
Swarm Control for Distributed Construction:
A Computational Complexity Perspective

TODD WAREHAM,Memorial University of Newfoundland, Canada

RONALD DE HAAN, Universiteit van Amsterdam, The Netherlands

ANDREW VARDY,Memorial University of Newfoundland, Canada

IRIS VAN ROOIJ, Radboud Universiteit, The Netherlands

Over the last 20 years, human interaction with robot swarms has been investigated as a means to mitigate

problems associated with the control and coordination of such swarms by either human teleoperation or

completely autonomous swarms. Ongoing research seeks to characterize those situations in which such inter-

action is both viable and preferable. In this paper, we contribute to this effort by giving the first computational

complexity analyses of problems associated with algorithm, environmental influence, and leader selection

methods for the control of robot swarms performing distributed construction tasks. These analyses are done

relative to a simple model in which swarms of deterministic finite-state robots operate in a synchronous

error-free manner in 2D grid-based environments. We show that all three of our problems are polynomial-time

intractable in general and remain intractable under a number of plausible restrictions (both individually

and in many combinations) on robot controllers, environments, target structures, and sequences of swarm

control commands. We also give the first restrictions relative to which these problems are tractable, as well as

discussions of the implications of our results for both the design and deployment of swarm control assistance

software tools and the human control of robot swarms.

CCS Concepts: • Human-centered computing → Systems and tools for interaction design; • Com-
puting methodologies → Multi-agent systems; Multi-agent planning; • Theory of computation →

Design and analysis of algorithms; Parameterized complexity and exact algorithms.

Additional Key Words and Phrases: human-robot interaction, swarm robotics, construction, computational

complexity

ACM Reference Format:
Todd Wareham, Ronald de Haan, Andrew Vardy, and Iris van Rooij. 2020. Swarm Control for Distributed

Construction: A Computational Complexity Perspective. ACM Trans. Hum.-Robot Interact. 0, 0, Article 0 (2020),
45 pages. https://doi.org/0

1 INTRODUCTION
Much work has been done over the last 40 years on multi-robot systems that can perform tasks

more effectively, efficiently, and robustly than single robots. A central issue in such systems is who

or what is responsible for control and co-ordination of the robots in a system. In Sheridan and

Authors’ addresses: Todd Wareham, harold@mun.ca, Department of Computer Science, Memorial University of New-

foundland, St. John’s, NL, Canada, A1B 3X5; Ronald de Haan, me@ronalddehaan.eu, Institute for Logic, Language, and

Computation, Universiteit van Amsterdam, Amsterdam, The Netherlands; Andrew Vardy, av@mun.ca, Department of

Computer Engineering and Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada,

A1B 3X5; Iris van Rooij, iris.vanrooij@donders.ru.nl, Donders Institute for Cognition, Radboud Universiteit, Nijmegen, The

Netherlands.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2573-9522/2020/0-ART0 $15.00

https://doi.org/0

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

https://doi.org/0
https://doi.org/0

0:2 Wareham et al.

Verplank’s 10-point Levels of Automation (LOA) scale [44], options for control and co-ordination

fall on a spectrum between systems with fully autonomous members, i.e., robots swarms (LOA

level 10) and teleoperated systems where humans control everything (LOA level 1). Quite aside

from physical implementation problems related to issues like robot hardware and human-robot

communication, both of these extremes on the spectrum have proven inherent computational

difficulties (see [50, 59, 62, 63] and [8, 24], respectively). Hence, intermediate levels of control and

co-ordination are of great interest.

One popular option is human-swarm hybrid systems, in which robots and human operators share

system control and co-ordination. The general mode of operation and benefits of such systems are

succinctly summarized on page 9 of [28]:

For themost part, swarms are expected to operate autonomously. However, the presence

of a human operator can be beneficial and even necessary since the operator could:

1) recognize and mitigate shortcomings of the autonomy; 2) have available “out-of-

band” information not accessible to the autonomy and that can be utilized to increase

performance; and 3) convey changes in intent as mission goals change.

Such hybrid systems fall on LOA level 7 or higher [28, page 19]. Human operators can exert

intermittent control over swarms or individual swarm members by various methods. Four types of

methods have been investigated to date [28, Section III-D]:

(1) Parameter Setting: Change controller-algorithm parameters of all or selected swarm mem-

bers;

(2) Algorithm Selection: Change the controller algorithms of all or selected swarm members

to new controller algorithms selected from a provided controller algorithm library;

(3) Environmental Influence Selection: Alter the behaviour of the swarm by placing guiding

marks, pheromone sources, and/or beacons either virtually or physically in the environment;

and

(4) Leader Selection: Designate selected swarm members as leaders and either transiently or

persistently override the controllers of these leaders to alter the behaviour of the swarm as a

whole.

As there does not appear to one universally applicable swarm control type, the following is necessary

[28, page 22]:

It is essential to determine which general [swarm control] types and their various

implementations are suitable for which kinds of tasks, environments, communication

and timing constraints, and other swarm-specific circumstances. In addition, when

multiple types are suitable, one should attempt to compare effectiveness, scope, and

impact of these control type, i.e., how many robots they affect directly and indirectly.

To date, this has been addressed by three strands of research (see [28, page 20] and references).

[R1(C6)] The first of these strands is theoretical models and analyses, which either deter-
mine feasible and optimal control inputs or (as in the case of Lewis’ cognitive complex-
ity model [30]) broadly characterize types of human-robot interaction situations. The
second involves simulations in cases where theoretical models and analyses are not ap-
plicable. Finally, there are user studies and prototype systems (the latter possibly incor-
porating swarm control assistance software tools for human operators) in simulation or
with real robots, which are used to address more complex scenarios or verify theoretical
insights.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:3

A valuable complement to this work would be to establish the general algorithmic options for

the various types of swarm control. This can be done using the tools and techniques of compu-

tational complexity analysis [11, 18]. [R2(C2a),R2(C5)] For a given computational problem,
such analyses determine whether or not there is an efficient algorithm for that problem
relative to some criterion of efficiency, i.e., worst-case runtime or memory usage. These
problems may be simplifications or generalizations of actual problems of interest; the
former is done to make analysis easier and the latter (via collected analyses of restricted
versions of the generalized problem) to map out those restrictions that do and do not al-
low efficient solvability, i.e., to determine the frontier of tractability for the problem [18,
Section 4.1].1 The results of such analyses can be used not only to establish those situations in

which known algorithms are the best possible but also to guide the development of new algorithms

(by highlighting relative to which restrictions and types of efficient solvability such algorithms

can and cannot exist). In the case of swarm control, this would be useful not only in creating

the best possible swarm control assistance software tools for human operators but also (using

the framework described in [54]) providing more detailed and comprehensive models of human

operator cognitive effort to better guide the design and implementation of human-robot systems.

1.1 Previous Work
The human computational effort in human-robot interaction has been investigated using the notion

of cognitive complexity developed in [30, 31] (see also [28, Section III-A]). This scheme [R1(C7)]
adapts theO(f (n)) (“Big-Oh”) asymptotic worst case time complexity notation from computational

complexity analysis to [R1(C7)] describe three categories of tasks in terms of human operator

effort in swarm control
2
[28, page 13]:

(1) O(1) (e.g., swarm flocking or rendezvous), in which a group of robots are all performing a

single task autonomously such that the group can be treated as a single entity and one (or a

fixed number of) human operator(s) can control any number of robots;

(2) O(n) (e.g., search and rescue), in which a group of robots are performing independent tasks

autonomously such that each of the robots in the group requires the same amount of operator

interaction and the total operator effort scales linearly with the number of robots in the

group; and

(3) O(>n) (e.g., box pushing), in which a group of robots must co-ordinate to perform a common

task such that dependencies between robots create cascading cognitive demands on human

operators as the number of robots grows.

These categories essentially characterize both the degree to which co-ordination among swarm

members can be automated and whether or not a human-in-the-loop system can be scaled to larger

numbers of robots [30, page 139]. Swarm control situations requiring O(1) cognitive effort are
considered the most desirable, and guidelines for designing and dealing effectively with all three

1 These restrictions can be either numerical, e.g., the robot swarm can have at most n members, or structural,
e.g., each robot can onlymove such that it can always perceive at least one other robot in the swarm. In the case
of numerical restrictions, the goal is to precisely delineate the value of the problem aspect being restricted at
which tractability becomes intractability. A classic example of such a sharply defined frontier of tractability is
for the problem CNF-SAT (Does a given propositional logic formula in conjunctive normal form, i.e., a formula
in which clauses of OR-ed variables are AND-ed together, have an assignment of truth values to its variables
which makes that formula true?) relative to maximum clause length l . If l = 2 CNF-SAT is polynomial-time
solvable but if l = 3 it is not [18, Problem L01].
2 [R1(C7,C8),R4(C2)] Note that this notation is not to be understood as denoting “number of elementary oper-
ations as a function f () of input size n”, which would be the traditional computer science interpretation used
in computational complexity analyses such as those described in the third paragraph of this subsection.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:4 Wareham et al.

categories of systems are given on pages 162–163 of [30]. Though useful, this cognitive complexity

scheme is incomplete — this is so because, as noted on pages 13–14 of [28], the primary purpose of

this scheme is to emphasize the attention effort of the human operator in controlling a multi-robot

system, and other factors (e.g., human-robot communication, swarm state estimation and prediction,

design of swarm control inputs) may increase the overall required cognitive effort of swarm control

greatly.

[R4(C5)] There are many tasks relative to which swarm robotics and control can be in-
vestigated [4, 5]. Given that some of the most impressive activities performed by insect
swarms involve creating structures, e.g., wasp and termite nests, it is not surprising that
distributed construction has been of key interest. From the start of such research over 25
years ago [48], the focus has by large been on construction by fully autonomous robot
swarms (Collective Robotic Construction (CRC)), e.g., [2, 19, 39, 45, 47, 67]. Research on
CRChas in the past been restricted to academia, in large part because of the conservatism
of the real-world construction industry and its concern with safety issues when robots
and humans work in shared environments [3, 43]. Recent research has however focused
muchmore on Collective Human-Robot Construction (CHRC) [20, 49, 51]. CHRC is seen
as both an important research challenge in CRC [39, Page 5] as well as a critical technol-
ogy for fully integrating robots into real-world construction. Though many researchers
see the role of robots in CHRC primarily as assistants to human beings in structure fabri-
cation [39, Page 10], there are a growing number who foresee opportunities for humans
and robots to collaborate in designing structures as well [20, 49].

Various work has been done on the computational complexity of both verifying if a given multi-

entity system can perform a task and designing such systems for tasks [1, 8, 12, 13, 24, 46, 69]. Seven
complexity-theoretic papers to date incorporate both autonomous robots and a suitably simple

and explicit model of robot architecture and environment that allows investigation of possible

restrictions that could yield tractability [50, 59–64]. Three of these [59, 61, 63] consider navigation

tasks performed by robots with deterministic Brooks-style subsumption [59, 61] and single-state

finite-state [63] reactive controllers, respectively. The other four consider construction-related
tasks performed by robots with deterministic finite-state controllers relative to robot controller

and environment design in a given environment where robot controllers are designed from scratch

[62, 64], robot swarm design where swarm members are designed by selection from a provided

library [60, 64], and robot swarm / environment co-design where swarm members are designed by

selection from a provided library [50]. No complexity-theoretic analysis to date has considered the

computational difficulty associated with swarm control.

1.2 Summary of Results
In this paper, we present the first computational complexity analyses of [R2(C5)] problems that
are generalizations of the algorithm, environmental influence, and leader selection swarm control

methods described above relative to the distributed construction task [39]. These problems can be

stated informally as follows (and are described in more detail in Sections 2.2 and 2.3):

Robot Algorithm Selection (SelAlg): Derive (if one exists) a set of changes to the algorithms

of the robots in a given swarm T relative to a given robot-algorithm library that occur over a

specified period of time and enable the robots inT to create a specified structure at a specified

location in a given environment.

Environmental Influence Selection (SelEnvInf): Derive (if one exists) a set of changes to a

given environment E that occur over a specified period of time and enable the robots in a

given swarm to create a specified structure at a specified location in E.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:5

Leader Selection [R4(C1)] (SelLead): Derive (if one exists) a set of changes to the positions

of the robots in a given swarm T that occur over a specified period of time and enable the

robots in T to create a specified structure at a specified location in a given environment.

We consider the following types of efficient solvability (described in more detail in Section 3):

(1) Polynomial-time exact solvability, such that a polynomial-time algorithm produces the correct

output for a given input either (a) all the time [18] or (b) when such an output is known to

exist (promise solvability).

(2) Polynomial-time approximate solvability, such that a polynomial-time algorithm produces

the correct output for a given input either (a) in all but a small number of cases [22] or (b)

with a high probability [35].

(3) Effectively polynomial-time exact restricted solvability (fixed-parameter (fp-)[11] and |x |k -
tractability), such that an algorithm produces the correct output for a given input in what is

effectively polynomial time when certain aspects of that input are of restricted value, e.g.,

the number of robots in the swarm or the total number of swarm control inputs issued by

the human operator is small.

Our analyses are done in terms of the distributed construction model defined in [62] in which robots

equipped with finite-state controllers move in a synchronous non-continuous manner in grid-based

2D environments and swarms are restricted to complete their construction tasks in a polynomial

number of timesteps. Relative to the types of solvability listed above and various conjectures that

are widely believed to be true within the Computer Science community, e.g. P , NP [16, 18], we

prove the following results (Section 3):

• Though SelAlg is solvable in sense (1a) above when all robots in the swarm T have the same

algorithm [R4(C4)] (i.e., the swarm is homogeneous) and all robot-algorithm changes

occur prior to the first timestep (Result A.1), this is not the case for SelAlg when the robots

in the swarm can each have one of two algorithms [R4(C4)] (i.e., the swarm is heteroge-
neous) or for either SelEnvInf or SelLead when [R4(C4)] swarms are homogeneous and
all environment- and position-changes occur prior to the first timestep (Result A.2).

• [R4(C4)] Neither SelAlg when swarms are heterogeneous and all robot-algorithm
changes occur prior to the first timestep nor SelEnvInf or SelLead when swarms
are homogeneous and all environment- and position-changes occur prior to the
first timestep is solvable in sense (1b) above (Result A.3).

• Neither SelAlg when swarms are heterogeneous and all robot-algorithm changes
occur prior to the first timestep nor SelEnvInf or SelLead when swarms are homo-
geneous and all environment- and position-changes occur prior to the first timestep
is solvable in sense (2a) or (2b) above (Results A.4 and A.5).

• Neither of SelAlg, SelEnvInf, or SelLead is fixed-parameter or |x |k tractable in sense (3) above

relative to restrictions on a number of aspects of these problems related to robot swarm

size and structure, the algorithms used by individual robots, environment size and structure,

and the degree of swarm control (see Table 1 for the full list of aspects considered here).

This fixed-parameter and |x |k intractability holds when many combinations of these aspects

[R4(C4)] are simultaneously restricted, often to small constant values (Results B.SA.1–

B.SA.7 and C.SA.1–C.SA.5 (SelAlg), Results B.SE.1–B.SE.4 and C.SE.1 and C.SE.2 (SelEnvInf),

and Results B.SL.1–B.SL.4 and C.SL.1–C.SL.3 (SelLead)) (see also Tables 2–5). That being said,

there are several combinations of aspect-restrictions that do yield fixed-parameter and |x |k

tractability (Results B.SA.8, B.SA.9, and C.SA.6 (SelAlg), Results B.SE.5 and C.SE.3 (SelEnvInf),

and Results B.SL.5 and C.SL.4 (SelLead)), though neither of SelAlg, SelEnvInf, nor SelLead

have a particularly desirable sublinear form of |x |k tractability relative to the maximum

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:6 Wareham et al.

allowable number of algorithm-, environment-, or leader-changes (Results C.SA.7, C.SE.4,

and C.SL.5).

As is discussed in Section 4.1, our use of simplified models as well as our problem- rather than

algorithm-oriented method of analysis has exposed what we believe to be under-appreciated

underpinnings of the computational difficulty of swarm control arising from the combinatorial

choices in swarm control inputs. The implications of our results for swarm control assistance

software tools and the human control of swarms are discussed in Sections 4.3 and 4.4, respectively;

as part of the latter, we also describe how computational complexity analyses such as ours may

allow a detailed and comprehensive assessment of the human cognitive effort associated with

swarm control.

Two issues with respect to the results listed above and their derivation should be noted. First,

to aid readability, various definitions and lemmas stated in previous papers are repeated here.

[R2(C7)] In the interests of concision and avoiding self-plagiarism, abbreviated forms
are often used (most notably, in Section 2.1, the “short form” of definitions associated
with our distributed construction model as given in [50]). [R2(C1)] As some proofs of re-
sults presented here are related to proofs given previously in [60, 62], there are potential
concerns about the originality of results presented in the current paper. These relation-
ships can be categorized as follows:
(1) As is described in more detail in Section 2, problems DesCon and EnvDes investi-

gated previously in [60] and [62], respectively, are special cases of problems SelAlg
and SelEnvInf investigated here. Hence, several lemmas used to prove intractabil-
ity results in this paper for SelAlg and SelEnvInf (namely, Lemmas A.5, A.6, and
A.13–A.16) are straightforward adaptations of lemmas used to prove intractability
results for DesCon and EnvDes in [60, 62]. This is indicated by the initial phrase
“Adapted from” at the beginning of the proofs of these lemmas in the appendix.

(2) Two lemmas used to prove intractability results in this paper for SelAlg and SelLead
(namely, Lemmas A.9 and A.20) build on lemmas in [60, 62] by invoking the ability
of problems SelAlg and SelLead in the current paper to allow swarmcontrol changes
to occur over a period of time. These are indicated by the phrase “Inspired by” at
the beginning of the proofs of these lemmas in the appendix.

(3) All other lemmas that are used to prove intractability results in this paper (namely,
Lemmas A.7, A.8, A.10–12, and A.17–19) are new.

