
Robust Spelling Correction�

Manuel Vilares1, Juan Otero1, and Jesús Vilares2

1 Department of Computer Science, University of Vigo,
Campus As Lagoas s/n, 32004 Ourense, Spain

{vilares, jop}@uvigo.es
2 Department of Computer Science, University of A Coruña,

Campus de Elviña s/n, 15071 A Coruña, Spain
jvilares@udc.es

Abstract. The paper introduces a robust spelling correction technique
to deal with ill-formed input strings, including unknown parts of un-
known length. In contrast to previous works, we derive profit from a
finer dynamic programming construction, which takes advantage of the
underlying grammatical structure, leading to an improved computational
behavior and error repair quality. The formal description applies a de-
ductive approach in order to simplify this task, separating it from the
interpretation strategy, and including cut-off facilities.

1 Introduction

Although spelling correction has been a central subject in natural language
processing (nlp) for a long time [1], recent years have seen a renewal of interest
in it due to the increasing amount of textual information available in electronic
format. Here, the state of the art [2] focuses on contextual and non-contextual
error correction. In relation to the former, most proposals are based on nlp tech-
niques and/or statistical-language models, integrating linguistic knowledge [3, 4].
For the latter, techniques look for possible editing sequences to reflect the error
occurrence phenomenon in spelling. These strategies study correction patterns,
most of them taking into account the edit distance [5], but also on occasion
introducing constraints on the spelling process [6] in order to cut down the com-
putational time needed for the correction.

Even non-contextual strategies can be of interest in a number of practical
applications, when no training corpus is available and/or it is not easy to obtain
statistics for estimating the linguistic model, these algorithms can be consid-
ered as a preliminary phase in a more sophisticated contextual approach such
as shallow and partial interpretation. Our proposal extends an original non-
contextual regional least-cost spelling correction proposal [7] in order to provide
both robustness in noisy conditions and general parameterizable cut-off criteria.
In relation to previous works, we provide a formal definition framework and an
improved computational behavior.
� Research supported by the Spanish Government under projects TIN2004-07246-

C03-01, TIN2004-07246-C03-02, and the Autonomous Government of Galicia under
projects PGIDIT03SIN30501PR and PGIDIT02SIN01E.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 319–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

320 M. Vilares, J. Otero, and J. Vilares

2 The Operational Model

Our aim is to parse a word w1..n = w1 . . . wn according to an rg G = (N, Σ, P, S).
We denote by w0 (resp. wn+1) the position in the string, w1..n, previous to w1
(resp. following wn). We generate from G a numbered minimal acyclic finite
automaton for the language L(G). In practice, we choose a device [8] generated
by Galena [9]. A finite automaton (fa) is a 5-tuple A = (Q, Σ, δ, q0 , Qf) where:
Q is the set of states, Σ the set of input symbols, δ is a function of Q × Σ into
2Q defining the transitions of the automaton, q0 the initial state and Qf the set
of final states. We denote δ(q, a) by q.a, and we say that A is deterministic iff
| q.a |≤ 1, ∀q ∈ Q, a ∈ Σ. The notation is transitive, q.w1..n denotes the state
(n−2. . . (q.w1) n−2. . .).wn. As a consequence, w is accepted iff q0.w ∈ Qf , that is, the
language accepted by A is defined as L(A) = {w, such that q0.w ∈ Qf}. An fa

is acyclic when the underlying graph is. We define a path in the fa as a sequence
of states ρ = {q1, . . . , qn} , such that ∀i ∈ {1, . . . , n − 1}, ∃ai ∈ Σ, qi.ai = qi+1.

We also apply a minimization process [10]. In this sense, we say that two
states, p and q, are equivalent iff the fa with p as initial state and the one
that starts in q recognize the same language. An fa is minimal iff no pair in Q
is equivalent. Although the standard recognition is deterministic, the repair one
could introduce non-determinism by exploring alternatives associated to possibly
more than one recovery strategy. So, in order to get polynomial complexity, we
avoid duplicating intermediate computations in the repair of w1..n ∈ Σ+, storing
them in a table I of items, I = {[q, i], q ∈ Q, i ∈ [1, n + 1]}, where [q, i] looks
for the suffix wi..n to be analyzed from q ∈ Q.

