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Abstract

This paper addresses issues in part of speech disambiguiaiitg finite-state transducers
and presents two main contributions to the field. One of thethé use of finite-state ma-
chines for part of speech tagging. Linguistic and statsticformation is represented in
terms of weights on transitions imeightedfinite-state transducers. Another contribution
is the successful combination of techniques — linguistid statistical — for word disam-
biguation, compounded with the notion of word classes.

1 Introduction

Finite-state machines have been extensively used in dere@s of natural lan-
guage processing, including computational phonologypmology, and syntax.
Nevertheless, less has been done in the area of part of sgesschbiguation
with finite-state transducerg (Silberztein1j9p3; Roche Sdithbes1995; Chanod
and Tapanainen1995).

Part of speech tagging consists of assigning to a word isyigguated part of
speech in the sentential context in which this word is used ldhguages which
require morphological analysis, the disambiguation i$qyered after the assign-
ment of morphological tags. In this paper, we suggest twehapproaches for
language modeling for part of speech tagging. The first ihhérabsence of suffi-
cient training data, to use only word classes over lexicababilities. This claim
is well demonstrated and supported |in (Tzoukermann et @8.19zoukermann
and Radev1996). Second, we present a complete system fevfggyeech dis-
ambiguation entirely implemented within the framework dighted finite-state
transducers| (Pereira et al.1994). Other works have beee dsing weighted
finite-state transducers (FST) with a combination of lisgjaiand statistical tech-
niques: [Sproat et al.1996) use weighted FSTs to segmensvimChinese, and

roat1995) uses them for multilingual text analysis. $jstem we present

disambiguates unrestricted French texts with a successfater 96%.

2 System Overview

The input to the system is unrestricted French text; theawgt which the algo-
rithm functions is the sentence. The system consists ofaadasf FSTs, each of
them corresponding to a different stage of the disambigoaflhe tagging pro-
cess consists of several steps, each involving the conuositthe output of the
previous stage with one or more transducers. Fi@e 1.Eptethe main stages
of disambiguation.

1. Tokenization: the input to the system is unprocessed French text. Each
sentence is preprocessed according to several criteriarofalization,
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SOURCE MORPHOLOGICAL LINGUISTIC STATISTICAL TAGGED
TEXT > TOKENIZATION  —>| ANALYSIS | DISAMBIGUATION [>| DISAMBIGUATION > TEXT

Figure 1.1: System architecture.

such as treatment of compound conjunctions as single uregment
of uppercase words for proper names, and acronyms.

2. Morphological analysisis applied to the tokenized sentence; see Ta-
ble , column 2. We must point out that there are over 256 tag
morphological analysis. This includes 45 verbal forms abcdxiliary
forms, over 45 different personal pronouns, etc. Theseyaaalwere
collapsed into 67 tags. We use the larger tagset mostly atdébative
constraint stage, as it allows us to capture subtle agrelgphemomena
(see Tablé 1]3]]

3. Linguistic disambiguation: the application of local grammars express-
ing negative constraints, such as noun-pronoun non agréeme

4. Statistical disambiguation: n-gram probabilities are computed on a
training corpus and applied in terms of weights or costs erH&T tran-
sitions.

The output text consists of the disambiguated French phsasehird column of
Table with the corresponding analyses shown in boldérsétond column.

3 Weighted for Morphological Analysis

The morphological transducer is developed within the fraor& of finite-state
morphology. The system that we have developed goes frorndkto surface
form. Phonological rules are applied separately to compld, noun, and ad-
jective stems. For a given verb in French, for example “Vefio come, all the
alternate base forms or stems necessary for the compldténflerction are com-
puted before the transduction from a French dictionpry 8899B) and stored as

1 Note that the word “des” in TabB.l has three readings, hafagthe contraction of the preposition
"de” and the article "les”, (b) the partitive article, (c)etfindefinite article. In the large tagset, it is
represented by three distinct tags; in the shorter tagsetdyags only, i.e., the preposition tag for
(a), and the article tag for (b) and (c).
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Table 1.1: Morphologically tagged sentence.