The results derived relative to the proofs in the first category (parts of Results A.2, A.4,
and A.5 and all of Results A.1, B.SA.1, B.SA.2, B.SE.1–4, C.SE.1, C.SE.2, and C.SA.7) are out-
numbered two to one by the results derived relative to the second (Results B.SA.4, B.SL.4,
C.SA.2, and C.SL.3) and third (parts of Results A.2, A.4, and A.5 and all of Results X.1, A.3,
B.SA.3, B.SA.5–9, B.SE.5, B.SL.1–3, B.SL.5, C.SA.1–6, B.SE.3, C.SL.1–4, C.SE.4. and C.SE.5)
categories. Hence, though some of the results presented here resemble those presented
previously in [60, 62], the majority of the results in the current paper are in fact new.

1.3 Organization of Paper
This paper is organized as follows. In Section 2, we describe our robot controller, environment, target

structure, and swarm control models and use these to formalize the swarm control problems for

distributed construction that we will analyze. In Section 3, we consider viable algorithmic options

for these problems relative to several popular types of exact unrestricted, approximate unrestricted,

and exact restricted efficient solvability. All proofs of stated results are given in the appendix. In

Section 4, we discuss a variety of issues raised by our results, including the completeness and

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:7

generality of these results (Sections 4.1 and 4.2, respectively) and the implications of these

results for both swarm control assistance software tools (Section 4.3) and human control of swarms

in general (Section 4.4); the last of these also describes how computational complexity analysis (and

in particular parameterized complexity analysis) can be used to create a detailed and comprehensive

assessment of human cognitive effort for swarm control. Finally, our conclusions and directions for

future work are given in Section 5.

2 FORMALIZING SWARM CONTROL FOR DISTRIBUTED CONSTRUCTION
In this section, we first review the basic entities in the model of structure creation by
robot swarms given in [60, 62] (Section 2.1). We then describe the three types of swarm
control from [28] and the generalizations of these types that will be of interest to us
(Section 2.2). Finally, we formalize the computational problems associated with these
three types of swarm control relative to the distributed construction task that we will
analyze in the remainder of the paper (Section 2.3).

2.1 Robot Swarms for Distributed Construction
[R2(C7)] We here review the basic entities in our model of distributed construction by
robot swarms — namely, environments, target structures, individual robots, and robot
swarms. In the interests of concision and avoiding self-plagiarism, this review is the
“short form” originally given in [50]; readers wishing more details and examples should
consult [60, 62].

The basic entities in our model are as follows:

• Environments and Target Structures: Our robots operate in a finite 2D square-based

environment E in which each square is either a freespace (which a robot can occupy or move

through) or an obstacle and has a square-type, e.g., grass, gravel, wall, drawn from a set ET .
Let Ei, j denote the square that is in the ith column and jth row of E such that E1,1 is the
square in the southwest-most corner of E; we also assume an arbitrary ordering over the

elements in ET . A structure X in an environment E is a two-dimensional pattern of squares

of special square-type eX ∈ ET in anm × n grid whose location in E is specified relative to

the position pX of southwest-most corner of the structure-grid in the environment-grid.

• Robots: Each robot occupies a square in E and in a basic movement-action can either move

exactly one square to the north, south, east or west of its current position or elect to stay at

its current position. Each robot has a sensing-distance bound r such that the robot can sense

the type of the square at any position within Manhattan distance r ≥ 0 of the robot’s current

position (with r = 0 corresponding to the square on which the robot is standing).
3
These

square-types are accessible via predicates of the form enval(e,pos) which returns True if the
square at position pos has type e ∈ ET ∪ {erobot } (with the sensor returning erobot if a robot
is occupying square pos) and False otherwise, where a position pos is specified in terms of a

pair (x ,y) specifying an environment-square Ei+x, j+y if the robot is currently occupying Ei, j .
Each robot can change the type of the square at any position within Manhattan distance one

of the robot’s current position to type e via predicates of the form enmod(e,pos) where pos is
specified as for enval().
Each robot has a finite-state controller and is hence known as a Finite-State Robot (FSR).

Each such controller consists of a set Q of states linked by transitions, where each transition

3
This set of sensed squares is the von Neumann neighbourhood of range r centered on the robot’s position and consists of

1 + 2r (r + 1) = 2r 2 + 2r + 1 squares [65].

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:8 Wareham et al.

(q, f ,x ,dir ,q′) between statesq andq′ has a propositional logic trigger-formula f , an environ-
mentmodification specificationx , and amovement-directiondir ∈ {дoNorth,дoSouth,дoEast ,
дoWest , stay}. [R1(C9), R2(C7), R4(C3)] Trigger-formulas andmodification specifica-
tions are typically stated in terms of predicates enval() and enmod(), respectively. Ex-
amples of such formulas and specifications relative to a robot r are (enval(erobot , (−1, 0))
and enval(eдrass , (0, 0))) or not enval(erobot , (0,−3)) (is it the case that either r is on a
grassy square and has another robot in the square immediately next to it to the East
or there is no robot three squares South of r?) and enmod(eX , (0, 1)) (place a block of
constructionmaterial in the square to the immediate North of r). Both of these spec-
ifications can also be stated as a special symbol ∗, which is interpreted as follows: If
f , x , ∗ and the transition’s trigger-formula evaluates toTrue , i.e., the transition is enabled,

this causes the environment-modification specified by x to occur, the robot to move one

square in direction dir , and the robot’s state to change from q to q′. If f = ∗, the transition

executes if no other transition executes (making this in effect the default transition); if x = ∗,

no environment-modification is made.

• Robot swarms: A swarmT consists of a set of the robots described above, where theremay be

more than one robot with the same controller in a swarm; as such, we allow both homogeneous

and heterogeneous swarms. Let Ti denote the ith robot in the swarm. Each square in E can

hold at most one member ofT ; if at any point in the execution of a task two robots in a swarm

attempt to occupy or modify the same free space or a robot attempts to occupy the same

space as an obstacle, the execution terminates and is considered unsuccessful. A positioning
of T in E is an assignment of the robots in T to a set of |T | squares in E. [R3(C1)] Swarm
members can move either synchronously or asynchronously as specified; however,
in both cases, oncemovement is triggered, it is atomic in the sense that the specified
movement is completed.
Note that for simplicity, robots in our swarms do not communicate with each other
directly— rather, they communicatewith each other indirectly through their sensed
presences in and changes they make to the environment, i.e., via extended stig-
mergy [66]. Though this does not allow private robot-to-robot communication, it
does allow non-trivial messages between robots (if the set of available environmen-
tal modifications that can be made and perceived by robots is of even moderate
size) that does not require temporal synchronization between the robots [39, page
4]. Moreover, such communication by presence and stigmergy is arguably typical
of biological and artificial swarms.

Notions of deterministic and time-bounded robot and swarm operation were introduced in [62] to

ensure that requested structures are created by swarms reliably and quickly. We use the notion of

deterministic robot and swarm operation introduced in [62] as extended in [50] (i.e., requiring that

at any time as the swarm operates in an environment, all transitions enabled in a robot relative to

the current state of that robot perform the same environment modifications and progress to the

same next state).
4

4
As noted in Footnote 1 and the main text on pages 115–116 of [62], our operational conception of FSR determinism is

very different than the traditional absolute definition of determinism for finite-state automata [23, Section 2.2], which is

guaranteed by the structure of the state-transition functions of those automata. Our operational definition is necessary

because FSR can sense and enable transitions relative to arbitrary patterns of squares (including the presence of other

FSR) within radius r of their current position, and the number of such patterns that can be encountered (especially if r
and |ET | are not of constant value) is exceptionally large. Indeed, for unrestricted r , the problem of assessing whether

or not the transitions in a given FSR are operationally deterministic in all possible environments of a specified size and

shape (even if there are no other FSR in the environment and the given FSR has only two states and two transitions) is

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:9

We also retain the second notion, encapsulated as (c1, c2)-completability, which requires that

each swarm complete its task within c1 |E |
c2
timesteps for constants c1 and c2. However, we here

make two modifications. First, as done in [50], we broaden the timestep bound to c1(|E | + |Q |)c2 , in

order to accommodate FSR that make a number of internal state-changes without moving. Second,

we fix a technical flaw in our previous papers. In those papers, c1 and c2 were part of the inputs
to our analyzed problems. [R1(C2),R3(C2),R4(C6)] Following standard practice in encoding
problem inputs [18, Page 10], base-10 decimal values c1 and c2 were encoded in base-2
binary, e.g., c1 = 7dec = 4+2+1 = 2

2+21+20 = 111bin . Note that binary notation is of length
logarithmic in the value, e.g., |111bin | = 3 ≈ log

2
7dec . This has the unfortunate effect of

rendering the task completion bound exponential rather than polynomial in the input
size, c1(|E | + |Q |)c2 = 2

log
2
c1 (|E | + |Q |)2

log
2
c
2 . One can get around this by assuming that c1 and

c2 are encoded in the input in base-1 unary, e.g., 7dec = 1111111un . However, this has the
equally unfortunate effect of allowing exponential-time computations to be artificially
reduced to polynomial time by “padding” the input length with large unary encoded
values [18, Pages 9–10]. To avoid both of these difficulties, we chose here to remove c1
and c2 from the problem input and assume that suitable constant values of c1 and c2 are
specified beforehand. To ensure generous but still low-order polynomial swarm runtime
bounds, we will assume that c1 = 10 and c2 = 3.

[R2(C2a)] Given this model of distributed construction, we say that the task of con-
structing structure X at position pX in E is (c1, c2)-completable by a swarm T relative
to a positioning pI of T in E if the members of T , when started at pI , operate as dic-
tated by their control algorithms and succeed in constructing X at pX within at most
c1(|E | + |Q |)c2 timesteps. In the next subsection, we will similarly formalize how the oper-
ation of swarms during this construction process can be modified by the swarm control
methods described in Section 1.

2.2 Types of Swarm Control
[R2(C2a)] In this paper, we shall focus on three of the four methods of swarm control
described in Section III-D of [28] — namely, algorithm selection, environment influence
selection, and leader selection. In the literature, variants of each of these methods have
been investigated:
(1) Algorithm selection where either all or selected subsets of the swarm have their

control algorithms changed simultaneously.
(2) Environment influence selection where environmental changes are (a) physical or

virtual and (b) persistent or transient (e.g., decaying pheromones).
(3) Leader selection where selected leaders are (a) explicitly or not explicitly indicated

as leaders to other swarm members and (b) always or temporarily under human
control after selection.

Rather than analyze each of these variants separately, we will instead analyze the follow-
ing generalizations of these methods:5

not polynomial-time tractable unless P = NP (see Result X.1 in the appendix). Given the above, an individual FSR is thus

not itself deterministic in our sense but rather the operation of that FSR is deterministic in the context of a particular FSR

swarm operating in a particular environment.

5 [R2(C2b)] It has been pointed out to us that, given an appropriately detailed library of robot controller algo-
rithms, all three of thesemethods can be simulated by and hence viewed as special cases of, algorithm selection.
While this is appealing on the grounds of mathematical simplicity, we have chosen to retain three separate
methods to follow the standard method classification laid out in Section III-D of [28] and hence allow more
obvious and hopefully easier connection of our results with those derived in the HRI research community.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:10 Wareham et al.

(1) Algorithm selection where, at any time during swarm operation, one or more sub-
sets of swarmmembersmay have their control algorithms changed simultaneously,
with each subset having a different new control algorithm.

(2) Environmental influence selection where, at any time during swarm operation, en-
vironmental changes are physical and persistent.

(3) Leader selection where, at any time during swarm operation, selected leaders are
not explicitly indicated as leaders to other swarm members and are only human
control for a single timestep after being selected.

Note that these generalized methods have all studied variants as special cases (with tran-
sient environmental changes simulated by later environmental changes that undo ear-
lier ones and explicit indication of leaders simulated via leader-made environmental
modifications). Hence, by the logic of problem generalization laid out in Section 1, these
methods can (under the appropriate restrictions) be used analyze those variants. When
combined with additional restrictions (see parameters tmax, ka , ke , and kl), these methods
will also allow particularly fine-grained analyses of the computational complexity asso-
ciated with the time-periods in which controller algorithm- and environment-changes
take place and the maximum numbers of allowable changes.

Given the above, consider the following formalizations of these three generalizedmeth-
ods of swarm control:

(1) Algorithm Selection: In this method of swarm control, some members of the swarm

are selected and have their controllers changed to other controllers selected from a given

controller-library L. We will assume that all controllers in L are behaviorally distinct. Let

CA = {c1, c2, . . . , c |CA |} be a set of such changes where each change ci = (j,k, l) specifies the
timestep j at which the change takes place and the swarm-member Tk whose controller is to

be replaced with Ll from the given controller-library L. In our problems, we will limit the

maximum number of allowable changes in CA using the parameter ka .
(2) Environmental Influence: In this method of swarm control, some number of squares in E

are selected and have their types changed to other square-types selected from ET −{eX }. These
changes correspond to persistent guiding marks in the physical environment, cf. persistent

beacons that modify the controller algorithms of all robots within a specified radius [27,

page 91] or transient pheromones in the physical or virtual environment [28, page 17]. Let

CE = {c1, c2, . . . , c |CE |} be a set of such changes where each change ci = (j,k, l ,m) specifies

the timestep j at which the change takes place and the environment-square Ek,l whose
square-type is to be changed with themth type in ET . In our problems, we will limit the

maximum number of allowable changes in CE using the parameter ke .
(3) Leader Selection: In this swarm control method, some members of the swarm (called

leaders) are selected and their control algorithms are temporarily overridden to make these

leaders move to new positions. Without loss of generality, we will assume that each of these

moves is to one of the four surrounding squares to the north, south, east, or west of the

robot’s original position. As robots so selected are not distinguishable from the other robots

and are influenced intermittently, they correspond to transient tacitly-indicated leaders, cf.

persistent explicitly-indicated leaders that are under continuous control by human operators

(i.e., teleoperation) [28, pages 18–19]. Let CL = {c1, c2, . . . , c |CL |} be a set of such changes

where each change c=(j,k, l ,m) specifies the timestep j at which the change takes place and

the x and y displacements [R1(C10)] l andm ∈ {−1, 0, 1} by which swarm member Tk is

moved. In our problems, we will limit the maximum number of allowable changes in CL
using the parameter kl .

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:11

All changes are assumed to occur at or before timestep tmax, where 1 ≤ tmax ≤ c1(|E | + |Q |)c2 and

c1 and c2 are the constants used to specify (c1, c2)-completability. There may be multiple changes

occurring in a particular timestep. [R2(C2c)] In the cases of algorithm and environmental
influence selection, all changes are assumed to occur simultaneously at the beginning
of a timestep prior to swarm member environment sensing and action. In the case of
leader selection, changes are assumed to occur simultaneously during the swarm mem-
ber action phase, such that only leaders move with respect to the specified changes and
all other swarm members move as specified by their controller algorithms. Given this,
no two changes in a timestep can affect the same entity. If tmax = 1, all changes occur in the first

timestep and the relative timing of changes is not an issue; however, this is most certainly not

the case when tmax > 1, as factors like necessary swarm stabilization time after certain operator

commands and degradation in swarm member performance between operator commands mean

that the same changes under different timings can have radically different and sometimes even

adverse effects on swarm behaviour [28, page 19].

2.3 Computational Problems
We can now [R2(C2a)] fuse the model of distributed construction in Section 2.1 with our
formalizations of swarm controlmethods in Section 2.2 to define the computational prob-
lems which will analyze in this paper:

Robot Algorithm Selection (SelAlg)

Input: An environment E based on square-type set ET , an FSR swarm T based on controllers from

library L, an initial positioning pI of T in E, a structure X , a position pX of X in E, and positive

integers tmax and ka ≤ |T | × tmax.

Output: A setCA ofka algorithm changes toT relative to L and tmax such that the task of constructing

X at pX when T is initially positioned at pI and the changes in CA are subsequently applied is

(c1, c2)-completable, if such a CA exists, and special symbol ⊥ otherwise.

Environmental Influence Selection (SelEnvInf)

Input: An environment E based on square-type set ET , an FSR swarm T , a structure X , an initial

positioning pI of T in E, a position pX of X in E, and positive integers tmax and ke ≤ |E | × tmax.

Output: A set CE of ke environmental changes to E relative to ET − {eX } and tmax such that the

task of constructing X at pX in E when T is initially positioned at pI and the changes in CE are

subsequently applied is (c1, c2)-completable, if such a CE exists, and special symbol ⊥ otherwise.

Robot Leader Selection (SelLead)

Input: An environment E based on square-type set ET , an FSR swarm T , a structure X , an initial

positioning pI of T in E, a position pX of X in E, and positive integers tmax and kl ≤ |T | × tmax.

Output: A set CL of kl changes to the positions of members of T relative to tmax such that the

task of constructing X at pX in E when T is initially positioned at pI and the changes in CL are

subsequently applied is (c1, c2)-completable, if such a CL exists, and special symbol ⊥ otherwise.

Unless stated otherwise, all swarm operation in this paper will be synchronous. Without loss of

generality, we will assume that each member of T starts operating in the initial state q0 of its
associated controller, either at the start of the construction task or whenever that controller is

changed. Moreover, in the case of problem SelLead, if the execution of a change causes two robots

in a swarm to attempt to occupy the same space or an individual robot to occupy the same space as

an obstacle then the execution of the task terminates and is considered unsuccessful. Note that

problems SelAlg and SelEnvInf when tmax = 1 (i.e., all algorithm- and environment-changes are

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:12 Wareham et al.

done prior to the first timestep) are for all [R4(C1)]intents and purposes problems DesCon and

EnvDes investigated previously in [60] and [62], respectively. This similarity will allow us to easily

adapt several previously-published result proofs for DesCon and EnvDes to derive analogous results

for SelAlg and SelEnvInf (most notably, Results B.SA.1, B.SA.2, and B.SE.1–B.SE.4) in Section 3 (see

Section 1.2 for further discussion of this issue).