Our description uses parsing schemata [11], a triple 〈I, H, D〉, with H =
{[a, i], a = wi} an initial set of items called hypothesis that encodes the word
to be recognized1, and D a set of deduction steps that allow items to be derived
from previous ones. These are of the form {η1, . . . , ηk � ξ /conds}, meaning that
if all antecedents ηi are present and the conditions conds are satisfied, then the
consequent ξ is generated. In our case, D = DInit ∪ DShift, where:

DInit = {� [q0, 1]} DShift = {[p, i] � [q, i + 1] /∃[a, i] ∈ H, q = p.a}

We associate a set of items Sw
p , called itemset, to each p ∈ Q; and apply these

deduction steps until no new item is generated. The word is recognized iff a final
item [qf , n + 1], qf ∈ Qf has been generated. We can assume that Qf = {qf},
and that there is only one transition from (resp. to) q0 (resp. qf). To get this,
it is sufficient to augment the original fa with two states which become the
new initial and final states, and are linked to the original ones through empty
transitions, our only concession to the notion of minimal fa.

3 Spelling Correction

We talk about an error in a word to mean the difference between what was
intended and what actually appears, and we call point of error the point at
1 A word w1...n ∈ Σ+, n ≥ 1 is represented by {[w1, 1], [w2, 2], . . . , [wn, n]}.

Robust Spelling Correction 321

which that difference occurs. So, a repair should be understood as a modification
allowing the recognizer both to recover the process and to avoid cascaded errors,
that is, errors precipitated by a previous erroneous repair diagnosis. This is the
goal of regional repairs [7], which we succinctly remember now.

Working on acyclic fas, we define an order relation p < q, with p, q ∈ Q iff
a path exists in the fa from p to q. A pair of states (p, q) is a region, Rq

p, in
the fa when it defines a sub-automaton with initial (resp. final) state in p (resp.
q). So, we say that a state r ∈ Rq

p iff there exists a path ρ in Rq
p, such that

r ∈ ρ, r 	= p, q. Given r ∈ Q, it can be proved that there is only one minimal
region, M(r), in the fa containing it.

To begin with, we assume that we are dealing with the first error detected. We
extend the structure of items, as a pair [p, i], with an error counter e; resulting
in a new structure [p, i, e]. Given a point of error wj , the associated point of
detection is the initial state of the minimal region, M(wj) = Rq

p, containing
wj . Associated to the point of error (resp. detection) wj (resp. wi), we consider
the corresponding error (resp. detection) item [q, j,] (resp. [p, i,]). To filter
out undesirable repairs, we introduce criteria to select those with minimal cost.
For each a, b ∈ Σ we assume insert, I(a); delete, D(a), replace, R(a, b), and
transpose, T (a, b), costs. We apply, from the detection item, the deduction steps
Derror = DShift ∪ DInsert

error ∪ DDelete
error ∪ DReplace

error ∪ DTranspose
error , defined as follows:

DShift = {[r, l, e] � [s, l + 1, e], ∃[a, l] ∈ H, s = r.a}
DInsert

error = {[r, l, e] � [r, l + 1, e + I(a)]}

DDelete
error = {[r, l, e] � [s, l, e + D(wl)]

�
M(q0.w1..j) = Rqd

qs

r.wl = s ∈ Rqd
qs or s = qd

}

DReplace
error = {[r, l, e] � [s, l + 1, e + R(wl, a)],

�
M(q0.w1..j) = Rqd

qs

r.a = s ∈ Rqd
qs or s = qd

}

DTranspose
error = {[r, l, e] � [s, l + 2, e + T (wl, wl+1)]

�
M(q0.w1..j) = Rqd

qs

r.wl+1.wl = s ∈ Rqd
qs or s = qd

}

where w1..j looks for the current point of error. We also redefine DInit as {�
[q0, 1, 0]}. In any case, the error hypotheses apply on transitions behind the
repair region. The process continues until a repair covers that region, accepting
a character in the remaining string. When no repair is possible, the process
extends to the next region, taking the final state of the previous one as the new
point of error. We apply a principle of optimization, saving only those items with
minimal counters.