Tokens Full morphological analysis Tags
le pron.,def. masc. sg. art. RDM
produit masc. sg. noun, masc. sg. past part., 3rd pers. v. presims
liquide sg. adj., masc. sg. nhoun, 1st pers. v. ind./subj. pres.,

2nd pers. v. imp, 3rd pers. v. ind./subj. pres. JXS
qui rel. pron., interr. pron. BR
entre prep., 1st pers. v. ind./subj. pres., 2nd pers. v.,imp.
fem bf 3rd pers. v. ind./subj.pres. 3sPI
dans masc. pl. noupyep. P
le pron.,def. masc. sg. art. RDM
processus  masc. noun NMX
des prep., ind. pl. art., part. art. P
photocopies fem. pl. noun, 2nd pers. v. ind./subj. pres. NFP

transitions in the list of arcs, thus forming thec-list dictionary (Tzoukermann
and Jacquemin1997 to appear). This approach has beenxdekierihe treatment
of Spanish morphology (Tzoukermann and Liberman|1990)mé@ shows the
compiled base forms of the verb “venir” and some inflectiossoaiated with
these stems.

The morphological FST is nondeterministic. Weights arégaesl to the tran-
sitions of the FST. The lower the weight, the more likely thatticular analysis
will correspond to the proper disambiguation of the wordud,ha word starting
with an uppercase character will have, as a proper noun, leehigeight than
the same word if it exists in the lexicon as a common noun. kamgle, in the
sentence starting with “Marché conclu..completed (or done) deal)..the word
“Marché” is tagged\PR (proper noun)NMs (masculine singular noun), amd
(past participle). In that context, it is more likely that &vthé” is a common
noun rather than a proper one, thus the assignment of the mséto the noun
form. Similarly, if a word contains only uppercase lettats;an be tagged as
an acronym, even though the acronym is not present in thdaay itself. In
a similar fashion, the cost of tagging a sequence of chasaatean acronym is
higher than the cost of tagging the same sequence as a reguthr

Figure shows a finite-state automaton used to tag theerequof three
words “le produit liquide”. As an example, the word “le” artdetmorphologi-
cal tags associated with it, namelyd3s] (3rd person singular direct pronoun),
[RDM] (masculine definite article), andifNkNOWN] are shown. At all stages of
processing, we make sure that composition of finite-statesttucers doesn't fail.
It happens that the source text contains typos or gramnhaticas. As a result,
we always allow for words to be tagged with the “unknown” tagtlf a higher
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s:[vlspi]

vien:venir

ons:[v1ppi]

ez:[v2ppi]

es:[v2sps]

vienn:venir

vivenir ent:[v3ppi]

ins:[v1ssi]

Figure 1.2: FST showing some inflections of the verb “vertio’¢dome).

cost) in addition to their other tags. If at the end of protegsthe “unknown”

tag is the only tag remaining, the system will tag the comesing word as “un-
known”. If the “unknown” tag is not the only one, it will havle highest cost of
all and will not appear in the output.

Figure shows the composition of the input string “le pribdquide” and
the FST shown in FiguB.B. One can clearly see the possigdecbrresponding
to the three words in the input. As negative constraints gatical rules have
not been applied yet, all weights are equaltexcept the ones associated with
the “unknown” tags.

