflecting the observed frequencies of the
relevant onsets and codas in the training database. It is indeed
the correct syllabification: the second best solution, which puts
[s] in the onset of the second syllable, would result in [s] being
incorrectly pronounced as [S].

The third example comes from English and demonstrates another
aspect of the syllabifier at hand. Standard dictionaries, such as
The American HeritageandWebster's Third, provide syllabifica-
tion that is influenced by the morphological structure of words; it
is common in such dictionaries to split prefixes and suffixes from
stems. For instance, both dictionaries syllabify the wordglam-
our as [glæm–�], whereas the more plausible syllabification in
speech is [glæ–m�]. The output of our syllabifier produces the
latter and hence is more faithful to spoken syllables. Since TTS
produces spoken language, albeit synthetic, syllabification ought
to represent the properties of spoken utterances, rather than mor-
phological structure.

5. CONCLUSION

This paper demonstrated the design and implementation of a syl-
labifier as a weighted finite-state transducer. The syllabifier has
been integrated into the finite-state based text analysis component
of the Bell Labs English and German text-to-speech systems. The
transducer was constructed by obtaining syllables as well as their
internal structures and frequencies of occurrence from a lexical
database. Weights on the transitions between states of the trans-
ducer were derived directly from the frequencies of onset, nucleus
and coda types in the database. The weights reflect the plausibil-
ity of onset, nucleus and coda types, and thus play a significant
role in obtaining the correct syllabification, especially in the case
of consonant clusters in languages such as English and German,
which offer ambiguous syllable boundary locations.

While the procedure of constructing the syllabification transducer
from training data is automatic, manual or interactive fine-tuning
is straightforward, if so required, due to the mathematical proper-
ties of weighted automata.

Syllabification is an important component of many language and
speech applications, especially TTS systems. Syllable boundary
location is a crucial piece of information for several components
of a TTS system: for instance, the pronunciation of a phoneme as
well as its duration depends upon the location of the phoneme in
the syllable.

In keeping with the multilingual design of the Bell Labs TTS sys-
tem, our approach is applicable to any language. It relies, how-
ever, on the phonotactics and syllable structure of each particular
language. We discussed the syllable structure and phonotactics of
English and German, and illustrated properties and performance
of the syllabifier using examples from these two languages.

6. REFERENCES

1. Celex. The CELEX lexical database—Release 2. CD-ROM,
1995. Centre for Lexical Information, Max Planck Institute for
Psycholinguistics, Nijmegen.

2. Johnson, C.Formal Aspects of Phonological Description.
Mouton, 1972.

3. Kaplan, R., and Kay, M. Regular models of phonological rule
systems.Computational Linguistics 20, 3 1994, 331–378.

4. Kay, M., and Kaplan, R. Word recognition. [This paper was
never published. The core ideas are published in Kaplan and
Kay (1994)], 1983.

5. Möbius, B. Word and syllable models for German text-to-
speech synthesis. InProceedings of the Third ESCA Workshop
on Speech Synthesis(Jenolan Caves, Australia, 1998), ESCA.

6. Mohri, M., Pereira, F., and Riley, M. A rational design for
a weighted finite-state transducer library. InAutomata Imple-
mentation, D. Wood and S. Yu, Eds., Lecture Notes in Com-
puter Science 1436. Springer, 1998, pp. 144–158.

7. Sproat, R., Ed.Multili ngual Text-to-Speech Synthesis: The
Bell Labs Approach. Kluwer, Dordrecht, 1998.

8. Sproat, R., M¨obius, B., Maeda, K., and Tzoukermann, E. Mul-
tili ngual text analysis. In Sproat [7], ch. 3, pp. 31–87.

9. van Santen, J. P. H., Shih, C., M¨obius, B., Tzoukermann, E.,
and Tanenblatt, M. Multilingual duration modeling. InPro-
ceedings of the European Conference on Speech Communi-
cation and Technology (Eurospeech)(Rhodos, Greece, 1997),
vol. 5, ESCA, pp. 2651–2654.