When the current error is not the first one, we can modify a previous repair
in order to avoid cascaded errors, by adding the cost of the new error hypotheses
to profit from the experience gained from previous ones. This allows us to get a
quality close to global methods [7], with a time complexity, in the worst case

O(
n!

τ ! ∗ (n − τ)!
∗ (n + τ) ∗ 2τ ∗ fan-outτµ)

where τ and fan-outµ are, respectively, the maximal error counter computed and
the maximal fan-out of the automaton in the scope of the repairs considered.
The input string is recognized iff a final item [qf , n+1, e], qf ∈ Qf , is generated.

322 M. Vilares, J. Otero, and J. Vilares

4 Spelling Incomplete Strings

In order to handle incomplete strings, we extend the input alphabet by introduc-
ing two new symbols. So, “?” stands for one unknown character, and “∗” stands
for an unknown sequence of input characters. Once the underlying fa detects
that the next input symbol to be shifted is one of these two extra symbols, we
apply the following set of deduction steps, Dincomplete:

DShift
incomplete = {[p, i, e] � [q, i + 1, e + I(a)] / ∃ [?, i] ∈ H, q = p.a}

DLoop shift
incomplete = {[p, i, e] � [q, i, e + I(a)] / ∃ [∗, i] ∈ H, q = p.a, 	 ∃ q.wi+1}

DLoop shift end
incomplete = {[p, i, e] � [q, i + 1, e + I(a)] / ∃ [∗, i] ∈ H, q = p.a, ∃ q.wi+1}

where I(a) is the insertion cost for a ∈ Σ. From an intuitive point of view,
DShift

incomplete applies any shift transition independently of the current lookahead
available, provided that this transition is applicable with respect to the fa con-
figuration and that the next input symbol is an unknown character. In relation
to DLoop shift

incomplete, it simulates shift actions on items corresponding to fa configu-
rations for which the next input symbol denotes an unknown sequence of char-
acters, when no standard shift action links up to the right-context. Given that
in this latter case new items are created in the same itemset, these transitions
may be applied any number of times to the same computation thread, without
scanning the input string. These deduction steps are applied until a recogni-
tion branch links up to the right-context by using a shift action, resuming the
standard recognition mode, as it is described by DLoop shift end

incomplete .
In this manner, when we deal with sequences of unknown characters, we can

examine different paths in the fa resolving the same “∗” symbol. Although this
could be useful for subsequent syntactic or semantic processing, an uncontrolled
over-generation is not of practical interest in most cases. We solve this by tabulat-
ing the number of characters used to rebuild the word, using the error counter,
and applying the principle of optimization. These steps are applied until new
items cannot be generated. The time bound is, also, in the worst case,

O(
n!

τ ! ∗ (n − τ)!
∗ (n + τ) ∗ 2τ ∗ fan-outτµ)

The correction is defined by a final item [qf , n + 1, e], qf ∈ Qf .

5 The Robust Frame

We are now ready to introduce the robust construction. We must now guarantee
the capacity to recover the recognizer from any unexpected situation derived
either from gaps in the scanner or from errors. To deal with this, it is sufficient
to combine the rules previously introduced. More exactly, we have that the new
set of deduction steps, Drobust, is given by:

Drobust = DInit ∪ DShift ∪ DInsert
error ∪ DDelete

error ∪ DReplace
error ∪

DTranspose
error ∪ DShift

incomplete ∪ DLoop shift
incomplete ∪ DLoop shift end

incomplete

Robust Spelling Correction 323

where there is no overlapping between the deduction subsets. The final robust
recognizer also has a time complexity, in the worst case

O(
n!

τ ! ∗ (n − τ)!
∗ (n + τ) ∗ 2τ ∗ fan-outτµ)

with respect to the length n of the ill-formed sentence. The input string is recog-
nized iff a final item [qf , n + 1, e], qf ∈ Qf , is generated.