In (Tzoukermann et al.1997 to apgear), we measured the aibbif French
words in unrestricted texts. In comparing two corpora, ohatmut 100,000
tokens, the other of 200,000 tokens, we found out that 56%efwords are
unambiguous, 27% have two tags, 11% have three tags, antl@chave from
four to eight tags. The experiment showed three importaimttgoa) that over
half of French words are ambiguous, b) that their ambiguatyes from two tags
for one fourth of the words to eight tags for the other fourtthe@ words, and c)
that the ambiguity is constant no matter the size of the corpu
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eps:[bd3s]/0

eps:[rdm]/0

eps:[unknown]/20
le:eps/O

eps:[3spi]/0

eps:[papms]/0

produit:eps/0

eps:[unknown]/20

eps:[3spi]/0

liquide:eps/0

eps:[nms]/0

eps:[1spi]/0

eps:[1sps]/0

eps:[2spm]/0

eps:[3sps]/0

eps:[jxs]/0

Figure 1.3: Weighted sub-FST used to tag the input stringfésluit liquide”.
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[1spi]/0

[1sps]/0

[unknown]/20
[unknown]/20

[bd3s]/0
[rdm]/0

[3spi]/0
[nms]/0

[3sps]/0
[ixs]/0

[papms]/0
[unknown]/20

[3spi]/0

Figure 1.4: Weighted FST representing the composition efitiput string “le
produit liquide” and the FST shown in Figure 3
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Training cor pus and Genotypes

Three separate corpora were used for traﬂin‘gheir total size was of 76,162
manually tagged tokeﬁsAn additional corpus of 2,200 tokens was used for test-
ing purposes. The human tagger was given the output of thphotogical analy-

sis and had to pick the proper tag from the set. At the end stitmie-consuming
task, the total amount of disambiguated text was still ifisight; lexical forms of
words are ignored and only their tags are considered. @Iehbws the distri-
butions of genotypes in relation to tokens and word typekénarious corpora.
We use the terngenotypeto capture the set of parts of speech a word can be
tagged with. For example, the word “liquide” in Ta1.1 laagenotype of s
NMS V1S v2s v3s]. As shown in SectiorﬂS, probabilities are estimated on the
genotypes rather than the words (sge (Tzoukermann and Ra@igfor argu-
ments on using word class probabilities vs. lexical prolités). Genotypes play
an important role for smoothing probabilities. By payinteation to tags only
and thus ignoring the words themselves, this approach bBamdw words that
have not been seen in the training corpus. Our approachateddio Cuttinget al.
), who use the notion of word equivalence or ambiguagses to describe
words belonging to the same part-of-speech categories. eiawthey include
only words under some frequencies of occurrence, wheregas/stem uses word
classes for every lexical item. Notice the ratio betweemilmaber of word types
and the number of genotypes. Kl for example, there are 219 genotypes for
10,006 tokens, whereas 0, 304 genotypes for 76,162 tokens, i.e., only 38%
increase in the number of genotypes for a 661% raise in thausamize.

Table 1.2: Genotype distributions from the training cogpor

Corpora  #of tokens #of types # of genotypes

K1 10006 2767 219
K2 34636 4714 241
K3 31520 5299 262
KO (K1-3) 76162 10090 304

2 The corpora consist of two different newspapers — one cowassextracted from “Le Monde”
newspaper (corpus of the European Community Initiativ8919.990), the other from the on-line
collection of French news distributed by the French Embasgyashington D.C. between 1991 and
1994.

3 We wish to thank Prof. Anne Abeillé and Thierry Poibeau fritra University of Paris for helping
the manual tagging.
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4  Transducers of negative constraints

Local grammars are used to represent linguistic informmafichis information is
expressed in terms of negative constraints. These locairgeas are somehow
similar to the ones off (Gross1986; Mohri1994; Karlsson et28%), and they
reflect language generalities, allowing or disallowinghgiions from occurring.
For example, the most common example, valid in several laggs, states that
an article R) cannot precede a verly) as shown in the constraim v in Ta-
ble . This simple statement offers some advantages: thgisontext of the
two words “le vol the fligh), where “le” can be either an articl¢h€) or a per-
sonal pronounit/him), one can easily disambiguate “le”; if it precedes a noun
(“vol"), it cannot be a pronoun, therefore it is an articlg.if the context of the
two words “le manger”the nourishmenor eat i) where there is the additional
ambiguity of the word “manger” (noun or verb), instead of ingvMfour readings,
i.e. article-noun, article-verb, pronoun-noun, pronomenb, two transitions are
ruled out, namely article-verb and pronoun-noun. The twuoai@ing readings
will require an additional word to disambiguate the tags tnigram. Tabl3
shows some examples of negative constraints. In order tw fagal grammars
over statistical information, negative constraints havast lower than n-gram
genotypes obtained through statistics.