At this point, the reader may be concerned that the problems we analyze are overly abstract,

both in the synchronous non-continuous manner in which our robots operate in 2D grid-based

environments and their ignoring of known issues in the implementation of swarm control such as

communication latency and bandwidth between human operators and swarm members [28, Section

III-B] and swarm state estimation and prediction by human operators in the face of incomplete

observations [28, Section III-C] (courtesy of our assumptions of complete swarm observability,

deterministic swarm operation, and (c1, c2)-completability of tasks). We do not deny that [R1(C11)]
these issues are critical to real-world swarm control. However, as we shall show in the remainder

of this paper, it is such simplifications in tandem with our problem- rather than algorithm-oriented

method of analysis that will allow us to focus on and investigate what we believe to be under-

appreciated underpinnings of the computational difficulty of swarm control, in particular those

arising from the combinatorial choices in swarm control inputs.

3 RESULTS
In this section, we will assess the algorithmic options for our three swarm control problems defined

in Section 2.3 relative to the three types of solvability listed in Section 1. For each type of solvability,

we shall first give a more formal definition of that type than was given in Section 1 and then list our

solvability and unsolvability results relative to that type for each of our swarm control problems.

In order to focus on the [R4(C1)] meaning of and patterns in our results in this section, proofs

of all results as well as a brief introduction to the techniques by which our unsolvability results are

proved are given in the appendix to this paper.

Let us first consider exact polynomial-time solvability. An exact polynomial-time algorithm is

an algorithm which always produces the correct output for a given input and whose runtime is

[R1(C12)] asymptotically upper-bounded, i.e., upper-bounded when |x | goes to infinity,
by c |x |c

′ , where |x | is the size of the input x and c and c ′ are constants. A problem that has a

polynomial-time algorithm is said to be polynomial-time tractable. Polynomial-time tractability

is desirable because runtimes increase slowly as input size increases, and hence allow the solution

of larger inputs. There are instances of our problems that are polynomial-time solvable.

Result A.1: SelAlg is polynomial-time tractable when h = tmax = 1.

In the case of problem SelAlg parameter h is the maximum number of types of robot controller-

algorithms in T at the end of each timestep over all timesteps in construction task execution and
parameter tmax is the last timestep at which controller-algorithm changes are made. The
above result is heartening, as we have quick solvability in the common case when all changes

must be made initially at the same time, i.e., tmax = 1, such that the robots in the swarm have been

changed to have the same controller, i.e., h = 1. Unfortunately, this does not hold in general.
6

Result A.2: SelAlg is not polynomial-time tractable when h = 2 and tmax = 1 and SelEnvInf

and SelLead are not polynomial-time tractable when h = tmax = 1.

In the cases of problems SelEnvInf and SelLead, tmax denotes the last timestep at which en-
vironment and robot-position changes, respectively, aremade. [R2(C5)] It is worth noting

6
The following four results hold relative to some combination of the conjectures P , NP and P = BPP , which though

unproven are widely believed to be true within computer science [16, 18, 68].

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:13

that Results A.1 and A.2 together describe a sharp frontier of polynomial-time tractabil-
ity (in the sense described in Section 1 and Footnote 1) for SelAlg, SelEnvInf, and SelLead
relative to numerical restrictions on the values of h and tmax.
It is possible that the computational difficulty of our problems may be inflated in general by

inputs that have no solutions, and hence force any algorithm to exhaustively consider all possible

candidate solutions. This is addressed by [R4(C1)] polynomial-time promise solvability, which
is when a problem is exactly solvable in polynomial time on those inputs which are guaranteed to

have solutions. However, this is not the case for our problems either.

Result A.3: SelAlg when h = 2 and tmax = 1 and SelEnvInf and SelLead when h = tmax = 1 are

not polynomial-time promise solvable.

Let us now consider [R4(C1)] polynomial-time approximate solvability. This type of solv-
ability may be acceptable in situations where always getting the correct output for an input is

not required. Two popular types of polynomial-time approximation algorithms are those that are

frequently correct in that they produce the correct output for a given input either (1) in all but a

small number of cases (i.e., the number of errors for input size n is bounded by function err (n)) [22]
or (2) with a high probability [35]. Unfortunately, these options are not open to us either [R1(C3)]
courtesy of the following two results, which are corollaries of Results A.2 and A.3 and
various widely-believed complexity-theoretic assumptions.

Result A.4: SelAlg when h = 2 and tmax = 1 and SelEnvInf and SelLead when h = tmax = 1 are

not solvable by polynomial-time algorithms with polynomial error frequencies (i.e., err (n) is
upper bounded by a polynomial of n).

Result A.5: SelAlg when h = 2 and tmax = 1 and SelEnvInf and SelLead when h = tmax = 1

are not polynomial-time solvable by probabilistic algorithms which operate correctly with

probability ≥ 2/3.

[R3(C3)] The above results effectively rule out many desirable forms of efficient solv-
ability for the general unrestricted versions of our swarm control problems. This makes
it worthwhile to investigate under what restrictions our problems are efficiently solvable.
We will focus here on exact solvability. Let us characterize restrictions on inputs in terms of a

setK = {k1,k2, . . . ,k |K |} of aspects of the input. For instance, some sets of restrictions on the inputs

of SelAlg could be {|T |}, {|T |, |ET |}, and {h, | f |, r }. Each such aspect is also known as a parameter.
Let ⟨K⟩-Π denote a problem Π so restricted relative to an aspect-set K . There are two popular ways
in which an algorithm can exactly solve such restricted problems in close-to-polynomial time:

(1) Fixed-parameter (fp-)tractability [10]: Such an algorithm runs in time that is non-polynomial

purely in terms of the aspects in K , i.e., in time [R1(C12)] that is asymptotically upper-
bounded by f (K)|x |c where f () is some function, |x | is the size of input x , and c is a constant.
A problemΠwith such an algorithm for aspect-setK is said to befixed-parameter tractable
relative to K , i.e., ⟨K⟩-Π is fixed-parameter tractable. Though they run in non-polynomial

time in general, for inputs in which all the aspects in K have very small constant values

(and f (K) collapses to a possibly large but nonetheless constant value), such algorithms

(particularly if f () is suitably well-behaved, e.g., (1.2)k1+k2) may be acceptable.

(2) |x |k -tractability: Such an algorithm runs in time that is polynomial if the values of all aspects

in K have constant value, i.e., in time [R1(C12)] that is asymptotically upper-bounded
by |x |f (K)

for some function f ().7 A problem Π with such an algorithm for aspect-set K is

7 [R1(C4)] Note that this type of algorithm definesmembership of a problem restricted relative to K in the class
XP [10, Page 341].

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:14 Wareham et al.

Table 1. Parameters for Swarm Control Problems.

Parameter Description Applicability

|T | # robots in swarm All

h # robot-types in swarm All

|Q | Max # states per robot All

d Max # transitions per state All

| f | Max transition formula length per robot All

r Max robot perceptual radius All

|E | # squares in environment All

|ET | # distinct environment-square types All

|X | # squares in structure All

tmax Max change timestep All

|L| # robot algorithms in library SelAlg

ka Max # robot algorithm changes SelAlg

ke Max # environmental changes SelEnvInf

kl Max # robot leader position changes SelLead

said to be |x |k -tractable relative to K , i.e., ⟨K⟩-Π is |x |k -tractable. Though they run in non-

polynomial time in general, for inputs in which all the aspects in K have very small constant

values (and f (K) collapses to a very small constant value), such algorithms (particularly if

f () is suitably well-behaved, e.g„ k1 + k2 or log2(k1 × k2)) may be acceptable.

These types of tractability generalize polynomial-time solvability by allowing either the leading

constant c1 or the exponent c2 of the input size in the runtime upper-bound of an algorithm to

be a function of K rather than a constant. Though fixed-parameter tractability may initially seem

preferable in cases where |x | is large, |x |k -tractability may perform better if the exponent-function

of |x | is especially well-behaved, e.g., f (K) is either a sublinear function like log
2
log

2
(k1 × k2) or a

small constant.

In our analyses below, we will focus on aspect-sets K drawn from the set of parameters in Table

1. These parameters can be divided into three main groups (the first two of which have previously

been defined and analyzed with respect to other swarm robotics problems in [50, 60, 62, 64]):

(1) Parameters characterizing the swarm T and its member robots (|T |, h, |Q |, d , | f |, r ,);
(2) Parameters charactering the environment and requested structure (|E |, |ET |, |X |); and

(3) Parameters characterizing the degree of swarm control (tmax, |L|, ka , ke , kL).

A proved parameterized tractability or intractability result often implies many others courtesy of

the following [R4(C1)] four lemmas.

Lemma 3.1. [58, Lemma 2.1.30] If problem Π is fp-tractable relative to aspect-set K then Π is
fp-tractable for any aspect-set K ′ such that K ⊂ K ′.

Lemma 3.2. [58, Lemma 2.1.31] If problem Π is fp-intractable relative to aspect-set K then Π is
fp-intractable for any aspect-set K ′ such that K ′ ⊂ K .

Lemma 3.3. If problem Π is |x |k -tractable relative to aspect-set K then Π is |x |k -tractable for any
aspect-set K ′ such that K ⊂ K ′.

Lemma 3.4. If problem Π is |x |k -intractable relative to aspect-set K then Π is |x |k -intractable for
any aspect-set K ′ such that K ′ ⊂ K .

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:15

Let us first consider when each of our problems are and are not fixed-parameter tractable.
8

• Algorithm Selection:

Result B.SA.1: ⟨|T |,h, |Q |, | f |, r , |X |, tmax,ka⟩-SelAlg is not fp-tractable.

Result B.SA.2: ⟨|T |,h, |Q |, |ET |, |X |, tmax,ka⟩-SelAlg is not fp-tractable.

Result B.SA.3: ⟨h, |Q |,d, | f |, r , |ET |, tmax, |L|,ka⟩-SelAlg is not fp-tractable.

Result B.SA.4: ⟨|T |,h, |Q |, | f |, r , |E |, |X |, tmax,ka⟩-SelAlg is not fp-tractable.

Result B.SA.5: ⟨|T |,h, |Q |,d, r , |E |, |X |, tmax,ka⟩-SelAlg is not fp-tractable.

Result B.SA.6: ⟨|T |,h, | f |, |L|, |ET |, |X |,ka⟩-SelAlg is not fp-tractable.

Result B.SA.7: ⟨|T |,h, |Q |,d, |L|, |ET |, |X |,ka⟩-SelAlg is not fp-tractable.

Result B.SA.8: ⟨|T |, |L|, tmax⟩-SelAlg is fp-tractable.

Result B.SA.9: ⟨|T |, |Q |, r , |ET |, tmax⟩-SelAlg is fp-tractable.

• Environmental Influence Selection:

Result B.SE.1: ⟨|T |,h,d, | f |, |ET |, |X |, tmax⟩-SelEnvInf is not fp-tractable.

Result B.SE.2: ⟨|T |,h, |Q |,d, |ET |, |X |, tmax⟩-SelEnvInf is not fp-tractable.

Result B.SE.3: ⟨|T |,h, |Q |, | f |, r , |E |, |X |, tmax,ke ⟩-SelEnvInf is not fp-tractable.

Result B.SE.4: ⟨|T |,h, |Q |,d, r , |E |, |X |, tmax,ke ⟩-SelEnvInf is not fp-tractable.

Result B.SE.5: ⟨|E |, |ET |, tmax⟩-SelEnvInf is fp-tractable.

• Leader Selection:

Result B.SL.1: ⟨h, |Q |,d, |ET |, |X |, tmax,kl ⟩-SelLead is not fp-tractable.

Result B.SL.2: ⟨h, | f |, |ET |, |X |, tmax,kl ⟩-SelLead is not fp-tractable.

Result B.SL.3: ⟨h,d, | f |, |ET |, |X |, tmax⟩-SelLead is not fp-tractable.

Result B.SL.4: ⟨|T |,h, | f |, r , |E |, |X |,kl ⟩-SelLead is not fp-tractable.

Result B.SL.5: ⟨|T |, tmax⟩-SelLead is fp-tractable.

Next we consider when each of our problems are and are not |x |k -tractable.9

8
Our fp-intractability results hold relative to the conjectures P , NP and F PT ,W [1], which though unproven are both

widely believed to be true within computer science [11, 16, 18].

9
Our |x |k -intractability results hold relative to the conjecture P , NP , which though unproven is widely believed to be

true within computer science [16, 18].

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:16 Wareham et al.

• Algorithm Selection:

Result C.SA.1: ⟨h, |Q |,d, | f |, r , |ET |, tmax, |L|⟩- SelAlg is not |x |k -tractable.

Result C.SA.2: ⟨|T |,h, | f |, |X |⟩-SelAlg is not |x |k -tractable.

Result C.SA.3: ⟨|T |,h, |Q |,d, |X |⟩-SelAlg is not |x |k -tractable.

Result C.SA.4: ⟨|T |,h, | f |, |ET |, |X |, |L|⟩-SelAlg is not |x |k -tractable.

Result C.SA.5: ⟨|T |,h, |Q |,d, |ET |, |X |, |L|⟩-SelAlg is not |x |k -tractable.

Result C.SA.6: ⟨ka⟩-SelAlg is |x |k -tractable.

• Environmental Influence Selection:

Result C.SE.1: ⟨|T |,h,d, | f |, |ET |, |X |, tmax⟩-SelEnvInf is not |x |
k
-tractable.

Result C.SE.2: ⟨|T |,h, |Q |,d, |ET |, |X |, tmax⟩-SelEnvInf is not |x |
k
-tractable.

Result C.SE.3: ⟨ke ⟩-SelEnvInf is |x |k -tractable.

• Leader Selection:

Result C.SL.1: ⟨h, |Q |,d, |ET |, |X |, tmax⟩-SelLead is not |x |k -tractable.

Result C.SL.2: ⟨h,d, | f |, |ET |, |X |, tmax⟩-SelLead is not |x |k -tractable.

Result C.SL.3: ⟨|T |,h, | f |, |X |⟩-SelLead is not |x |k -tractable.

Result C.SL.4: ⟨kl ⟩-SelLead is |x |k -tractable.

A tighter type of |x |k -intractability result is potentially derivable relative to parameters ka , ke ,
and kl . In certain cases involving single parameters k , techniques can be applied (see page 1348

of [6] and references) to reduce the f (k) exponents in |x |k -tractable algorithm runtimes to much

less than a strictly linear dependence on k , e.g., from f (k) = k to f ′(k) = log
2
log

2
k . A useful

characterization of such sublinear behaviour is defined as follows.
10

Definition 3.5. (Adapted from Definition 3.22 in [14]) Let f () and д() be computable functions.

We say that f (k) ∈ o(д(k)) if there is a computable function h() such that for all ℓ ≥ 1 and k ≥ h(ℓ),

we have f (k) ≤
д(k)
ℓ .

It would be very useful if our algorithms above in Results C.SA.6, C.SE.3, and C.SL.4 could be

improved in this manner. However, we have the following.
11

Result C.SA.7: ⟨ka⟩-SelAlg is not |x |k -tractable such that f (ka) = o(ka),

10
This “effective” characterization of sublinear behaviour, though more complex than the usual limit-based formulation of

o(), i.e., f (k) is o(д(k)) if limk→∞
д(k)
f (k) = 0, is both technically necessary to handle subtleties introduced when assessing

algorithm runtimes relative to different input size measures [14, pages 417–418] and for our purposes equivalent to the

limit-based formulation of o().
11

The following three results hold relative to the conjecture that the Exponential Time Hypothesis is true, which though

unproven is widely believed to be true within computer science [25, 26].

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:17

Result C.SE.4: ⟨ke ⟩-SelEnvInf is not |x |k -tractable such that f (ke) = o(ke),
Result C.SL.5: ⟨kl ⟩-SelLead is not |x |k -tractable such that f (kl) = o(kl).

A final note is in order regarding our intractability results: though we assume bounds of c1 = 10

and c2 = 3 for (c1, c2)-completability of construction tasks in Section 2, all of our intractability

results hold when c1 = 1 and c2 ≤ 3, with most results holding when c2 = 1. Hence, the intractability

of our problems does not require exorbitant swarm operation times.

4 DISCUSSION
In this section, we will first summarize our results and consider their completeness and generality

(Sections 4.1 and 4.2, respectively). We will then look at the specific implications of these results for

both swarm control assistance software tools (Section 4.3) and human control of swarms (Section

4.4). As part of the latter, we will describe how computational complexity analysis (and in particular

parameterized complexity analysis) can be used to create a detailed and comprehensive assessment

of human cognitive effort for swarm control.

4.1 Completeness of Our Results
Let us first consider the completeness of our results ordered by type of solvability. Our results

with respect to exact polynomial-time solvability give us our first surprise. Though SelAlg is

polynomial-time tractable when h = tmax = 1, i.e., the final swarm is homogeneous and all

controller changes required to make it so happen in the first timestep (and hence there are no

issues related to change timing) (Result A.1), SelAlg is not polynomial-time tractable when h = 2

and tmax = 1, and neither are SelEnvInf or SelLead when h = tmax = 1 (Result A.2). That this

intractability holds at the lowest possible values of h and tmax emphasizes that swarm heterogeneity

and timing of swarm inputs, both of which have been assumed to be central to the difficulty of

swarm control ([28, page 16] and [28, Section III-F], respectively), are in fact not — intractability

remains even if these (and, as noted at the end of Section 2.3, issues related to human-swarm

communication and swarm state estimation and prediction by human operators in the face of

incomplete observations) are factored out. Moreover, this intractability is not a product of “bad

actor” instances of our problems, which have no solutions and hence force needless full searches of

the solution space, but holds even for instances where solutions are known to exist (Result A.3). Our

results thus expose what we believe to be an under-appreciated factor in the intractability of

swarm control — namely, the combinatorial choice in swarm control inputs. This is perhaps not
surprising, given that the swarm- and environment-design problemsDesCon andEnvDes
from [60, 62] (in which combinatorial choice is arguably more obvious) are intractable
and special cases of problems SelAlg and SelEnvInf analyzed here. This combinatorial choice

is also powerful enough to rule out both frequently deterministic and frequently probabilistic types

of polynomial-time approximate solvability (Results A.4 and A.5, respectively).
12

The situation is more optimistic with respect to fixed-parameter and |x |k solvability. Our results

show that all three of our problems are fp-intractable, both relative to each of the parameters in

Table 1 and in many combinations of these parameters (Results B.SA1–B.SA.7, B.SE.1–B.SE.4, and

B.SL.1–B.SL.4); moreover, this fp-intractability holds when many of the parameters have constant

values (see Tables 2–5). That being said, we do have several combinations of parameters that yield

fp-tractability for each of our problems (Results B.SA.8, B.SA.9, B.SE.5, and B.SL.5). In the case

12
An examination of the proofs of these results in the appendix shows that they are direct consequences of the polynomial-

time intractability of our problems. That such popular types of fast heuristic algorithms can be ruled out so easily is well

known within but not outside computational complexity circles [22, 35]. This gives another reason, in addition to others

mentioned in the main text, for performing computational complexity analyses.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:18 Wareham et al.