6 Pruning Strategies

In dealing with spelling correction, ill-formed expressions can often be resolved in
different manners, which forces us to consider a framework involving ambiguities.
Although most of these ambiguities will be eliminated in subsequent and more
sophisticated analysis tasks, a number of them can already be treated at this
stage. Disregarding pure statistical aspects, we focus on the formalization of cut-
off schemata in order to limit the repair space and, as a consequence, reduce the
computational impact derived from exploring useless repair paths.

Nevertheless, the interpretation of an fa as a sequential transitional formal-
ism imposes an essential guideline on the design of any pruning strategy. If we
also take into account that the dynamic frame previously defined updates error
counters at each new item generation, it appears that pruning techniques based
on threshold error criteria seem to be particularly well adapted. So, we can con-
sider a set of simple cut-off schemata, combining the repair hypotheses in order
to allow the user to implement human-like correction strategies.

6.1 Path-Based Pruning

We refer here to a classic technique [5, 12] consisting of pruning repair branches
on items with an error below a given threshold. From an operational viewpoint,
the consideration of this pruning mechanism does not require any modification
in the item structure, and we must only apply a test on the error counter each
time a new item is generated. If the counter computed is greater than the defined
threshold, ρ, we simply prune the parse process on the corresponding branch by
stopping any action on that item. So, we can only take into account what is now
in our parse scheme:

∀I � [p, i, e] ∈ Drobust, e < ρ

As an example, considering the discrete metric assigning a unitary cost to each
repair deduction step in robust mode, we could cut-off all repair branches with
an error counter higher than a fixed proportion on the length of the word.

6.2 Sequence-Based Pruning

Another possible approach is to limit the number of consecutive errors included
in a path, pruning them on items in these sequences with a quality below a given
threshold, σ. In order to implement this pruning strategy, we must first introduce

324 M. Vilares, J. Otero, and J. Vilares

an additional error counter, el, representing the local error count accumulated
along a sequence of repair hypotheses in the path we are now exploring. So,
items take the new structure [p, i, eg, el], where the error counter eg is the same
as that considered in the original robust algorithm. At this point, we re-define
the following deduction steps from the original scheme for the robust mode:

DShift = {[p, i, eg, el] � [q, i + 1, eg, 0], ∃[a, i] ∈ H, q = p.a}

which implies that each time a shift action is performed, a sequence of possible
repair hypotheses is broken and, as a consequence, no sequence-based pruning
can be considered in that case. At this point, all that remains is to test that no
sequence of deduction steps in Drobust exceeds the threshold σ. So, we have that
the complete previous deduction step

[p, i, eg] � [q, j, eg + �] ∈ Drobust

is now replaced by another one of the form

[p, i, eg, el] � [q, j, eg + �, el + �] ∈ Drobust, el + � < σ

So, for example, we could contemplate cutting off any branch including a se-
quence of repair hypotheses.

6.3 Type-Based Pruning

Sometimes we may be more interested in detecting the presence of some par-
ticular hypotheses in a path of the fa or even in a sequence of this path. This
translates into applying the previous path and sequence based approaches to a
particular kind of deduction hypotheses. Taking, for example, the case of DInsert

robust
and assuming a threshold τ to locate the pruning action on a path, we have that
the new deduction steps are now:

∀I � [p, i, eg, el] ∈ DInsert
robust, eg < τ

and, if we deal with a sequence on a path, we have that:

[p, i, eg, el] � [q, j, eg + �, el + �] ∈ DInsert
robust, el + � < τ

assuming that standard shift actions re-initialize to zero local counters. However,
we need a pair of counters associated to each kind of deduction steps in order to
consider type-based pruning for insert, delete, replace or transpose hypotheses.
As an example, we could cut-off any branch considering more than two delete
hypotheses in the same branch.

7 Experimental Results

We consider a lexicon for Spanish built from Galena [9], which includes 514,781
different words, to illustrate this aspect. The lexicon is recognized by an fa

containing 58,170 states connected by 153,599 transitions, of sufficient size to

Robust Spelling Correction 325

allow us to consider it as a representative starting point for our purposes. In
order to take the edit distance [5] as the error metric for measuring the quality
of a repair, it is sufficient to consider discrete costs I(a) = D(a) = 1, ∀a ∈ Σ
and R(a, b) = T (a, b) = 1, ∀a, b ∈ Σ, a 	= b. In particular, this choice will allows
us to compare our proposal with the original conditions for Savary’s one [12].