Table 1.3: Sample negative constraints.

Negative constraints Partsof speech transitions

RV article + verb

BR1V2 reflexive first person pronoun + second person verb
SB BD sentence beginning + direct object personal pronoun
(NRY; numeral + adjective + verb

RDM NFS masculine definite article + feminine singular noun

All adjacencies that have to be ruled out by the tagger caxjpeessed in such
a way. The second rule in tabjle [1.3 disallows the transitiba eflexive first
person pronoun followed by second person verb. For instdndbe transition
“me vois” ((I or you) see mewhere “vois” can be first or second person, the first
person is ruled out. Agreement rules are particularly wetesl to be handled by
this mechanism. The last transition in Taplg 1.3 showed havasculine article
cannot precede a feminine noun. For example, the words “igefhphe wayor
the fashiofpwhere “mode” can be either masculine or feminine singutanm the
feminine form gets ruled out to favor the masculine reading.

Stating negative rules in this manner offers an additiod@hatage besides rule
writing simplicity. If the rule is generic for the tag, onliié generic representa-
tion will be written. For instance, in the first rule of Talple1r corresponds to
all the articles forms, which includes 13 tags, includirmy(definite article)RDP
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(definite partitive article)rRbmp (definite masculine plural articleRbms (defi-
nite masculine singular article), etc. If the rule focusegiender agreement as is
the case in the last example of the table, it is possible te hawnore specific tag.
Figur shows a transducer corresponding to the locaigaBR1 v2. In this
particular exampl@Rr1 can be expanded into BR1P (personal pronoun reflexive
1st person plural) and BR1S (personal pronoun reflexive éstom singular),
andv2 can be expanded into 30 tags, including, among others V2R 2nd
person plural present indicative), V2SPM (verb 2nd persogudar present im-
perative), V2SFI (verb 2nd person singular future indiegti V2SIS (verb 2nd
person singular imperfect subjunctive), all the secondgeauxiliary forms, etc.
The negative constraint transducer is used to increaseottts of certain paths
in the automaton. When the output of the morphological ttansr is composed
with the negative constraint transducer, then the new ittanscosts are com-
puted. The result is that paths including transitions tlmatespond to negative
constraints will have an effective cost of infinity, thenefavill never be selected.
Since negative constraints are not allowed to be violatedtscfor "unknown”
tags and negative constraints were selected in such a waydltss including
"unknown” tags will have smaller costs than path with negationstraints.

V2spi:v2spi/50

v2spm:v2spm/50

v2spc:v2spc/50

brls:brls/50
brip:brip/50

v2sps:v2sps/50
v2sfi:v2sfi/50

v2pis:v2pis/50

Figure 1.5: Transducer of local grammars.

A small number of constraints (in our case, only 77) can beapgpd for all
generic tags, thus creating a new set of 670 constraints. \Wés achieved using
a transducer compiling rewriting rules that makes use ofpmsitions of several
transducers| (Mohri and Sproat1996). This average expaifattor of 9 shows
how this rule writing mechanism can be economic for the liagu
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5 Weighted FST for Statistical Tagging

We use n-grams of genotypes rather than word n-grams to astifrequen-
cies. Unigram, bigram, and trigram probabilities are cotagdrom the train-
ing corpus. For example, bigram probabilities are compbte@stimating the
sequence of two tag$; andt; 1, given the two genotypeq;; and 744, i.e.,
P(t;, t;+1|T;, Ti+1), assuming that; € T; andt;11 € T;+1. For all parts of
speech, the weights are derived from the frequency of a gjeentype in context
within the training corpus. Weights are associated wittheagram and applied
during tagging. Due to their distribution and to the disaguiaition process, some
words such as proper nouns, acronyms, and unknown wordassigned higher
weights.