Table 2. A Detailed Summary of Our Fixed-parameter and |x |k Complexity Results. a) Results for problem
SelAlg. Each column in this table is a result which holds relative to the parameter-set consisting of all
parameters with a @-symbol in that column. If the result holds when a particular parameter has a constant
value c , that is indicated by c replacing @ for that parameter in that result’s column. Note that within each
result-group, intractability results are first and tractability results (shown in bold) are last.

Fixed-parameter

] SA.1 SA.2 SA.3 SA.4 SA.5 SA.6 SA.7 SA.8 SA.9
|T | @ @ – 1 1 1 1 @ @
h @ @ 2 1 1 1 1 – –
|Q | 3 3 1 @ 2 – 2 – @
d – – 3 – 1 – 2 – –
| f | 16 – 38 3 – 3 – – –
r 1 – 1 @ @ – – – @
|E | – – – @ @ – – – –
|ET | – 12 6 – – 4 4 – @
|X | 1 1 – 1 1 1 1 – –
tmax 1 1 1 @ @ – – @ @
|L| – – 2 – – 1 1 @ –
ka @ @ @ @ @ @ @ – –

Table 3. A Detailed Summary of Our Fixed-parameter and |x |k Complexity Results (Cont’d). a) Results for
problem SelAlg (Cont’d).

|x |k

SA.1 SA.2 SA.3 SA.4 SA.5 SA.6
|T | – 1 1 1 1 –
h 2 1 1 1 1 –
|Q | 1 – 2 – 2 –
d 3 – 1 – 2 –
| f | 38 3 – 3 – –
r 1 – – – – –
|E | – – – – – –
|ET | 6 – – 4 4 –
|X | – 1 1 1 1 –
tmax 1 – – – – –
|L| 2 – – 1 1 –
ka – – – – – @

of |x |k -tractability, intractability holds relative to a number of combinations of the parameters in

Table 1 (Results C.SA.1–C.SA.5, C.SE.1, C.SE.2, and C.SL.1–C.SL.3). Though we do have tractability

relative to each of ka , ke , and kl (Results C.SA.6, C.SE.3, and C.SL.4), tractability in the most useful

case when the exponent functions in the algorithm runtimes are sublinear seems unlikely (Results

C.SA.7, C.SE.4, and C.SL.5).

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:19

Table 4. A Detailed Summary of Our Fixed-parameter and |x |k Complexity Results (Cont’d). b) Results for
problem SelEnvInf.

Fixed-parameter |x |k

SE.1 SE.2 SE.3 SE.4 SE.5 SE.1 SE.2 SE.3
|T | 1 1 1 1 – 1 1 –
h 1 1 1 1 – 1 1 –
|Q | – 1 @ 1 – – 1 –
d 2 2 – 2 – 2 2 –
| f | 5 – 3 – – 5 – –
r – – @ @ – – – –
|E | – – @ @ @ – – –
|ET | 5 5 – – @ 5 5 –
|X | 1 1 1 1 – 1 1 –
tmax 1 1 1 1 @ 1 1 –
ke – – @ @ – – – @

Table 5. A Detailed Summary of Our Fixed-parameter and |x |k Complexity Results (Cont’d). c) Results for
problem SelLead.

Fixed-parameter |x |k

SL.1 SL.2 SL.3 SL.4 SL.5 SL.1 SL.2 SL.3 SL.4
|T | – – – 1 @ – – 1 –
h 1 1 1 1 – 1 1 1 –
|Q | 1 – – – – 1 – – –
d 3 – 4 – – 3 4 – –
| f | – 3 3 3 – – 3 3 –
r – – – @ – – – – –
|E | – – – @ – – – – –
|ET | 5 5 5 – – 5 5 – –
|X | 1 1 1 1 – 1 1 1 –
tmax 1 1 1 – @ 1 1 – –
kl @ @ – – – – – – @

Though a number of additional fp- and |x |k tractability and intractability results can be derived

from our given results courtesy of Lemmas 3.1–3.4, [R2(C5)] our results are incomplete in two
senses:
(1) The frontiers of polynomial-time and fp-tractability for SelAlg, SelEnvInf, and Sel-

Lead relative to many combinations of parameters in Table 1 are not sharp in the
sense described in Section 1 and Footnote 1, in that there are in many cases numer-
ical gaps between the values of parameters for which these problems are known to
be tractable and intractable. This is obvious from a perusal of Tables 2–5 — though
all combinations of parameters which have an fp-intractability result in which all
parameters have value 1 describe sharp (albeit trivial) frontiers of polynomial-time

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:20 Wareham et al.

and fp-tractability, e.g., {|T |,h,d} for SelAlg (Result B.SA.5), this is not the case when
fp-intractability is only known to hold for combinations of parameters whose val-
ues are all greater than 1, e.g., {| f |, |ET |} for SelAlg (Result B.SA.6).

(2) There are a number of combinations of parameters in Table 1 whose fp– and |x |k -
complexity have not yet been determined.

However, even these incomplete results allow a much more nuanced view of the computational diffi-

culty of swarm control [R2(C4)] for distributed construction. For now, this is via fp-tractability
results that are minimal, i.e., fp-tractability results ⟨K⟩-X such that X is fp-intractable relative to

all proper subsets K ′
of K . Such minimal fp-tractability results are useful because they indicate

problem mechanisms that interact with each other (such that restrictions in one can be traded

off against not restricting others to maintain intractability, and tractability only occurs if all are

restricted together). At present, we have two minimal fp-tractability results:

(1) ⟨|T |, |L|, tmax⟩-SelAlg (Result B.SA.8) (courtesy of Results B.SA.1, B.SA.3, B.SA.6, and Lemma

3.2) and

(2) ⟨|T |, tmax⟩-SelLead (Result B.SL.5) (courtesy of Results B.SL.1, B.SL.4, and Lemma 3.2).

Choice in swarm control input timing is encoded in parameter tmax and choice in swarm control

inputs is encoded in parameters |T | and |L| (observe that in problem SelLead, there are four choices

of movement of a selected robot (north, south, east, and west) and hence |L| is effectively four).

Our results show that intractability in SelAlg and SelLead arises not from choices of either timing

or swarm control inputs but rather a combination of the two; hence, attempts to get tractability

by restricting only one of these aspects (see Section 4.3) are doomed to failure. Hints of other

mechanism interactions may also be implicit in certain pairs of intractability results (as visualized in

Tables 2–5), where restriction-tradeoffs between pairs of parameter-sets that maintain intractability

seem to be occurring, e.g., {|T |,h} vs. {|Q |,d, | f |, r , |L|} for SelAlg (Results B.SA.2 and B.SA.3),

{|Q |} vs. {r } for SelEnvInf (Results B.SE.1 and B.SE.2), {|Q |,d} vs. {| f |} for SelLead (Results B.SL1.

and B.SL.2). It would be most interesting to see if this interaction can be verified, either via minimal

fp-tractability or some other recognizable tractability or intractability result-pattern.

These issues suggest that it would be most useful to first complete our analyses by determining

the fp-status of our problems relative to all combinations of parameters in Table 1, i.e., perform-

ing a systematic parameterized complexity analysis (SPCA) [58] for each of our problems.

Experience has shown that the effort involved in performing such SPCA can be minimized cour-

tesy of Lemmas 3.1 and 3.2 by deriving fp-tractability and fp-intractability results relative to the

smallest and largest possible sets of parameters, respectively. The benefits in turn would be many,

including not only resolution of mechanism interaction issues mentioned above (the most notable

of which is the fp-minimality of ⟨|E |, |ET |, tmax⟩-SelAlg (Result B.SE.5)) but also determining if

other parameter-restricted situations are fp-tractable in addition to those we know of now, as

they would yield new and possibly much better algorithms for our problems. [R2(C5)] Once this
SPCA is done, we can then more profitably address the issue of sharpening the frontiers
of polynomial-time and fp-tractability for our problems.

4.2 Generality of Our Results
Let us now consider the generality of our tractability and intractability results. A valid objection is

that these results are of limited use as they were derived relative to simplified models. However,

as noted previously in [60], it turns out that these results have a broad applicability because our

models are special cases of a number of more realistic models (see [60, Section 5] for details), e.g.,

• Our 2D grid-based environments are special cases of 3D grid-based environments.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:21

• Our fully-known 2D grid-based environments are special cases of partially known and totally

unknown 2D and 3D grid-based environments (as the class of all such environments include

fully known environments as a special case).

• Our model of 2D grid-based structures is a special case of more realistic models of 2D and 3D

grid-based structures.

• Our deterministic FSR model is a special case of probabilistic FSR models.

• Our exact model of FSR motion and sensing is a special case of probabilistic models allowing

imprecise FSR motion and sensing (as the class of all such models includes the model with

exact motion and sensing as a special case).

• Our swarm operation model which does not allow direct communication between robots

is a special case of swarm operation models that do allow some form or degree of direct

communication between robots (as the class of all such models includes the model with no

direct communication as a special case).

More realistic versions of our problems can be created by replacing any combination of simple

special-case models with the more general models above. Courtesy of this special-case relationship,

any automated system that solves such a more realistic problem Π′
can also solve the original

problem Π defined relative to the simple special-case models analyzed here. Intractability results

for Π then also apply to Π′
as well as the operation of any automated system solving Π′

(see [60,

Section 5] for details).
13
Tractability results typically do not propagate from special cases to more

general problems, as algorithms often exploit particular details of the inputs and outputs in their

associated problems to attain efficiency or even work at all. That being said, some of our tractability

results also have a surprisingly broad applicability because the algorithms described in their proofs

depend only on the combinatorics of the number of possible swarm control input choices.

Though all of this applicability noted here is for now limited to simple systems in which

swarms move in a non-continuous deterministic manner in grid-based environments [R2(C4)]
and perform construction tasks, there is no reason to expect that our analyses cannot be

extended to [R2(C4)] more realistic swarm models and swarm control in the service of
non-construction tasks, e.g., foraging, consensus, navigation (for further discussion on this

point, see Section 5.2 in [60]). [R2(C4)] The latter is particularly important, as such tasks
are typically the focus of swarm control research to date. Our results have already made
the following first steps in this:

• Consider the navigation task of determining if a swarm can move from a specified
initial to a specified final positioning in an environment E. As the proofs of Lemmas
7, 8, 13–16, and 17–19 in the appendix only invoke construction to indicate that the
members of a swarm have reached a desired location in E, all intractability results
derived relative to those lemmas (Results A.2–A.5, B.SA.3, B.SA.8, B.SE.1–4, B.SL.1–
3, C.SA.3, C.SE.1, C.SE.2, C.SE.4, C.SL.1,C.SL.2, and C.SL.5) apply to swarm control
for this navigation task.

• As all of our tractability results (Results, A.1, B.SA.9, B.SE.5, B.SL.5, C.SA.6, B.SE.3,
and C.SL.5) rely only the combinatorics of robot swarm design, environment de-
sign, and swarm control input choice, they apply not only to swarm control for this
navigation task but to swarm control for all possible swarm tasks.

13
Additional generalities of our intractability results can be derived by scrutinizing the proofs of these results. For example,

swarms constructed in our proofs have either (1) |T | = 1 such that synchronous and asynchronous swarm operation are the

same or (2) robot controller algorithms and environments which ensure that completable construction tasks eventually finish

regardless of the order in which individual robots move, all of our intractability results also hold when swarm operation is

asynchronous.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:22 Wareham et al.

This is not to say that the full pattern of intractability results we have observed relative
to the distributed construction task and the navigation task described above necessar-
ily holds for simpler task such as consensus or foraging; indeed, we suspect it does not.
However, this can and should be investigated using computational complexity analysis,
to establish the frontiers of polynomial-time tractability for swarm control with respect
to the types of tasks being performed. It is our hope that the analysis frameworkwe have
used and at least some of the proof techniques we have developed will be of use in this
endeavor.
In any case, as was pointed out in Section 4.1, our simplified model have already proven

most useful in allowing us (as was promised at the end of Section 2.3) to explore the sources

of computational difficulty in swarm control [R2(C4)] for distributed construction. In the

following two subsections, we will see how such explorations in turn have implications for both

the design and deployment of software assistance tools for swarm control and the investigation of

feasible options for the human control of swarms.

4.3 Implications for Swarm Control Assistance Software Tools
Modulo concerns about the simplifications in our models relative to real-world robotics, our

tractability results have implications for the design and deployment of software tools to assist

human operators in swarm control. In order to maintain user attention, it is known that the time

taken by a software system to provide requested advice to humans users should be under 10 seconds

[38]. As all of our problems are polynomial-time intractable in general (Result A.2) and do not even

allow fast heuristic algorithms that are frequently correct in the most desirable deterministic or

probabilistic senses (Results A.4 and A.5, respectively), we need to look at restricted swarm control

situations for algorithm runtime efficiency. At present, our fixed-parameter and |x |k tractability

results suggest several such options:

(1) For Algorithm Selection, small swarms with small values of tmax and either small controller-

algorithm libraries (Result B.SA.8) or simple robot controllers (Result B.SA.9).

(2) For Environmental Influence Selection, small environments with few square-types and small

values of tmax (Result B.SE.5).

(3) For Leader Selection, few selected leaders and small values of tmax (Result B.SL.5).

(4) For all problems, (very) small number of swarm control inputs (Results C.SA.6, C.SE.3, and

C.SL.4).

Options 1–3 would work best either for small overall swarms or designated subswarms of larger

swarms performing temporally (in the case of Algorithm and Leader Selection) or spatially (in the

case of Environmental Influence Selection) limited tasks. Indeed, such algorithms would be very

useful in implementing control of large swarms by instead controlling collections of independent

subswarms [28, pages 20–22]. Regardless of other factors, if it is known that very few swarm control

inputs need to be suggested (as may be the case in temporally or spatially limited tasks), option 4

may be best.

Our analyses can also be used to analyze and mitigate encountered difficulties with existing

software tools for swarm control. For example, consider the tool designed in [32, 36] to address the

following problem [36, page 2674]:

Given a library of swarm behaviors B and an objective function or performance criterion
encoding the task at hand, find the sequence and behaviors and the times at which the
behaviors should be switched to accomplish the desired task.

This tool actually solves the simpler version of this problem in which the set T of times at which

behaviors can be switched are given as part of the input. Though this tool gives optimal behaviour

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:23

sequences relative to the given performance criterion [36, Theorem 2], it was too slow for real-time

supervisory control of a real-world swarm [36, page 2681]. This problem was just barely mitigated

(i.e., tool latency times were reduced to 2–8 seconds) by extensive parallelization and GPU program-

ming when |B|= 7 [32, page 3808], and even then, human participants in experiments were mostly

unwilling to use the sequencing algorithm and found it less usable then generating the sequences

manually [32, page 3811]. [R2(C4)] To us, these difficulties are not surprising, as the proof
of Result B.SA.4 can be easily modified to show that the problem solved by the tool in
[32, 36] is polynomial-time intractable (albeit for a distributed construction task under
our simplified swarm-operation model). This suggests that a complement to algorithm opti-

mization efforts such as those described in [32] would be to perform a computational complexity
analysis like those in this paper to establish other possibly more useful algorithm options. Such

algorithms for restricted swarm control situations might be a valuable part of proposed research

involving incremental construction of behaviour change sequences [32, page 3811]. This analysis

could also include looking at speeding up the bounded sub-optimal algorithm sketched on page

2677 of [36] under parameter restrictions using techniques described in [33].

A final note is in order here regarding the admittedly impractical runtimes of the algorithms

underlying our presented fixed-parameter and |x |k tractability results. As noted previously in

[60, Section 5], this is an artifact of the goal of the analyses in our paper, which is to provide a

general overview of the options for restricting problems to obtain practical algorithms; it is the

job of future research to derive the best possible algorithms relative to those sets of restrictions

for which we know algorithms exist. There are a number of established techniques for deriving

such algorithms [7, 15, 37], and it has been observed multiple times within the parameterized

complexity community that once fixed-parameter tractability is established, these techniques are

applied by different groups of researchers in “FPT Races” to produce increasingly (and, on occasion,

spectacularly) more efficient algorithms [29]. For example, once it was realized in 1992 that the

polynomial-time intractable problem Vertex Cover is fixed-parameter tractable relative to the

parameter k encoding the size of the wanted vertex cover, the 2
kk2k+2 + k |V | runtime of the initial

fixed-parameter algorithm was bettered over the next 20 years to 1.2738k +k |V |. It seems reasonable

to conjecture that, if there is sufficient interest, such an improvement could also happen with respect

to the fixed-parameter and |x |k tractability results for swarm control given in this paper.

4.4 Implications for Human Control of Swarms
In the previous section we considered the implications of our complexity results for swarm control

assistance software tools and observed that such tools face the intractability inherent in controlling

multiple autonomous and interacting robots. Instead of trying to fully automate and offload swarm

control to a computer program, might it be more realistic for a human controller to tackle these

problems effectively and efficiently in real-time? Our intractability results suggests this is unlikely

to be possible.

This is so because arguably humans, like any resource-bounded system, cannot solve intractable

problems efficiently [54]. While it is commonly believed that humans may be able to solve such

problems approximately or “good enough", such claims turn out to be unfounded: of course humans

do use various heuristics or other efficient strategies for problem solving, but if a well-defined

computational problem such as those analyzed here is computationally intractable (i.e., NP-hard
(see the Appendix)), then no such efficient strategies, either deterministically or probabilistically,

can yield provably good bounds on the degree of approximation [54, 56, 57] (see also Results A.4

and A.5).