Our goal is now to illustrate the robustness in a variety of situations. We look
for a set of tests that will show both the effects from the topological distribution
of errors and unknown sequences in the input string and, whenever possible, the
structural influence of the operational kernel in the recognition process. Three
different kinds of patterns are considered for modeling ill-formed input strings.

The former, which we call unknown, is given by words which do not include
spelling errors, but only unknown symbols. This, for example, is the case of
the ill-formed word agu*teis. Taking a path-threshold 2, the completion is
aguasteis (you watered). The second kind of pattern, which we call error-
correction, gathers words including only errors. For the error input augasteis
with path-threshold 2, the correction is aguasteis. The third pattern, which we
call overlapping, groups words combining both unknown symbols and spelling
errors. In the case of aga*teis with path-threshold 2, the repair is aguasteis,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Position of the first point of error

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Length of the current suffix

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

Fig. 1. Items generated for the unknown example

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Position of the first point of error

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Length of the current suffix

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

Fig. 2. Items generated for the error-correction example

326 M. Vilares, J. Otero, and J. Vilares

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Position of the first point of error

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Length of the current suffix

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

Fig. 3. Items generated for the overlapping example

which is generated by rebuilding the unknown sequence “∗” with ‘‘s’’ and,
later, re-taking the error mode to insert ‘‘u’’ before the second ‘‘a’’.

The results are shown, for the unknown, error-correction and overlapping
examples in Figs. 1, 2 and 3; respectively. In all cases, we have started from the
same sample of words, which has the same distribution observed in the original
lexicon in terms of lengths of the strings dealt with. On these words and for each
length category, we have randomly generated errors and unknown sequences in
a number and position in the input string. This is of some importance since
the efficiency of previous proposals depends on these factors [5, 12]. No other
morphological dependencies have been detected.

In relation to the pruning criteria chosen, we consider a specific one for each
example. So, in the unknown case, path and sequence thresholds are 3. Type
ones are only considered for delete hypothesis and also fixed to 3. For the error
correction example, path and sequence thresholds are, respectively, 3 and 2.
Here, type ones are considered for all error hypotheses and fixed to 1. In the
overlapping case, path and sequence thresholds are 4; and type ones are also
fixed for all error hypotheses. In dealing with deletions it has a value of 3, and
in the case of insertion, replacement and transposition its value is 1.

The number of items generated by the system during the robust recogni-
tion process has been taken as the reference for appreciating the efficiency of
our method, rather than purely temporal criteria, which are more dependent
on its implementation. These items are measured in relation to both the po-
sition of the first point at which a difference which was attended to by the
user occurs in the word and the length of the suffix from it. So, we are sure
to take into account the degree of penetration in the fa at that point, which
determines the effectiveness of the repair strategy since it influences the num-
ber of repair schemata to follow. In particular, in our proposal, it determines
the number of regions in the fa including the point of error or the first un-
known point and, as a consequence, the possibility of considering a non-global
resolution.

In each figure, we compare four different graphs corresponding to our prun-
ing proposal, the results without cut-off, the Savary’s approach [12] with the

Robust Spelling Correction 327

same path-threshold of our pruning schemata and, finally, the number of items
that would be generated in standard recognition mode if we had considered the
correct input string from which we have obtained the erroneous one analyzed
by the previous three graphs corresponding to robust techniques. So, we can
estimate the computational behavior of the different robust techniques consid-
ered, but we can also to illustrate the computational effort exclusively due to the
application of the robust mechanisms in each case. In relation to the Savary’s
proposal, the original algorithm allows to consider path-based pruning and, in
order to introduce unknown symbols, we have simply extended it by simulating
insertions.