[p r]:p/1.04 [imp nmp]:jmp/1.65

[jmp nmp]:nmp/1.73

[p rlimp nmp]:p jmp/1.66
[p rl[imp nmp]:p nmp/0.30

[p r]imp nmpl:r jmp/4.26

[p rlimp nmp]:r nmp/2.87

Figure 1.6: Example of a Weighted FST which tags the genoypem [P R]
[aMP NMP|

Figure presents a bigram genotype showing all the transiand weights,
and Tabld 1/4 demonstrates how weights are computed forcifisgegram and
how these weights are used to make a tagging decision. Thanbip R] [ IMP
NMP] occurs 141 times in the training corpus, and corresponded@ossible
word “des” ¢he, of th¢ which has for genotypeP[R] (preposition, article) and the
possible word “bons"dood ones, gogavith the genotypejmpP NMPF] (masculine
plural adjective, masculine plural noun). The bigram isegated automatically
from the training corpus; observe in Fig 1.6 that theesBapossible readings
for the bigram (4 unigram combinations and 4 bigrams). Onatire hand, the
four combinations of the separate unigrams going from €idte1 and from 1
to 2, each one appearing in the training corpus. In thesescte=final weights
correspond to the sum of the values of pnd [amP], i.e. 1.66, P] and [NMP]
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with a weight of 0.30, R] and [3mP] with a weight of 4.26, andf] and [NMP]
with a weight of 2.87. On the other hand, the sub-FST thatesponds to this
bigram of genotypes will haver[R] [IMP NMP] on its input and all 4 possible
taggings on its output, as illustrated in Ta@ 1.4. Eaclgitagsequence has a
different weight. Assume that is the sum of all weights in a genotype bigram
and f; is the number of cases wher@ccurs. For all possible tagginggin this
example there are 4 possible taggings), the weight of thesitian for tagging

t is the negative logarithm of; divided by f: —log(f:/f). Thus, the decision
P JMP appears with the weight 1.66, the decismmp with the weight 0.30,
the decisionr JMP with the weight 4.26, and finally the decisignNMP with
the weight 2.87. Out of these eight combinations, the lowest is 0.30, which
means that the bigramNmMP will be selected.

Table 1.4: An example of cost computation for the bigram FSR]|[[ IMP NMP].

genotypebigram tagging frequency weight

[P R [IMP NMP] P, IMP 27/141 1.66
P, NMP 104/141 0.30
R, JMP 2/141 4.26
R, NMP 8/141 2.87

[bd3s]:[bd3s]/0

[rdm]:[rdm]/(0)

[unknown]:0/0

[rdm]:[rdm]/1 [unknown]:[unknown]/20

[rdm]:[rdm]/2.02 [unknown]:[unknown]/20

[bd3s]:0/0 [unknown]:0/0

[bd3s]:[bd3s]/5.75
[bd3s]:bd3s}/0

[rdm]:0/0 /8\ [unknown]:0/0
N

[rdm]:[rdm]/0

Figure 1.7: Weighted FST representing the genotype unigem8s RDM] cor-
responding to the word “le” in the sample sentence.