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:24 Wareham et al.

Previous work has already considered the cognitive complexity of human control of autonomous

swarms [30]. While these analyses are informative about how the amount of global attention needed

to be distributed over the different controlled robots, these analyses are also in a sense limited. This

is because those analyses effectively assume that deciding how to control is cognitively for free, in

that Lewis’ big-Oh scheme (see Section 1.1) only expressed the attentional resources demands for

executing chosen control actions, and not the computational complexity of the swarm control input

selection problem itself. However, we have shown in this paper that the bulk of the computational

complexity of swarm control is hidden in this selection problem.

So is human swarm control hopeless? Most certainly not. This is because, as proposed in [52],

humans can, at least in principle and under ideal conditions, efficiently solve fixed-parameter

tractable parameterized versions of problems such as those listed in Section 4.3. This does, however,

impose strong constraints on swarm design and the design of their control interfaces, as they will

need to meet exactly those constraints that render the swarm control problem tractable for humans.

Analogous to Lewis’ guidelines on how to structure swarms to meet attentional resource limits

given on pages 162–163 of [30], we propose to design swarms and the control interfaces to meet

the cognitive resource limits on swarm control input selection noted in Section 4.3. For the simple

scenarios modeled here this means that our swarm control input selection problems need to be

constrained such that the human controller selects

(1) from only a handful of controller algorithms (i.e., library size |L|) for a handful of robots (i.e.,
swarm size |T |) over a short period of time (i.e., tmax) (when doing algorithm selection);

(2) from only a handful of environment square-types (i.e., environment square-type set |ET |) for
a handful of environment squares (i.e., environment size |E |) over a short period of time (i.e.,

tmax) (when doing environmental influence selection);

(3) from only a handful of robots (i.e., swarm size |T |) over a short period of time (i.e., tmax)

(when doing leader selection); or

(4) a (very) small number of swarm control inputs (i.e., swarm control input limits ka , ke , and kl
when doing algorithm, environmental influence, and leader selection, respectively).

This also demonstrates how computational complexity analysis, and in particular parameterized

complexity analysis, can be used to create the novel notion of cognitive complexity for swarm

control requested on page 23 of [28] that takes into account not only problem aspects such as

system size, task difficulty, and levels of automation but also their respective interactions (along

the lines sketched in Section 4.1).

The above poses new and most interesting challenges for swarm control interface design. It

would also be interesting to explore the links between our computational complexity results and

human performance measures in empirical research, both past and future. We think this latter

research will enrich the human factors literature on this topic, because as noted by [28, page 23],

this literature has to date focused on performance aspects such as fatigue, attention, and task

switching costs, whereas the types of complexity results discussed here address more fundamental

competence limitations [17].

5 CONCLUSIONS AND FUTURE RESEARCH
In this paper, we have given the first computational complexity analyses of problems associated with

algorithm, environmental influence, and leader selection methods for the control of robot swarms

performing distributed construction tasks. These analyses have been done relative to a simple model

of distributed construction defined in [62] in which swarms of deterministic finite-state robots

operate in a synchronous and non-continuous manner in 2D grid-based environments. We have

shown that all three of our problems are polynomial-time intractable in general and that they remain

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:25

intractable under a number of plausible restrictions (both individually and in many combinations)

on robot controllers, environments, target structures, and sequences of swarm control commands.

We have also given the first restrictions relative to which these problems are tractable, as well as

discussions of the implications of our results for both the design and deployment of swarm control

software assistance tools and the human control of swarms. The last of these also describes how

the techniques of computational complexity analysis (and in particular parameterized complexity

analysis) can be used to assess the overall cognitive effort involved in human control of swarms.

We believe that the following three whimsically named but seriously intended lessons can be

drawn from our analyses:

(1) Simplification pays: Rather than being a handicap, simplified models not only allow the

isolation and investigation of previously under-appreciated sources of computational difficulty

in problems (e.g., combinatorial choice in swarm control inputs (Section 4.1)) but are also a

good foundation on which to systematically and rationally build more realistic models.

(2) Interaction matters: Observed effects in a system may be the result of multiple interacting

mechanisms, and explanations of observed effects that only take into account those mecha-

nisms that are most obvious or manipulated in an experiment may be incomplete. The best

interpretation of such observations may come from theoretical analyses like parameterized

complexity analysis that explicitly acknowledge and allow investigations of interactions

among mechanisms in a system along the lines sketched in Section 4.1.

(3) Evasion is futile: Attempts to evade computational difficulties in a system by invoking

other systems or processes (e.g., mitigating the difficulties of co-ordinating and controlling

swarms by invoking intermittent human interaction with swarms) may be counterproductive

— computational difficulty seems be conserved across such system modifications, and if it is

not dealt with in the original system or process, it will have to be dealt with in the mitigating

one. To paraphrase Robert A. Heinlein’s famous acronym TANSTAAFL [21], “There Ain’t No

Such Thing As A Computationally Free Lunch” (TANSTAACFL
14
).

Given the appearance of the phenomena underlying these lessons in other contexts (e.g., the

intractability of evolution when invoked to mitigate the problem of optimally adapting cogni-

tive decision mechanisms [40, 41]), these may in fact be lessons not only for swarm control but

computational investigations of real-world systems in general.

There are several promising directions for future research.

• In addition to the future work sketched in Section 4.1 associated with completing the pa-

rameterized and |x |k analyses started in this paper relative to the parameters in Table 1,

analyses should also be extended to consider new parameters [R1(C1)] and other forms of
efficient solvability. Of particular interest here are parameters that further restrict
the structures of swarms, environments and swarm control command sequences
such that our intractability proofs are invalidated and recently-proposed types of
probabilistic fixed-parameter tractability [9, 34].

• [R2(C4)] In addition to the future work sketched in Section 4.2 on swarm control
for non-construction tasks, more realistic problems should also be formalized and investi-

gated. Aside from problems based on more realistic notions of robot and swarm operation

(continuous asynchronous motion in a continuous 3D environment), it would be of interest to

look at problems involving other types of swarm control (e.g., environmental influence by the

placement of beacons and/or pheromone sources, dividing a large swarm into independent

subswarms and co-ordinating the control of these subswarms) and more specific swarm

14
Suggested pronunciation: tans-TACK-full.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:26 Wareham et al.

control activities (e.g., prediction of swarm states when (c1, c2)-completability of tasks is not

guaranteed).

The most important direction for future work, though, is the development of new and improved
algorithms for real-time control of real-world swarms. [R4(C5)] Such algorithms will be very
useful not only in Human-Robot Interaction [28] but also Collaborative Human-Robot
Construction [20]. The development of these algorithmswill involve both classical algorithm
engineering for swarm control assistance software tools along the lines sketched in Section 4.3

as well as detailed assessments of the overall cognitive effort of human control of swarms. The

latter may best be realized via interleaved rounds of theoretical and experimental analysis in a

research framework analogous to the natural language complexity game [42] and the tractable

theory revision cycle for cognitive science [53–55]. It is our hope that the techniques and analyses

given in this paper will be useful foundations for all of these efforts.

ACKNOWLEDGMENTS
The authorswould like to thank the four anonymous reviewers, whose comments helped
to improve both the technical content and the presentation of the paper. TWwas supported

by National Science and Engineering Research Council (NSERC) grant 228105-2015.

REFERENCES
[1] Len Adleman, Qi Cheng, Ashish Goel, Ming-Deh Huang, David Kempe, Pablo De Espanes, and Paul Rothemund. 2002.

Combinatorial optimization problems in self-assembly. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing. 23–32.

[2] Michael Allwright, Navneet Bhalla, and Marco Dorigo. 2017. Structure and markings as stimuli for autonomous

construction. In Proceedings of the 2017 18th International Conference on Advanced Robotics. IEEE, 296–302.
[3] Hadi Ardiny, Stefan Witwicki, and Francesco Mondada. 2015. Are Autonomous Mobile Robots Able to Take Over

Construction? A Review. International Journal of Robotics: Theory and Applications 4, 3 (2015), 10–21.
[4] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. 1999. Swarm intelligence: From natural to artificial systems. Oxford

University Press.

[5] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. 2013. Swarm robotics: A review from the

swarm engineering perspective. Swarm Intelligence 7, 1 (2013), 1–41.
[6] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2006. Strong computational lower bounds via parameterized

complexity. J. Comput. System Sci. 72 (2006), 1346–1367.
[7] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer.
[8] Erik Demaine, Mohammad Hajiaghayi, and Dániel Marx. 2014. Minimizing movement: Fixed-parameter tractability.

ACM Transactions on Algorithms 11, 2 (2014), 1–29.
[9] Nils Donselaar. 2019. Probabilistic parameterized polynomial time. In International Conference on Current Trends in

Theory and Practice of Informatics. Springer, 179–191.
[10] Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity. Springer, Berlin.
[11] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer, Berlin.
[12] Philip E. Dunne, Michael Laurence, and Michael Wooldridge. 2003. Complexity results for Agent Design. Annals of

Mathematics, Computing & Teleinformatics 1, 1 (2003), 19–36.
[13] Henning Fernau, Torben Hagerup, Naomi Nishimura, Prabhakar Ragde, and Klaus Reinhardt. 2003. On the parameter-

ized complexity of the generalized Rush Hour puzzle.. In Proceedings of the 15th Canadian Conference on Computational
Geometry. 6–9.

[14] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer, Berlin.
[15] Fedor V. Fomin, Daniel Lokshantov, Saket Saurabh, and Meirav Zehavi. 2019. Kernalization: Theory of Parameterized

Prepreocessing. Cambridge University Press, Cambridge, UK.

[16] Lance Fortnow. 2009. The Status of the P Versus NP Problem. Commun. ACM 52, 9 (2009), 78–86.

[17] Marcello Frixione. 2001. Tractable competence. Minds and Machines 11, 3 (2001), 379–397.
[18] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability. W.H. Freeman.

[19] Victor Gerling and Sebastian Von Mammen. 2016. Robotics for Self-Organised Construction. In IEEE International
Workshop on Foundations and Applications of Self* Systems. IEEE, 162–167.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:27

[20] Isla Xi Han, Forrest Meggers, and Stefana Parascho. 2021. Bridging the collectives: A review of collective human–robot

construction. International Journal of Architectural Computing 19, 4 (2021), 1–20.

[21] Robert A. Heinlein. 1966. The Moon is a Harsh Mistress. G. P. Putnam’s Sons, New York.

[22] Lane A. Hemaspaandra and Ryan Williams. 2012. Complexity Theory Column 76: An atypical survey of typical-case

heuristic algorithms. ACM SIGACT News 43, 4 (2012), 70–89.
[23] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2001. Introduction to Automata Theory, Languages, and

Computation (2nd ed.). Addison-Wesley.

[24] John E. Hopcroft, Jacob Theodore Schwartz, and Micha Sharir. 1984. On the Complexity of Motion Planning for

Multiple Independent Objects: PSPACE-Hardness of the “Warehouseman’s Problem”. The International Journal of
Robotics Research 3, 4 (1984), 76–88.

[25] Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of k-SAT. Journal of Computer and System
Science 62, 2 (2001), 367–375.

[26] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential complex-

ity? Journal of Computer and System Science 63, 4 (2001), 512–530.
[27] Andreas Kolling, Steven Nunnally, and Michael Lewis. 2012. Towards human control of robot swarms. In Proceedings

of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction. 89–96.
[28] Andreas Kolling, Phillip Walker, Nilanjan Chakraborty, Katia Sycara, and Michael Lewis. 2016. Human interaction

with robot swarms: A survey. IEEE Transactions on Human-Machine Systems 46, 1 (2016), 9–26.
[29] Christian Komusiewicz and Rolf Niedermeier. 2012. New races in parameterized algorithmics. In International

Symposium on Mathematical Foundations of Computer Science (Lecture Notes in Computer Science), Branislav Rovan,
Vladimiro Sassone, and Peter Widmayer (Eds.), Vol. 7464. Springer, 19–30.

[30] Michael Lewis. 2013. Human interaction with multiple remote robots. Reviews of Human Factors and Ergonomics 9, 1
(2013), 131–174.

[31] Michael Lewis, Jijun Wang, and Paul Scerri. 2006. Teamwork coordination for realistically complex multi robot systems.

In NATO Symposium on Human Factors of Uninhabited Military Vehicles as Force Multipliers. 1–12.
[32] Huao Li, Jaeho Bang, Sasanka Nagavalli, Changjoo Nam, Michael Lewis, and Katia Sycara. 2018. Human Interaction

Through an Optimal Sequencer to Control Robotic Swarms. In 2018 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE, 3807–3812.

[33] Dániel Marx. 2008. Parameterized complexity and approximation algorithms. Comput. J. 51, 1 (2008), 60–78.
[34] Juan Andrés Montoya and Moritz Müller. 2013. Parameterized random complexity. Theory of Computing Systems 52, 2

(2013), 221–270.

[35] Rajeev Motwani and Prabhakar Raghavan. 2010. Randomized Algorithms. Chapman & Hall/CRC.

[36] Sasanka Nagavalli, Nilanjan Chakraborty, and Katia Sycara. 2017. Automated sequencing of swarm behaviors for

supervisory control of robotic swarms. In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2674–2681.

[37] Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford University Press.

[38] Jakob Nielsen. 1994. Usability Engineering. Morgan Kaufmann.

[39] Kirstin H. Petersen, Nils Napp, Robert Stuart-Smith, Daniela Rus, and Mirko Kovac. 2019. A review of collective robotic

construction. Science Robotics 4, 28 (2019), 1–10.
[40] Patricia Rich, Mark Blokpoel, Ronald de Haan, Maria Otworowska, Marieke Sweers, Todd Wareham, and Iris van Rooij.

2021. Naturalism, tractability and the adaptive toolbox. Synthese 198, 6 (2021), 5749–5784.
[41] Patricia Rich, Mark Blokpoel, Ronald de Haan, and Iris van Rooij. 2020. How intractability spans the cognitive and

evolutionary levels of explanation. Topics in Cognitive Science 12, 4 (2020), 1382–1402.
[42] Eric S. Ristad. 1993. The Language Complexity Game. MIT Press.

[43] Kamel S. Saidi, Thomas Bock, and Christos Georgoulas. 2016. Robotics in construction. In Handbook of Robotics.
Springer, 1493–1520.

[44] Thomas B. Sheridan and William L. Verplank. 1978. Human and computer control of undersea teleoperators. Technical
Report. Massachusetts Institute of Technology Man-Machine Systems Lab.

[45] Touraj Soleymani, Vito Trianni, Michael Bonani, FrancescoMondada, andMarcoDorigo. 2015. Bio-inspired construction

with mobile robots and compliant pockets. Robotics and Autonomous Systems 74 (2015), 340–350.
[46] Ian A. Stewart. 2003. The complexity of achievement and maintenance problems in agent-based systems. Artificial

Intelligence 2, 146 (2003), 175–191.
[47] Ashley Stroupe, Avi Okon, Matthew Robinson, Terry Huntsberger, Hrand Aghazarian, and Eric Baumgartner. 2006. Sus-

tainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance.

Autonomous Robots 20, 2 (2006), 113–123.
[48] Guy Theraulaz and Eric Bonabeau. 1995. Coordination in distributed building. Science 269, 5224 (1995), 686.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:28 Wareham et al.

[49] Skylar Tibbits (Ed.). 2017. Special issue: Autonomous assembly: designing for a new era of collective construction.

Architectural Design 87, 4 (2017), 1–136.

[50] Mesam Timmar and Todd Wareham. 2019. The Computational Complexity of Controller-Environment Co-design

using Library Selection for Distributed Construction. In Distributed Autonomous Robotic Systems: The 14th International
Symposium (Springer Proceedings in Advanced Robotics), N. Correll, M. Schwager, and M. Otte (Eds.), Vol. 9. Springer

Nature Switzerland AG, 51–63.

[51] Vaibhav V Unhelkar, Przemyslaw A Lasota, Quirin Tyroller, Rares-Darius Buhai, Laurie Marceau, Barbara Deml, and

Julie A Shah. 2018. Human-aware robotic assistant for collaborative assembly: Integrating human motion prediction

with planning in time. IEEE Robotics and Automation Letters 3, 3 (2018), 2394–2401.
[52] Iris van Rooij. 2008. The Tractable Cognition Thesis. Cognitive Science 32, 6 (2008), 939–984.
[53] Iris van Rooij and Giosuè Baggio. 2021. Theory before the test: How to build high-versimilitude explanatory theories

in psychological science. Perspectives on Psychological Science 16, 4 (2021), 682–697.
[54] Iris van Rooij, Mark Blokpoel, Johan Kwisthout, and Todd Wareham. 2019. Cognition and Intractability: A Guide to

Classical and Parameterized Complexity Analysis. Cambridge University Press, Cambridge, UK.

[55] Iris van Rooij and Todd Wareham. 2008. Parameterized Complexity in Cognitive Modeling: Foundations, Applications,

and Opportunities. Computer Journal 51, 3 (2008), 385–404.
[56] Iris van Rooij and Todd Wareham. 2012. Intractability and Approximation of Optimization Theories of Cognition.

Journal of Mathematical Psychology 56, 4 (2012), 232–247.

[57] Iris van Rooij, Cory D. Wright, and Todd Wareham. 2012. Intractability and the Use of Heuristics in Psychological

Explanation. Synthese 187, 2 (2012), 471–487.
[58] Todd Wareham. 1999. Systematic Parameterized Complexity Analysis in Computational Phonology. Ph.D. Dissertation.

University of Victoria, Canada.

[59] Todd Wareham. 2015. Exploring Algorithmic Options for the Efficient Design and Reconfiguration of Reactive

Robot Swarms. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communication
Technologies. ICST, Brussels, 295–302.

[60] ToddWareham. 2019. Designing Robot Teams for Distributed Construction, Repair, andMaintenance. ACMTransactions
on Autonomous and Adaptive Systems 14(1) (2019), 2:1–2:29.