These results show a noticeable improvement in computational complexity
due to the consideration of pruning techniques. Here, it is important to remem-
ber that errors and unknown sequences were randomly generated and therefore
we have not profited from any linguistic knowledge in order to design efficient
pruning criteria. In spite of this apparent lack of performance, the application of
these cut-off techniques has augmented the precision 2 by 4’06% for the unknown
example, 7’76% for the error correction one, and 1’95% for the overlapping case.
In relation to this, although the errors in our tests have been randomly gener-
ated, we must remember that we have fixed the original, and correct, corpus. As
a consequence, we can easily estimate this parameter.

The graphs corresponding to the standard recognition mode illustrate the
complexity of the robust strategy. This is due, essentially, to the number of fa

paths to be explored, which also explains the greater amount of items generated
when the point of origin for the application of the robust mode is close to the
beginning of the word. Finally, comparison with the Savary’s method, in the
best of our knowledge the most efficient proposal on spelling correction, seems
to put into evidence the validity of our approach from the point of view of the
efficiency.

8 Conclusions

The gap with human performance in spelling correction, which is mainly due to
the mismatch between what was in the text, what actually appears in the input
and the set of available dictionary entries, should be covered by a flexible and
robust strategy at various levels.

A robust model for non-contextual spelling correction is described, which
allows the algorithm to deal with distortions caused by incomplete string acqui-
sition, simulating human performance in non-contextual word recognition. Our
goal is to compensate the noise effect resulting from ill-formed word recogni-
tion, in order to avoid degradation in the performance of the recognizer. The
consideration of cut-off criteria provides the capability to control the correction
mechanisms, conducting the process through the nearest neighbors of a given
character string in a dictionary.

2 The rate reflecting when the algorithm provides the repair attended by the user.

328 M. Vilares, J. Otero, and J. Vilares

References

1. Peterson, J.: Computer Programs For Spelling Correction. Springer-Verlag, Inc.,
Berlin, Germany / Heidelberg, Germany / London, UK / etc. (1980)

2. Kukich, K.: Techniques for automatically correcting words in text. ACM Comput-
ing Surveys 24 (1992) 377–439

3. Agirre, E., Gojenola, K., Sarasola, K., Voutilainen, A.: Towards a single proposal
in spelling correction. In Boitet, C., Whitelock, P., eds.: Proc. of the 36th Annual
Meeting of the ACL, San Francisco, California, Association for Computational
Linguistics, Morgan Kaufmann Publishers (1998) 22–28

4. Elmi, M., Evens, M.: Spelling correction using context. In Boitet, C., Whitelock,
P., eds.: Proc. of the 36th Annual Meeting of the ACL, San Francisco, California,
Association for Computational Linguistics, Morgan Kaufmann Publishers (1998)
360–364

5. Oflazer, K.: Error-tolerant finite-state recognition with applications to morpholog-
ical analysis and spelling correction. Computational Linguistics 22 (1996) 73–89

6. Du, M., Chang, S.: A model and a fast algorithm for multiple errors spelling
correction. Acta Informatica 29 (1992) 281–302

7. Vilares, M., Otero, J., Graña, J.: Regional finite-state error repair. Lecture Notes
in Computer Science 3317 (2005) 269–280

8. Lucchesi, C., Kowaltowski, T.: Applications of finite automata representing large
vocabularies. Software-Practice and Experience 23 (1993) 15–30

9. Graña, J., Barcala, F., Alonso, M.: Compilation methods of minimal acyclic au-
tomata for large dictionaries. Lecture Notes in Computer Science 2494 (2002)
135–148

10. Daciuk, J., Mihov, S., Watson, B., Watson, R.: Incremental construction of minimal
acyclic finite-state automata. Computational Linguistics 26 (2000) 3–16

11. Sikkel, K.: Parsing Schemata. PhD thesis, Univ. of Twente, The Netherlands
(1993)

12. Savary, A.: Typographical nearest-neighbor search in a finite-state lexicon and its
application to spelling correction. Lecture Notes in Computer Science 2494 (2001)
251–260

	Introduction
	The Operational Model
	Spelling Correction
	Spelling Incomplete Strings
	The Robust Frame
	Pruning Strategies
	Path-Based Pruning
	Sequence-Based Pruning
	Type-Based Pruning

	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