6 Contextual probabilitiesvia bigram and trigram genotypes

Using genotypes at the unigram level tends to result in areplization, due to
the fact that the genotype sets are too coarse. In orderiedse the accuracy of
part-of-speech disambiguation, we need to give priorityiggams over bigrams,
and to bigrams over unigrams.
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In away similar to decision trees, Tatple]1.5 shows how thetisentext allows
for better disambiguation of genotype. We have consideitygiaal ambiguous
genotype jMP NMF], corresponding to a word such as “petits” (small) which can
be either masculine plural adjective (small) or masculineghnoun (small ones),
which occurs 607 times in the training corpus, almost evdigiributed between
the two alternative taggmp andNMP. As a result, if only unigram training data
is used, the best candidate for that genotype woulaiMre occurring 316 out of
607 times. However, choosingp only gives us 52.06% accuracy. Ta 15
clearly demonstrates that the contextual information adothe genotype will
bring this percentage up significantly. As an example, letarsider the 5th line
of Table[L}5, where the number 17 is marked with a square. itncse, we
know that the jMP NMP] genotype has a right context consisting of the genotype
[p r] (4th column, 5th line). In this case, it is no longer trthat amP is the
best candidate. InsteadmpP occurs 71 out of 91 times and becomes the best
candidate. Overall, for all possible left and right conseoft[JMP NMF|, the guess
based on both the genotype and the single left or right céstetl be correct
433 times out of 536 (or 80.78%). In a similar fashion, the¢hpossible trigram
patterns (Left, Middle, and Right) are shown in lines 18-Zfey show that the
performance based on trigrams is 95.90%. Disambiguatisulteeare provided
in Table. This particular example provides strong avigeof the usefulness
of contextual disambiguation with genotypes. The fact thi& genotype, very
ambiguous as a unigram (52.06%), can be disambiguated asneon@djective
according to context at the trigram stage with 95.90% aayudamonstrates the
strength of our approach.

Smoothing probabilitieswith genotypes

In the context of a small training corpus, the problem of spatata is more se-
rious than with a larger tagged corpus. Genotypes play arritapt role for
smoothing probabilities. By paying attention to tags omy éhus ignoring the
words themselves, this approach handles new words thatloabeen seen in the
training corpus. Tablﬂ.? shows how the training corpusipes coverage for
n-gram genotypes that appear in the test corpus. Itis stiageto notice that only
12 out of 1564 unigram genotypes (0.8%) are not covered. fEi@ng corpus
covers 71.4% of the bigram genotypes that appear in thedgstis and 22.2% of
the trigrams.

7 Related Research
Approaches to part of speech taggers can be divided into ypest Markov-

model based taggers on the one hgnd (Bahl and Mercgrl976h ls¢eal.1993,;
Merialdo199%:[ DeRose198§; Churchléﬁg; Cutting et al[198ad rule-based

part of speech taggers (Klein and Simmons]1963; Brill L 9e2itNainen1993) on




Use of Weighted Finite State Transducers 13

Table 1.5: Influence of context for n-gram genotype disamndtign.

n-gram pos. total  genotype decision distr.  correct  total
Unigram 607 [jmp nmp] jmp 316 316 607
nmp 291
Bigram Left 230 [jmp nmp][x] jmp, x 71 71 102
nmp, X 31
[imp nmp][p ] jmp. p [17] 7 o1
jmp, r 3
nmp, p 71
[fmp nmp][nmp] jmp, nmp 23 23 24
nmp, nmp 1
[fmp nmp][a] jmp, a 13 13 13
Right 306  [p r[imp nmp] p,jmp 27 112 141
p, nmp 104
T, jmp 2
r, nmp 8
[b rI[jmp nmp] T, jmp 22 72 94
r,nmp 72
nmp][jmp nmp] nmp,jmp 71 71 71
Trigram Left 32 [jmp nmp][p r][nms] nmp, p, Nms 21 21 21
jmp nmp][jmp nmp][x] _jmp, jmp, X 3 8 11
nmp, jmp, X 8
Middle 44 Tp rimp nmp][p 1] p, nmp, p 23 23 23
[b rlimp nmp][p ] r, nmp, p 19 19 21
r,ijmp, p 2
Right 46 [p rlinmp]jmp nmp] p, nmp,jmp 27 29 29
r, nmp,jmp 2
[n z][p r]fmp nmp] Z, p,nmp 16 17 17
Z,r,nmp 1