[61] Todd Wareham, Johan Kwisthout, Pim Haselager, and Iris van Rooij. 2011. Ignorance is Bliss: A Complexity Perspective

on Adapting Reactive Architectures. In Proceedings of the 1st Joint IEEE International Conference on Development and
Learning and on Epigenetic Robotics, Vol. 2. 1–5.

[62] Todd Wareham and Andrew Vardy. 2018. Putting It Together: The Computational Complexity of Designing Robot

Controllers and Environments for Distributed Construction. Swarm Intelligence 12, 2 (2018), 111–128.
[63] Todd Wareham and Andrew Vardy. 2018. Viable Algorithmic Options for Designing Reactive Robot Swarms. ACM

Transactions on Autonomous Adaptive Systems 13, 1 (2018), 5:1–5:23.
[64] Todd Wareham and Andrew Vardy. 2021. The Computational Complexity of Designing Scalar-Field Sensing Robot

Teams and Environments for Distributed Construction. In 2021 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C). IEEE Press, Los Alamitos, CA, 232–237.

[65] Eric W. Weisstein. 2020. von Neumann Neighborhood. (2020). https://mathworld.wolfram.com/

vonNeumannNeighborhood.html From MathWorld – A Wolfram Web Resource.

[66] Justin Werfel and Radhika Nagpal. 2006. Extended stigmergy in collective construction. IEEE Intelligent Systems 21, 2
(2006), 20–28.

[67] J. Werfel, Kirsten Petersen, and R. Nagpal. 2014. Designing collective behavior in a termite-inspired robot construction

team. Science 343 (2014), 754–758.
[68] Avi Wigderson. 2007. P, NP and Mathematics — A computational complexity perspective. In Proceedings of ICM 2006:

Volume I. EMS Publishing House, Zurich, 665–712.

[69] Michael Wooldridge and Philip E. Dunne. 2002. The computational complexity of agent verification. In Intelligent
Agents VIII. Springer, 115–127.

A PROOFS OF RESULTS
A.1 Preliminaries
All of our intractability results will be derived using polynomial-time and parameterized reductions.

Given two problems Π and Π′
, a polynomial-time reduction from Π to Π′

[18] is a polynomial-time

algorithm for transforming instances of Π into instances of Π′
such that any polynomial-time

algorithm for Π′
can be used in conjunction with this instance transformation algorithm to create a

polynomial-time algorithm for Π. Analogously, a parameterized reduction from ⟨K⟩-Π to ⟨K ′⟩-Π′

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

https://mathworld.wolfram.com/vonNeumannNeighborhood.html
https://mathworld.wolfram.com/vonNeumannNeighborhood.html

Swarm Control for Distributed Construction 0:29

[11] allows the instance transformation algorithm to run in fp-time relative to K and requires

that (1) for each k ′ ∈ K ′
that there is a function дk ′() such that k ′ = дk ′(K) and (2) the instance

transformation algorithm can be used in conjunction with any fp-algorithm for ⟨K ′⟩-Π′
to create

an fp-algorithm for ⟨K⟩-Π.15 The power of such reductions comes from the following observation:

given a reduction from a problem Π to a problem Π′
that preserves a particular type of tractability,

if Π is not tractable then neither is Π′
(otherwise, if Π′

was tractable by some algorithm A, A could

be combined with the instance transformation algorithm in the reduction to prove Π tractable,

which is a contradiction). If necessary, the “seed” intractable problem Π used in such a proof may

only be known to be intractable if a particular conjecture holds, e.g., P , NP , FPT ,W [1]; in those

cases, the reduction-derived intractability result for Π′
holds relative to that conjecture.

All of our reductions are from the following problems:

3-Satisfiability (3SAT) [18, Problem LO2]

Input: A setU of variables and a setC of disjunctive clauses overU such that each clause c ∈ C has

|c | = 3.

Question: Is there a satisfying truth assignment for C?

Weighted 3-satisfiability (W3SAT) [10]

Input: A set U of variables, a set C of disjunctive clauses over U such that each clause c ∈ C has

|c | = 3, and a positive integer k .
Question: Is there a satisfying truth assignment for C of weight k , i,e, a satisfying truth assignment

in which exactly k variables are set to True?

Cliqe [18, Problem GT19]

Input: An undirected graph G = (V ,E) and a positive integer k .
Question: Does G contain a clique of size k , i.e., is there a subset V ′ ⊆ V , |V ′ | = k , such that for all

u,v ∈ V ′
, (u,v) ∈ E?

Dominating set [18, Problem GT2]

Input: An undirected graph G = (V ,E) and a positive integer k .
Question: Does G contain a dominating set of size k , i.e., is there a subset V ′ ⊆ V , |V ′ | = k , such
that for all v ∈ V , either v ∈ V ′

or there is at least one v ′ ∈ V ′
such that (v,v ′) ∈ E?

Let Dominating set
PD3

be the version of Dominating set in which G is planar and each vertex

has degree at most 3. The problems 3SAT, Cliqe, Dominating Set, and Dominating set
PD3

are

NP-hard in general (see problem references in [18] above); moreover problem Cliqe isW [1]-hard

and problems W3SAT and Dominating set areW [1]-hard andW [2]-hard, respectively, relative

to aspect-set {k} [10]. For each vertex v ∈ V , let the complete neighbourhood NC (v) of v be

the set composed of v and the set of all vertices in G that are adjacent to v by a single edge, i.e.,

v ∪ {u | u ∈ V and (u, v) ∈ E}. We assume below for each instance of Cliqe and Dominating

set an arbitrary ordering on the vertices of V such that V = {v1,v2, . . . ,v |V |}; we also assume

analogous orderings for the variables and clauses of each instance of 3SAT and W3SAT such that

U = {u1,u2, . . . ,u |U |} and C = {c1, c2, . . . , c |C |}.

For technical reasons, all intractability results are proved relative to decision versions of problems,

i.e., problems whose solutions are either “yes” or “no”. Though none of our problems defined in

Section 2 are decision problems, each can be made into a decision problem by asking if that

problem’s requested output exists; let that decision version for a problem X be denoted by XD . The

15
Note that this definition given here is actually Definition 6.1 in [54], which modifies that in [10] to accommodate

parameterized problems with multi-parameter sets.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:30 Wareham et al.

following four easily-proven lemmas will be useful below in transferring results from decision

problems to their associated non-decision and parameterized problems; these lemmas follow from

the observation that any algorithm for non-decision problem X can be used to solve XD and the

definitions of fp- and |x |k -tractability.

Lemma A.1. If XD is not solvable in polynomial time relative to conjecture C then X is not solvable
in polynomial time relative to conjecture C.

Lemma A.2. Given a parameter-set K for problem X, if ⟨K⟩-XD is not fixed-parameter tractable
relative to conjecture C then ⟨K⟩-X is not fixed-parameter tractable relative to conjecture C.

Lemma A.3. Given a parameter-set K for problem X, if ⟨K⟩-XD is not |x |k -tractable relative to
conjecture C then ⟨K⟩-X is not |x |k -relative to conjecture C.

Lemma A.4. Given a parameter-set K for problem X, if XD is NP-hard when the value of every
parameter k ∈ K is fixed to a constant value, then ⟨K⟩-X < FPT unless P = NP .

A.2 Proofs
[R2(C6)] This subsection contains the proofs of all results cited in themain text. As noted
in Section 1.2 in themain text, proofs of certain Lemmas are either straightforward adap-
tations of (LemmasA.5, A.6, andA.13–16) or build on (LemmasA.9 andA.20) proofs given
previously in [60, 62]. In both cases, to avoid repeating the full proof and committing
self-plagiarism, we first describe in general how the previous proof operated and then
give the changes required for this paper (which in the cases of Lemmas A.9 and A.20 are
necessarily more detailed). All other proofs are given here in full detail.

We first address the issue of absolute versus operational FSR determinism discussed in Footnote

4 in the main text. Consider the following problem:

FSR Nondeterminism

Input: An FSR X with state-set Q and sensory radius r , a 2D grid G, and environment square-type

set ET .
Question: Is the operation of X not deterministic in some possible environment based on G and E,
in the sense that there is an environment E based on G and ET and a state q ∈ Q such that X in

state q can be positioned in E and at least two outgoing transitions from q are enabled that do not

perform the same environment modifications and progress to the same next state?

Result X.1: If FSR Nondeterminism is polynomial-time tractable then P = NP .

Proof. Consider the following polynomial-time reduction from 3SAT to FSR Nondeterminism:

Given an instance ⟨C,U ⟩ of 3SAT, construct an instance ⟨X ,G,ET ⟩ of FSR Nondeterminism such

that G is a (|U | + 1) × 1 2D grid, ET = {eT , eF } and X has two states, q0 and q1, and sensory-radius

r = |U |. An environment E based on G and ET can encode the variables in U such ui , 1 ≤ i ≤ |U |,

corresponds to the square Ei+1,1. Given such an environment, let X be positioned at E1,1 and E(e)
be the offset from X of the square corresponding to variable u ∈ U . Given this, let X have the

following two transitions:

(1) ⟨q0, f1, ∗, stay,q1⟩, where f1 is the propositional formula consisting of the disjunction of all

clauses in C such that u (¬u) is replaced by predicate enval(eT ,E(u)) (enval(eF ,E(u))).
(2) ⟨q0, f2, ∗, stay,q0⟩, where f2 is the propositional formula consisting of the disjunction of all

predicates in the set {enval(eT ,E(u)) | u ∈ U } ∪ {enval(eF ,E(u)) | u ∈ U }.

This instance of FSR Nondeterminism can be constructed in time polynomial in the given instance

of 3SAT. To prove the correctness of this reduction, note that (1) the first transition enables if and

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:31

W

V3 V4

M1

E

S

S

WW W W W W W W

N

NM3M2

R RR

V1 V2

T

Fig. 1. An example environment and initial placement region EI of a FSR swarmT constructed in the proof of
Lemma A.5 when in the given instance of Dominating set, |V | = 4 and k = 2 [60, Figure 4] Robot movement
(N, S, E, W) and activity (V1, V2, V3, V4, M1, M2, M3, T) square-types are shown in Roman font and the initial
placement of the FSRs in T is shown by bold-italic symbols R. All other squares (including those under the
initial placement of the robots) have a special blank square-type.

only if there is a truth assignment for the variables inU encoded in E that satisfies the disjunction

of all clauses in C and (2) the second transition enables for every possible truth assignment for the

variables of U that can be encoded in E. Hence, the two transitions in X can be simultaneously

enabled in an environment E and have different effects (i.e., transitions (1) and (2) change the state

to q0 and q1, respectively) if and only if there is a truth assignment for the variables in U encoded

in E that satisfies the disjunction of all clauses in C , and the answer to the given instance of 3SAT

is “Yes” if and only if the answer for the constructed instance of FSR Nondeterminism is “Yes”.

This completes the proof. □

We next consider the swarm control problems defined in Section 2.3.

Lemma A.5. Dominating set polynomial-time reduces to SelAlgD such that in the constructed
instance of SelAlgD , |Q | = 3, r = |X | = tmax = c1 = c2 = 1, | f | = 16, and |T |, h, and ka are functions
of k in the given instance of Dominating set.

Proof. Adapted from the proof of Lemma A.2 in [60]. In that proof, for a given instance of

Dominating set, we construct an instance of SelAlg with an (|V | + 8) × 5 environment like that in

Figure 1 such that a swarm of k + 1 robots will be able to co-operatively construct a single-square

structure at the square with type eT if and only if there is a dominating set of size at most k in

the graph in the given instance of Dominating set. The robots are initially positioned in the

north-west corner of the movement-track and move in a counter-clockwise fashion around this

track. Robot movement and activity is dictated by squares of particular types. A functional swarm

consists of at most k “vertex neighbourhood” robots which attempt to fill in a scaffolding of squares

in the center of the central line of squares and at least one “checker” robot which ensures that

the squares in this scaffolding correspond to a dominating set and, if so, places the single square

corresponding to the requested structure at the square with type eT . Regardless of how these robots

on this swarm are initially positioned, the vertex neighbourhood robots will, if they can, have

filled in the central scaffolding after the entire swarm has been around the track at most two times,

leaving the checker robot to verify their work on the third time around.

In this proof, we initially give all k+1 robots a “dud” controller that does nothing, i.e., a controller
with the single state q0 and the single transition ⟨q0, ∗, ∗, stay,q0⟩. Let L be the union of the vertex

neighbourhood, checker, and dud robot controllers, tmax = 1, and ka = k + 1. This construction

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:32 Wareham et al.

can be done in time polynomial in the size of the given instance of Dominating set. If there

is a dominating set of size k in G in the given instance of Dominating set, CA can change the

controllers of k of the dud robots to the vertex neighbourhood controllers corresponding to the

vertices in the dominating set and the controller of the (k + 1)st robot to the checker controller;

as in original lemma, placement of the vertex neighbourhood and checker robots is immaterial.

Conversely, if there is a set CA of controller changes that allows the resulting swarm to create X ,
the k + 1 dud robots must have had their controllers changes to a checker controller and k vertex

neighbourhood controllers that correspond to a dominating set of size k inG in the given instance

of Dominating set. This establishes the correctness of the reduction and completes the proof. □

Lemma A.6. Dominating set polynomial-time reduces to SelAlgD such that in the constructed
instance of SelAlgD , |Q | = 3, |ET | = 12, |X | = tmax = c1 = c2 = 1, and |T |, h, and ka are functions of
k in the given instance of Dominating set.

Proof. Adapted from the proof of Lemma A.3 in [60]. In that proof, each square of type evi in
the proof of Lemma A.2 in [60] is replaced by a north-south-oriented sequence of height ⌈log

2
|V |⌉

composed of squares of type e0 and e1 corresponding to a binary encoding of the integer i; in order

to correctly recognize these evi -sequences, all vertex-neighbourhood robots have sensory radius

r = ⌈log
2
|V |⌉ and have their transition-activation formulas modified accordingly. In our proof, we

modify L and the initial k + 1 robots along the lines in the proof of Lemma A.5 above. □

Lemma A.7. 3SAT polynomial-time reduces to SelAlgD such that in the constructed instance of
SelAlgD , h = 2, |Q | = 1, d = 3, | f | = 38, r = c1 = c2 = 1, |ET | = 6, tmax = 1, and |L| = 2.

Proof. Given an instance ⟨C,U ,k⟩ of 3SAT, construct an instance ⟨E,ET ,T ,L,
pI ,X ,pX , tmax,ka⟩ of SelAlgD as follows: Let ET = {e0, eT , eF , eU , eB , eX } and E be based on a

(|U | + 2) × (|C | + 1) grid in which the southmost |C | squares of the westmost and eastmost columns

are of type eU , the middle |U | squares of the northmost row are of type eB , each row i , 1 ≤ i ≤ |C |,
has type eF (eT) in square Ek+1,i if variable j in clause ci in C is ¬uk (uk) for 1 ≤ j ≤ 3, and type e0
otherwise. Let L consist of two variable-robots, rF and rT , where rF and rT each have a single state

q0, sensory radius r = 1, and the following transitions:

(1) ⟨q0, (enval(eU , (−1, 0)) and enval(erobot , (1, 1))) or
(enval(erobot , (−1, 1)) and enval(eU , (1, 0))) or
(enval(erobot , (−1, 1)) and enval(erobot , (1, 0))) or
(enval(erobot , (−1, 0)) and enval(erobot , (1, 1))) or
(enval(erobot , (−1, 1)) and enval(erobot , (1, 1))) or
(enval(erobot , (−1, 0)) and enval(erobot , (1, 0)) and enval(eF , (0, 0))),
∗,дoNorth,q0⟩ for rF and

⟨q0, (enval(eU , (−1, 0)) and enval(erobot , (1, 1))) or
(enval(erobot , (−1, 1)) and enval(eU , (1, 0))) or
(enval(erobot , (−1, 1)) and enval(erobot , (1, 0))) or
(enval(erobot , (−1, 0)) and enval(erobot , (1, 1))) or
(enval(erobot , (−1, 1)) and enval(erobot , (1, 1))) or
(enval(erobot , (−1, 0)) and enval(erobot , (1, 0)) and enval(eT , (0, 0))),
∗,дoNorth,q0⟩ for rT .

(2) ⟨q0, enval(eB , (0, 0)), enmod(eX , (0, 0)), stay,q0⟩
(3) ⟨q0, enval(eX , (0, 0)), ∗, stay,q0⟩

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:33

Transition (1) allows a variable-robot x to progress northwards if the variable-robot on either

side of x is already one square to the north or the variable-robots on both sides of x are in the

same row as x and x is currently on a square of type eF (eT) if x = rF (x = rT). Note that this
allows a variable-robot x to progress to the next clause-row in E only if either x or some other

variable-robot is set to satisfy the clause in C corresponding to the current row in E in which x is

standing. Transition (2) allows a variable-robot x to construct a structure square when x reaches

the northmost row in E, and clause (3) ensures that x does nothing thereafter. Let T consist of

|U | rF variable robots initially positioned in the middle |U | squares of the southmost row of E, X
consist of a line of |U | squares of type eX , and pX specify the middle |U | squares in the northmost

row of E. Finally, set tmax = 1 and ka = |U |. Note that this instance of SelAlgD can be constructed

in time polynomial in the given instance of 3SAT.

We now need to show the correctness of the reduction above:

• Suppose there is a satisfying truth assignment for c toU in the given instance of 3SAT. LetCA
be the set of controller-changes that converts the controllers of each of the variable-robots

in T to rT (rF) if the variable inU corresponding to that robot has value True (False) in the

satisfying truth assignment. By the structure of E, T modified by CA will progress from the

southmost to the northmost row and successfully create requested structure X and pX . As
each robot in T needs to go northwards |U | squares to reach the northmost row and then

construct a square of type eX in its corresponding column in the northmost row, the number

of timesteps required for t modified by CA to construct X at pX is ≤ c1 |E |
c2 = |E |, which

means that the construction task is (c1, c2)-completable wrt T and CA when c1 = c2 = 1.

• Conversely, suppose there is a set of controller-changes CA such that for T started at pI and
modified byCA, the task of constructing X at pX is (c1, c2)-completable. As all variable-robots

in T must reach the northmost row in E to construct X , at least one variable-robot in each

clause-row in E must have been set to satisfy the corresponding clause in C and hence

allow all of the variable-robots in T to progress past that clause-row. This means that the

variable-robots in T as modified by CA correspond to a satisfying truth assignment to U for

C in the given instance of 3SAT.

This establishes the correctness of the reduction and completes the proof. □

Lemma A.8. ⟨k⟩-W3SAT parameterized reduces to ⟨h, |Q |,d, f , r , |ET |, |L|, tmax,ka⟩-SelAlgD such
that in the constructed instance of SelAlgD , h = 2, |Q | = 1, d = 3, | f | = 38, r = 1, |ET | = 6, tmax = 1,
and |L| = 2, and ka is a function of k in the given instance of W3SAT.

Proof. Follows (modulo slight changes to the proof of correctness) from the reduction described

in Lemma A.7 when ka = k rather than ka = |U |. □

Lemma A.9. Cliqe polynomial-time reduces to SelAlgD such that in the constructed instance of
SelAlgD , |T | = h = |X | = c1 = 1, c2 = 2, | f | = 3, and Q , r , |E |, tmax, and ka are functions of k in the
given instance of Cliqe.

Proof. Inspired by the proof of Lemma 8 in the Supplementary Materials for [62]. In that proof,

for a given instance of Cliqe, we construct an environment E specified in a 2 × (|k | + 1) grid such

that E2,1 has type eF 1, the northmost k squares in the westmost column either have types from the

set {e1, e2, . . . , e |V |}, and all other squares have type e0. A given robot rob initially placed at E1,1 is
structured such that rob can only progress to pX = E2,1 to create the single-square structure X if

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:34 Wareham et al.

the northmost k squares in the westmost column of E specify a clique of size k in G in the given

instance of Cliqe.

In this proof, we have a robot-library consisting of three types of robots:

(1) A dud robot with a single state q0 and the single transition ⟨q0, ∗, ∗, stay,q0⟩;
(2) |V | vertex robots, each with r = 0 and Q = {q0,q1}, such that vertex robot i , 1 ≤ i ≤ |V |,

has the pair of transitions ⟨q0, enval(e0, (0, 0)), enmod(evi , (0, 0)), дoSouth,q1⟩ and ⟨q1, ∗, ∗,
stay,q1⟩; and

(3) A checker robot based on rob with a new initial state q0 and the additional transition

⟨q0, enmod(eF 0, (0, 0)), e0, stay,q
′
0
⟩, where q′

0
is the initial state of rob.

Let E be such that E1,1 = eF 0 and E2,1 = eF 1 and all other squares have type e0, T consist of a single

dud robot initially positioned at Ek+1,1, and tmax = ka = k + 1. This construction can be done in

time polynomial in the size of the given instance of Cliqe. If there is a clique of size k in G in

the given instance of Cliqe, CA can change the single initial dud robot in T first to the vertex

robots corresponding to the vertices in that clique and then the checker robot. This will ensure

that the encoding of that k-clique is correctly written in the northmost k squares of the westmost

column of E and then verified to allow the construction of X at E2,1. Conversely, if there is a setCA
of robot-type changes to T that allows the checker robot to create X at pX , the dud robot must first

have been changed to k vertex robots (to both create an encoding of a candidate k-clique in G in

the given instance of Cliqe in the northmost k squares in the westmost column of E and move

the robot to E1,1) and then changed to the checker robot (to verify that the encoding is in fact a

k-clique in G and then construct X at E2,1). This establishes the correctness of the reduction and

completes the proof. □

Lemma A.10. Dominating set polynomial-time reduces to SelAlgD such that in the constructed
instance of SelAlgD , |T | = h = d = |X | = c1 = c2 = 1, |Q | = 2, and r , |E |, tmax, and ka are functions of
k in the given instance of Dominating set.

Proof. Consider the following reduction from Dominating set to SelAlgD . Given an instance

⟨G = (V ,E),k⟩ of Dominating set, construct an instance ⟨E,ET ,T ,L,pI ,X ,pX , tmax,ka⟩ of SelAlgD
as follows: Let ET ,T ,pI ,X , tmax,ka , and the dud and vertex robots in L be as specified in the reduction
in the proof of Lemma A.9. We will modify E to be a 1 × (k + 1) grid in which E1,1 has type eF 0 and
all other squares have type e0, pX = E1,1, and the checker robot in robot L to have a single state q0
and the single transition ⟨q0, enval(eF 0, (0, 0)) and (F), enmod(eX , (0, 0)), stay,q0⟩, where F is the

conjunction of |V | parenthesis-enclosed formulas, the ith of which for 1 ≤ i ≤ |V | is the disjunction

of the predicates in the set {enval(ev j , (0, l)) | 1 ≤ l ≤ k and vj ∈ NC(vi)}. This construction can be

done in time polynomial in the size of the given instance of Dominating set.

Let us now consider the correctness of this reduction. If there is a dominating set of size k in G
in the given instance of Dominating set, CA can change the single initial dud robot in T first to

the vertex robots corresponding to the vertices in that dominating set and then the checker robot.

This will ensure that the encoding of that k-dominating set is correctly written in the northmost k
squares of the sole column of E and then verified to allow the construction of X at pX . As at most

one transition is enabled at any time in the robot in T , the operation of T in E is deterministic.

As for (c1, c2)-completability, observe that X is created at pX in exactly tmax = k + 1 timesteps. As

k + 1 = |E | < c1(|E | + |Q |)c2 when c1 = c2 = 1, this means that the construction task is (c1, c2)-
completable when c1 = c2 = 1. Conversely, if there is a set CA of robot-type changes to T that

allows the creation of X at pX , the dud robot must first have been changed to k vertex robots (to

both create an encoding of a candidate dominating set of size at most k in G in the given instance

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:35

of Dominating set in the northmost k squares in the sole column of E and move the robot to E1,1)
and then changed to the checker robot (to verify that the encoding is in fact a dominating set of

size at most k in G and then construct X at pX). This establishes the correctness of the reduction
and completes the proof. □

Lemma A.11. Dominating set polynomial-time reduces to SelAlgD such that in the constructed
instance of SelAlgD , |T | = h = |L| = |X | = c1 = c2 = 1, | f | = 3, |ET | = 4, and ka are functions of k in
the given instance of Dominating set.

Proof. Consider the following reduction from Dominating set to SelAlgD . Given an instance

⟨G = (V ,E),k⟩ of Dominating set, construct an instance ⟨E,ET ,T ,L,pI ,X ,pX , tmax,ka⟩ of SelAlgD
as follows: Let E be a 1 × |V | + 2 grid in which E1,1 has type eF 0 and all other squares have type e0,
ET = {e0, e1, eF 0, eX }, and L consist of a single robot rob based on states Q = {q0,q1, . . . ,q(|V |+1)}

with sensory-radius r = |V | + 1 and the following transitions:

(1) ⟨q0, enval(e0, (0, 0)), enmod(e1, (0, 0)),дoSouth,q1⟩
(2) ⟨q1, enval(e0, (0, 0)), ∗,дoSouth,q1⟩
(3) {⟨qi , enval(eF 0, (0, 0)) and enval(e1, (0, j)), ∗, stay, qi+1⟩ | 1 ≤ i < |V | and vj ∈ NC(vi)} ∪

{⟨q |V |, enval(eF 0, (0, 0)) and enval(e1, (0, j)), enmod(eX, (0, 0)), stay, q(|V |+1)⟩ | vj ∈ NC (v |V |)}

Finally, let T consist of rob positioned initially at pI = E1, |V |+2, X be a single square of types eX at

position pX = E1,1, tmax = |V | + 1, and ka = k . This construction can be done in time polynomial in

the given instance of Dominating set.

We now need to verify the correctness of this reduction:

(1) Suppose there a dominating set of size k in G in the given instance of Dominating set; let

V ′ ⊆ V be the vertices in this dominating set, seqV ′ be the sequence of indices of the vertices

in V ′
sorted in descending order, and seqV ′(i), 1 ≤ i ≤ k , be the ith element in that sequence.

LetCA be the sequence of controller-changes that effectively restarts rob in q0 at timesteps in

the set {(|V | − seqV ′(i)) + 2 | 1 ≤ i ≤ k}. Observe that CA will both force rob to encode V ′
in

the middle |V | squares in the sole column in E and position rob in state q1 at E1,1, where the
transitions in set (3) above will both verify that the dominating set encoded in E is an actual

dominating set in G and construct X at pX . As the set of transitions enabled at any point in

the operation of rob all do the same thing, the operation of T in E is deterministic. As for

(c1, c2)-completability, observe that rob requires |V | + 1 timesteps to reach E1,1 and then a

further |V | timesteps to create X at pX . As 2|V | + 1 < ((|V | + 2) + (|V | + 2)) = c1(|E | + |Q |)c2

when c1 = c2 = 1, the construction task is (c1, c2)-completable when c1 = c2 = 1.

(2) Conversely, suppose there is a set of controller-changes CA that allows rob started at pI
to create X at pX . By the structure of the transitions in set (3) above, CA must have made

rob change a set of squares in the middle |V | squares in the sole column in E to encode a

dominating set in G; as such changes can only occur once each time rob’s controller is reset
and |CA | ≤ ka = k , this encoded dominating set can have at most k vertices.

This establishes the correctness of the reduction and completes the proof. □

Lemma A.12. Dominating set polynomial-time reduces to SelAlgD such that in the constructed
instance of SelAlgD , |T | = h = |L| = |X | = c1 = c2 = 1, |Q | = d = 2, |ET | = 4, and ka is a function of
k in the given instance of Dominating set.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:36 Wareham et al.

Proof. Modify the reduction in the proof of LemmaA.11 such that rob is based on statesq0 andq1
and the transitions in set (3) are replaced by a single transition of the form ⟨q1, enval(eF 0, (0, 0)) and (F),
enmod(eX , (0, 0)), stay,q1⟩, where F is the conjunction of |V | parenthesis-enclosed formula, the ith
of which for 1 ≤ i ≤ |V | is the disjunction of the predicates in the set {enval(e1, (0, j)) | vj ∈ NC (vi)}.
The proof of correctness of this modified reduction is essentially the same as that for the reduction

in the proof of Lemma A.11, modulo the observation that the construction of X at pX now requires

a total of only |V | + 2 timesteps. □

Lemma A.13. 3SAT polynomial-time reduces to SelEnvInfD such that in the constructed instance of
SelEnvInfD , |T | = h = |X | = tmax = c1 = 1, d = 2, c2 = 3, and | f | = |ET | = 5.

Proof. Adapted from the proof of Lemma 6 in the Supplementary Materials for [62]. In that

proof, for a given instance of 3SAT, we construct an environment E specified in a 2 × (|U | + 1) grid

such that E2,1 has type eF 1, the northmost |U | squares in the westmost column either have type eF
or eT , and all other squares have type e0. A given robot rob initially placed at E1,1 is structured such
that rob can only progress to pX = E2,1 to create the single-square structure X if the northmost

|U | squares in the westmost column of E specify a satisfying truth assignment for C in the given

instance of 3SAT.

In this proof, we have a single-robot swarmT consisting of rob, construct an E in which E2,1 = eF 1
and all other squares have type e0, and set tmax = 1 and ke = |U |. This construction can be done in

time polynomial in the size of the given instance of 3SAT. If there is a satisfying truth assignment

forC to the variables inU in the given instance of 3SAT,CE can change the types of the northmost

|U | squares in the westmost column of E to correspond to that truth assignment. Conversely, if

there is a set CE of environment square-type changes that allows rob to create X , the northmost

|U | squares in the westmost column of E must have had their types changed to correspond to a

satisfying truth assignment forC to the variables inU in the given instance of 3SAT. This establishes

the correctness of the reduction and completes the proof. □

Lemma A.14. 3SAT polynomial-time reduces to SelEnvInfD such that in the constructed instance of
SelEnvInfD , |T | = h = |X | = |Q | = tmax = c1 = c2 = 1 d = 2, and |ET | = 5.

Proof. Adapted from the proof of Lemma 7 in the Supplementary Materials for [62], In that

proof, the robot rob is modified from that in the proof of Lemma 6 in the Supplementary Materials of

[62] to have a single transition whose (now rather long) activation formula checks if the northmost

|U | squares in the westmost column of E specify a satisfying truth assignment forC to the variables

inU in the given instance of 3SAT. In this proof proof, we construct T and E along the lines in the

proof of Lemma A.13 above. □

Lemma A.15. Cliqe polynomial-time reduces to SelEnvInfD such that in the constructed instance
of SelEnvInfD , |T | = h = |X | = c1 = tmax = 1, c2 = 2, | f | = 3, and |Q |, r , |E |, and ke are functions of
k in the given instance of Cliqe.

Proof. Adapted from the proof of Lemma 8 in the Supplementary Materials for [62]. In that

proof, for a given instance of Cliqe, we construct an environment E specified in a 2× (|k | + 1) grid
such that E2,1 has type eF 1, the northmost k squares in the westmost column either have types from

the set {e1, e2, . . . , e |V |}, and all other squares have type e0. A given robot rob initially placed at

E1,1 is structured such that rob can only progress to pX = E2,1 to create the single-square structure

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:37

X if the northmost k squares in the westmost column of E specify a clique of size k in G in the

given instance of Cliqe.

In this proof, we have a single-robot swarmT consisting of rob, construct an E in which E2,1 = eF 1
and all other squares have type e0, and set tmax = 1 and ke = k . This construction can be done in

time polynomial in the size of the given instance of Cliqe. If there is a clique of size k in G in the

given instance of Cliqe, CE can change the types of the northmost k squares in the westmost

column of E to correspond to that clique. Conversely, if there is a setCE of environment square-type

changes that allows rob to create X , the northmost k squares in the westmost column of E must

have had their types changed to correspond to a clique of size k inG in the given instance of Cliqe.

This establishes the correctness of the reduction and completes the proof. □

Lemma A.16. Cliqe polynomial-time reduces to SelEnvInfD such that in the constructed instance
of SelEnvInfD , |T | = h = |X | = |Q | = tmax = c1 = c2 = 1, d = 2, and r , |E |, and ke are functions of k
in the given instance of Cliqe.

Proof. Adapted from the proof of Lemma 9 in the Supplementary Materials for [62], In that

proof, the robot rob is modified from that in the proof of Lemma 8 in the Supplementary Materials of

[62] to have a single transition whose (now rather long) activation formula checks if the northmost

k squares in the westmost column of E specify a clique of size k inG in the given instance of Cliqe.

In our proof proof, we construct T and E along the lines in the proof of Lemma A.15 above. □

Lemma A.17. Dominating set polynomial-time reduces to SelLeadD such that in the constructed
instance of SelLeadD , |Q | = c1 = c2 = 1, d = 3, |ET | = 5, h = |X | = tmax = 1, and kl is a function of k
in the given instance of Dominating set.

Proof. Given an instance ⟨G,k⟩ of Dominating set, construct an instance

⟨E,ET ,T ,pI ,X ,pX , tmax,kl ⟩ of SelLeadD as follows: Let ET = {eD , eC , eC1, eC2, eX } and E be based

on a |V | × 4 grid such that the square types of E1,3 and E1,4 are EC1 and EC2, respectively, and all

others squares have type eD . Let T consist of |V | + 1 copies of robot rG , each of which has a single

state q0, sensory radius r = |V |, and the following transitions:

(1) ⟨q0, enval(eC1, (0, 0)) and F, enval(eC , (0, 0)),дoNorth,q0⟩, where F is the conjunction of |V |

clauses, the ith of which is a parenthesis-enclosed disjunction of the set of expressions

{enval(erobot , (i, 2)) | vi ∈ NC (v)}.
(2) ⟨q0, enval(eC , (0,−1)) and enval(qC2, (0, 0)), enmod(eX , (0, 0)), stay,q0⟩
(3) ⟨q0, (enval(eD , (0, 0)) or enval(eX , (0, 0))), ∗, stay,q0⟩

Let pI be such that |V | copies of rG are in the southmost row of E and the (|V | + 1)st copy is at E1,3;
call the first set of robots variable-robots and the final robot the checker-robot. Let X be a single

square of type eX at pX = E1,4. Finally, set tmax = 1 and kl = k . Note that this instance of SelLeadD
can be constructed in time polynomial in the size of the given instance ofDominating set.

We now need to verify the correctness of this reduction:

• Suppose there is a dominating set of size k in G in the given instance of Dominating set.

Let D ⊆ V be the vertices in this dominating set and CL be the set of position-changes that

shifts all of the variable-robots in the southmost row of E corresponding to vertices in D one

square north. By the structure of rG , the positions of the moved variable-robots will allow F
in the activation-formula of transition (1) of the checker-robot to evaluate to True, which

will allow the checker-robot to proceed northwards to construct X at pX . Moreover, as the

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:38 Wareham et al.

number of timesteps the checker-robot needs to construct X at pX is 2 ≤ c1 |E |
c2 = |E |, this

construction task is (c1, c2)-completable when c1 = c2 = 1.

• Conversely, suppose there is a set of position-changes CL such that for T started at pI and
modified by CL , the task of constructing X at pX is (c1, c2)-completable. By the structure of

rG , the checker robot can only construct X at pX if it had previously changed the type of E1,3
to EC , and that can only happen if the position-changes in CL shifted variable-robots in the

southmost row corresponding to a dominating set forG in the given instance of Dominating

set; moreover, as kl = k , this dominating set must be of size k .

This establishes the correctness of the reduction and completes the proof. □

Lemma A.18. Dominating set polynomial-time reduces to SelLeadD such that in the constructed
instance of SelLeadD , h = |X | = c1 = tmax = 1, c2 = 2, | f | = 3, |ET | = 5, and kl is a function of k in
the given instance of Dominating set.