Table 1.6: Evaluation of the predictive power of contexgethotypes.

n-gram cor. total accuracy

Unigram 316 607 52.06%
Bigram 433 536 80.78%
Trigram 117 122 95.90%

Table 1.7: Coverage in the training corpus of n-gram gerestypat appear in the
test corpus.

test corpus  training corpus
# of genotypes  # of genotypes  accuracy
1-grams 1564 1552 (99.2 %)
2-grams 1563 1116 (71.4 %)
3-grams 1562 346 (22.2 %)
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the other. Even though there has been a recent surge ofsnietbe application
of finite-state automata to NLP issues, work has only startguhrt of speech
tagging. Roche and Schabes (1995) present a part-of-speggér based on
finite-state transducers; they use Brill's part of speeggéaand convert the rules
into finite-state transducers. Operations are accomplish¢he transducers, such
as the application of a Local Extension function. Transdsiaee converted into
subsequential ones, to be deterministic. The goal of theatipe is to optimize
the system in terms of time and execution speed, which igalrfar a working
system. The work does not focus on the disambiguation p&useather, on the
conversion of transducers into deterministic subseqakmties.

Chanod and Tapanaineh (1995; 1995a) compare two framevi@rkagging
French, a statistical one, based on the Xerox tagger (Quetiml.199P), and an-
other based on linguistic constraints only. The constraased tagger is proven
to have better performance than the statistical one, sinleenriting is easier to
handle and to control than adjusting the parameters of #tistital tagger. It is
difficult to compare any kind of performance with ours sinlgeit tagset is very
small, i.e. 37 tags (compared to our two tagsets of 67 and&fs tincluding a
number of word-specific tags which further reduces the nurobigs, and does
not account for several morphological features, such adeyenumber for pro-
nouns, etc. To be properly done, the comparison would irvolajor changes in
our system since local grammars could not be applied asdsparam statistics
should be re-computed. Moreover, categories that can lyewneiguous, such as
coordinating conjunctions, subordinating conjunctigeative and interrogative
pronouns tend to be collapsed; consequently, the disaratigLis simplified and
it is not straightforward to compare results.

8 Resultsand Conclusion

Using weighted FSTs to couple statistic and linguistic infation has shown to
be highly successful in part of speech tagging. The sizesodiffierent modules of
the system is presented in Ta@ 1.8: Our system correcthnubiguates 96% of

Table 1.8: Size of the different transducers.

Morphology Negativeconstraints Ngram genotypes
Number of states 810,263 181 12,718
Number of arcs 914,561 39,549 2,520,846

words in unrestricted texts. We ran an experiment usingQDydbrds of training
corpus in order to measure the improvement of n-gram disgunaltion. We tested
our tagger on a 1,000-word corpus. Ta@ 1.9 shows how therpeance of
the tagger improves from 92.1% using only unigrams to 96.8¥guunigrams,
bigrams, trigrams, and negative constraints.
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Table 1.9: Tagger performance witkgram probabilities and negative constraints.

l-grams 1,2-grams neg. consand 1, 2, 3-grams
10K-word corpus  92.1% 93.4% 96.0%

We demonstrated that, in the absence of more training daayde of geno-
types captures linguistic generalities about words. Addilly, genotypes are
used for smoothing which seriously reduces the problem afsgpdata. Bigram
and trigram genotypes capture the pattern of tags in carféet system has been
used in automatic indexing applications and text-to-spegstem for French. In
text-to-speech, words having the same orthography andeaetit pronunciation,
can be identified via their part-of-speech. This is the cdsedo/noun category
where words like “président” can be pronounced eitherdpfé (when it is a
noun) or [presid( )] (when it is a verb), the noun/verb wordsltsas “est” [ st]
(noun) and [ ] (verb). Knowing parts of speech for text-t@sgh applications
also permits to compute better intonational contours. Veepéanning to utilize
additional FST tools for local grammars so that shallow agtit units can be
studied and analyzed.
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