Proof. Replace rG in the proof of Lemma A.17 with a (|V |2 + 1)-state robot based on the

states {q0 = qN 1,1,qN 1,2, . . . ,qN 1, |V |,qN 2,1,qN 2,2, . . . ,qN 2, |V |, . . . ,qN |V |,1, qN |V |,2, . . . ,qN |V |, |V |,
qN (|V |+1),1} with sensory radius r = |V | and the following transitions:

(1) |V | sets of transitions, where for 1 ≤ i ≤ |V |, the ith set consists of the transitions

{⟨qNi, j , ∗, ∗, stay,qNi, j+1 | 1 ≤ j ≤ |V | − 1} and {qNi, j , enval(erobot , (j, 2)), ∗, stay,qN (i+1),1⟩

| vj ∈ NC (vi)}.
(2) ⟨qN (|V |+1),1, enval(eC1, (0, 0)), enmod(eC , (0, 0)),дoNorth,qN (|V |+1),1⟩

(3) ⟨qN (|V |+1),1, enval(eC , (0,−1)) and enval(qC2, (0, 0)), enmod(eX , (0, 0)), stay,qN (|V |+1),1⟩

(4) ⟨qN (|V |+1),1, (enval(eD , (0, 0)) or enval(eX , (0, 0))), ∗, stay,qN (|V |+1),1⟩

Once again, this construction can be done in time polynomial in the given instance of Dominating

set. The proof of correctness of this reductions is that given in the proof of Lemma A.17 modified

modulo the following two observations:

(1) The transitions in (1) and (2) above simulate transition (1) in the robot rG in the proof of

Lemma A.17; and

(2) As these modifications to rG now mean that the number of timesteps the checker-robot needs

to construct X at pX is ≤ |V |2 + 2 ≤ 3|V |2 ≤ 16|V |2 = (4|V |)2 = c1 |E |
c2
, this construction task

is (c1, c2)-completable when c = 1 and c2 = 2.

This completes the proof. □

Lemma A.19. Dominating set
PD3 polynomial-time reduces to SelLeadD such that in the con-

structed instance of SelLeadD , h = |X | = c1 = tmax = 1, c2 = 2, d = 4, | f | = 3, and |ET | = 5.

Proof. Apply reduction in the proof of Lemma A.18 relative to Dominating set
PD3

instead of

Dominating set. □

Lemma A.20. Cliqe polynomial-time reduces to SelLeadD such that in the constructed instance of
SelLeadD , |T | = h = |X | = c1 = 1, c2 = 2, | f | = 3, and r , |E |, and kl are functions of k in the given
instance of Cliqe.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:39

Proof. Inspired by the proof of Lemma 8 in the Supplementary Materials for [62]. In that proof,

for a given instance of Cliqe, we construct an environment E specified in a 2 × (|k | + 1) grid such

that E2,1 has type eF 1, the northmost k squares in the westmost column have types from the set

{e1, e2, . . . , e |V |}, and all other squares have type e0. A given robot rob initially placed at E1,1 is
structured such that rob can only progress to pX = E2,1 to create the single-square structure X if

the northmost k squares in the westmost column of E specify a clique of size k in G in the given

instance of Cliqe.

In this proof, we have a swarm T consisting of a single robot that modifies rob by having a new

initial state q0 = qW 1, additional states {qW 2, . . . ,qW |V |}, and the following additional transitions:

(1) {⟨qW i , enval(e0, (0, 0)), enmod(evi , (0, 0)), stay,qW (i+1)⟩ | 1 ≤ i ≤ |V | − 1}; and

(2) {⟨qW i , enval(eF 0, (0, 0), enmod(e0, (0, 0)), stay,q
′
0
⟩ | 0 ≤ i ≤ |V |}, where q′

0
is the initial state

of rob.

Let E be such that E1,1 = eF 0 and E2,1 = eF 1 and all other squares have type e0, pI = Ek+1,1,
tmax = |V | + 1, and kl = k + 1. This construction can be done in time polynomial in the size of

the given instance of Cliqe. If there is a clique of size k in G in the given instance of Cliqe, CL
can change the positions of the robot one square south at the appropriate times during the first

|V | + 1 timesteps such that first the square-types corresponding to the vertices in that clique are

written in the northmost k squares of the first column in E and then the robot is positioned at E1,1
to verify this clique and construct X at E2,1. Conversely, if there is a set CL of position-changes to

the robot in T that allows the robot to create X , the robot must first have been moved one square

south k times at the timesteps corresponding to the vertices in a candidate k-clique (to both create

an encoding of that candidate k-clique in G in the given instance of Cliqe in the northmost k
squares in the westmost column of E and move the robot to E1,1) and then moved south one final

time (to position the robot at E1,1 to verify that the encoding is in fact a k-clique in G and then

construct X at E2,1). This establishes the correctness of the reduction and completes the proof. □

Result A.1: SelAlg is polynomial-time tractable when h = tmax = 1.

Proof. The algorithm in the proof of Result A in [60], which tests for each controller c in L
whether a swarm based entirely on c can construct X at pX in at most c1 |E |

c2
timesteps, operates in

polynomial time. We need only modify that algorithm such that prior to evaluating each c in L,
we first verify that ka controller-changes suffice to convert all controllers in T to c (i.e., are there
exactly ka controllers in T that are not c?), which can also be done in polynomial time. □

Result A.2: If SelAlg is polynomial-time tractable when h = 2 and tmax = 1 or either SelEnvInf

or SelLead is polynomial-time tractable when h = tmax = 1 then P = NP .

Proof. The NP-hardness of SelAlgD , SelEnvInfD , and SelLeadD under the specified values of

h and tmax follows from the NP-hardness of Dominating set and 3SAT and the reductions in

Lemmas A.7, A.13, and A.17, respectively. The result then follows from Lemma A.1. □

Result A.3: If SelAlg when h = 2 and tmax = 1 or SelEnvInf or SelLead when h = tmax = 1 are

polynomial-time promise solvable then P = NP .

Proof. Suppose that SelAlg is polynomial-time promise solvable by an algorithm A when h = 2

and tmax = 1.
16
Consider the following algorithm for 3SAT:

16
It may initially seem puzzling why we here directly evaluate the polynomial-time promise solvability of SelAlg. This is

necessary because the promise solvability of any decision problem such as SelAlgD is established by the trivial constant-time

algorithm which always answers “Yes” (and hence is always correct if a solution exists).

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:40 Wareham et al.

(1) Given an instance I of 3SAT, construct an instance I ′ of SelAlg using the reduction from

3SAT to SelAlgD described in Lemma A.7.

(2) Run A on I ′ to produce output O ′
for SelAlg.

(3) As specified in the converse part of the proof of correctness of the reduction in Lemma A.7

use the types of the CA-changed robots in O ′
to derive a candidate truth assignment O for

the given instance of 3SAT.

(4) If O is a correct solution for I , output “Yes”; otherwise, output “No” (as by the definition of

promise solvability, if the answer was “Yes” then A would have had to output O ′
such that O

was a correct solution to the given instance of 3SAT).

As all steps in this algorithm run in polynomial time, the above is a polynomial-time algorithm

for 3SAT. However, given the NP-hardness of 3SAT, this would imply that P = NP , completing

the proof of polynomial-time promise non-solvability for SelAlg. Similar arguments using the

reductions from 3SAT and Dominating set to SelEnvInfD and SelLeadD in Lemmas A.13 and A.17

along with the NP-hardness of 3SAT and Dominating set establish the polynomial-time promise

non-solvability of SelEnvInf and SelLead. □

Result A.4: If SelAlg when h = 2 and tmax = 1 or SelEnvInf or SelLead when h = tmax = 1

are solvable by polynomial-time algorithms with polynomial error frequencies (i.e., err (n) is
upper bounded by a polynomial of n) then P = NP .

Proof. That polynomial-time promise solvability for any of these problems under the stated

restriction implies P = NP follows from the NP-hardness of each of these problems (which is

established in the proof of Result A.2) and Corollary 2.2 in [22]. □

Result A.5: if P = BPP and SelAlg when h = 2 and tmax = 1 or SelEnvInf or SelLead when

h = tmax = 1 are polynomial-time solvable by probabilistic algorithms which operate correctly

with probability ≥ 2/3 then P = NP .

Proof. It is widely believed that P = BPP [68, Section 5.2] where BPP is considered the most

inclusive class of decision problems that can be efficiently solved using probabilistic methods (in

particular, methods whose probability of correctness is ≥ 2/3 and can thus be efficiently boosted

to be arbitrarily close to one). Hence, if any of SelAlgD , SelEnvInfD , or SelLeadD under the stated

restrictions has a probabilistic polynomial-time algorithm which operates correctly with probability

≥ 2/3 then that problem is by definition in BPP . However, if BPP = P and we know that each of

these problems is NP-hard by the proof of Result A.2, this would then imply by the definition of

NP-hardness that P = NP , completing the proof. □

Result B.SA.1: If ⟨|T |,h, |Q |, | f |, r , |X |, tmax,ka⟩-SelAlg is fp-tractable then FPT =W [1].

Proof. Follows from theW [2]-hardness of k-Dominating set, the inclusion ofW [1] inW [2],

the reduction in Lemma A.5, and Lemma A.2. □

Result B.SA.2: If ⟨|T |,h, |Q |, |ET |, |X |, tmax,ka⟩-SelAlg is fp-tractable then FPT =W [1].

Proof. Follows from theW [2]-hardness of k-Dominating set, the inclusion ofW [1] inW [2],

the reduction in Lemma A.6, and Lemma A.2. □

Result B.SA.3: If ⟨h, |Q |,d, | f |, r , |ET |, |L|, tmax,ka⟩-SelAlg is fp-tractable then FPT =W [1].

Proof. Follows from theW [1]-hardness of k-W3SAT, the reduction in Lemma A.8, and Lemma

A.2. □

Result B.SA.4: If ⟨|T |,h, |Q |, | f |, r , |E |, |X |, tmax,ka⟩-SelAlg is fp-tractable then FPT =W [1].

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:41

Proof. Follows from theW [1]-hardness of k-Cliqe, the reduction in Lemma A.9, and Lemma

A.2. □

Result B.SA.5: If ⟨|T |,h, |Q |,d, r , |E |, |X |, tmax,ka⟩-SelAlg is fp-tractable then FPT =W [1].

Proof. Follows from theW [1]-hardness of k-Dominating set, the reduction in Lemma A.10,

and Lemma A.2. □

Result B.SA.6: If ⟨|T |,h, | f |, |L|, |ET |, |X |,ka⟩-SelAlg is fp-tractable then FPT =W [1].

Proof. Follows from theW [1]-hardness of k-Dominating set, the reduction in Lemma A.11,

and Lemma A.2. □

Result B.SA.7: If ⟨|T |,h, |Q |,d, |L|, |ET |, |X |,ka⟩-SelAlg is fp-tractable then FPT =W [1].

Proof. Follows from theW [1]-hardness of k-Dominating set, the reduction in Lemma A.12,

and Lemma A.2. □

Result B.SA.8: ⟨|T |, |L|, tmax⟩-SelAlg is fp-tractable.

Proof. Consider the algorithm that selects all possible combinations of ka elements from the

set of valid timesteps for changes, members of T , and possible changes from L to members of T ,
and for each such combination, verifies whether or not T started at pI and subsequently modified

by the changes in that combination constructs X at pX . As this verification can be done in time

polynomial in the input size, the running time of this algorithm is upper bounded by (tmax |T | |L|)
ka

times some polynomial of the input size. To get the result. observe that ka ≤ |T | × tmax, as the

maximum possible value of ka occurs when every robot in T has its controller changed in every

timestep up to and including timestep tmax . □

Result B.SA.9: ⟨|T |, |Q |, r , |ET |, tmax⟩-SelAlg is fp-tractable.

Proof. Follows from the algorithm in the proof of Result B.SA.8 and the proof of Result I in [60],

in which it is shown that |L| is upper-bounded by a function of |Q |, r , and |ET |. □

Result B.SE.1: If ⟨|T |,h,d, | f |, |ET |, |X |, tmax⟩-SelEnvInf is fp-tractable then P = NP .

Proof. TheNP-hardness of SelEnvInfD when |T | = h = |X | = tmax = 1,d = 2, and | f | = |ET | = 5

follows from the NP-hardness of 3SAT and the reduction in Lemma A.13. The result then follows

from Lemma A.4. □

Result B.SE.2: If ⟨|T |,h, |Q |,d, |ET |, |X |, tmax⟩-SelEnvInf is fp-tractable then P = NP

Proof. The NP-hardness of SelEnvInfD when |T | = h = |X | = |Q | = tmax = 1, d = 2, and

|ET | = 5 follows from the NP-hardness of 3SAT and the reduction in Lemma A.14. The result then

follows from Lemma A.4. □

Result B.SE.3: If ⟨|T |,h, |Q |, | f |, r , |E |, |X |, tmax,ke ⟩-SelEnvInf is fp-tractable then FPT =W [1].

Proof. Follows from theW [1]-hardness of ⟨k⟩-Cliqe, the reduction in LemmaA.15, and Lemma

A.2. □

Result B.SE.4: If ⟨|T |,h, |Q |,d, r , |E |, |X |, tmax,ke ⟩-SelEnvInf is fp-tractable then FPT =W [1].

Proof. Follows from theW [1]-hardness of ⟨k⟩-Cliqe, the reduction in Lemma A.16, and the

definition of FPT . □

Result B.SE.5: ⟨|E |, |ET |, tmax⟩-SelEnvInf is fp-tractable.

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:42 Wareham et al.

Proof. Consider the algorithm that selects all possible combinations of ke elements from the

set of valid timesteps for changes, squares in E, and possible changes from ET to squares in E, and
for each such combination, verifies whether or not T started at pI in E and subsequently modified

by the changes in that combination constructs X at pX . As this verification can be done in time

polynomial in the input size, the running time of this algorithm is upper bounded by (tmax |E | |ET |)
ke

times some polynomial of the input size. To get the result, observe that ke ≤ |E | × tmax, as the

maximum possible value of ke occurs when every square in E has its type changed in every timestep

up to and including timestep tmax . □

Result B.SL.1: If ⟨h, |Q |,d, |ET |, |X |, tmax,kl ⟩-SelLead is fp-tractable then FPT =W [1].

Proof. Follows from theW [2]-hardness of k-Dominating set, the inclusion ofW [1] inW [2],

the reduction in Lemma A.17, and Lemma A.2. □

Result B.SL.2: If ⟨h, | f |, |ET |, |X |, tmax,kl ⟩-SelLead is fp-tractable then FPT =W [1].

Proof. Follows from theW [2]-hardness of k-Dominating set, the inclusion ofW [1] inW [2],

the reduction in Lemma A.18, and Lemma A.2. □

Result B.SL.3: If ⟨h,d, | f |, |ET |, |X |, tmax⟩-SelLead is fp-tractable then P = NP

Proof. The NP-hardness of SelLeadD when | f | = tmax = 1, h = 2, d = 4, | f | = 3, |ET | = 5, and

|X | = 1 follows from the NP-hardness of Dominating set
PD3

and the reduction in Lemma A.19.

The result then follows from Lemma A.4. □

Result B.SL.4: If ⟨|T |,h, | f |, r , |E |, |X |,kl ⟩-SelLead is fp-tractable then FPT =W [1].

Proof. Follows from theW [1]-hardness of k-Cliqe, the reduction in Lemma A.20, and Lemma

A.2. □

Result B.SL.5: ⟨|T |, tmax⟩-SelLead is fp-tractable.

Proof. Consider the algorithm that selects all possible combinations of kl elements from the

set of valid timesteps for changes, members of T , and possible position changes to members of T ,
and for each such combination, verifies whether or not T started at pI and subsequently modified

by the changes in that combination constructs X at pX . As this verification can be done in time

polynomial in the input size, the running time of this algorithm is upper bounded by (tmax |T |4)
kl

times some polynomial of the input size. To get the result, observe that kl ≤ |T | × tmax, as the

maximum possible value of kl occurs when every robot in T has its position changed in every

timestep up to and including timestep tmax . □

This useful observation follows from the definition of |x |k -tractability.

Observation 1. Given a problem X and an aspect-set K for X, any |x |k -tractable algorithm A for
⟨K ′⟩-X, K ′ ⊆ K , is also a polynomial-time algorithm for X when all aspects of K ′ have constant value.

Results C.SA.1–C.SA.5, C.SE.1, C.SE.2, and C.SL.1–C.SL.3 in turn follow from this observation and

the reductions in the proofs of Results B.SA.3–B.SA.7, B.SE.1, B.SE.2, and B.SL.1, B.SL.3, and B.SL.4,

respectively, which show the NP-hardness of their associated problems when the listed aspects are

of constant value.

Result C.SA.1: If ⟨h, |Q |,d, | f |, r , |ET |, |L|, tmax⟩-SelAlg is |x |k -tractable then P = NP .
Result C.SA.2: If ⟨|T |,h, | f |, |X |⟩-SelAlg is |x |k -tractable then P = NP .
Result C.SA.3: If ⟨|T |,h, |Q |,d, |X |⟩-SelAlg is |x |k -tractable then P = NP .

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:43

Result C.SA.4: If ⟨|T |,h, | f |, |ET |, |X |, |L|⟩-SelAlg is |x |k -tractable then P = NP .
Result C.SA.5: If ⟨|T |,h, |Q |,d, |ET |, |X |, |L|⟩-SelAlg is |x |k -tractable then P = NP .
Result C.SA.6: ⟨ka⟩-SelAlg is |x |k -tractable.

Proof. Follows from the algorithm in the proof of Result B.SA.8. □

Result C.SE.1: If ⟨|T |,h,d, | f |, |ET |, |X |, tmax⟩-SelEnvInf is |x |
k
-tractable then P = NP .

Result C.SE.2: If ⟨|T |,h, |Q |,d, |ET |, |X |, tmax⟩-SelEnvInf is |x |
k
-tractable then P = NP .

Result C.SE.3: ⟨ke ⟩-SelEnvInf is |x |k -tractable.

Proof. Follows from the algorithm in the proof of Result B.SE.5. □

Result C.SL.1: If ⟨h, |Q |,d, |ET |, |X |, tmax⟩-SelLead is |x |k -tractable then P = NP .
Result C.SL.2: If ⟨h,d, | f |, |ET |, |X |, tmax⟩-SelLead is |x |k -tractable then P = NP .
Result C.SL.3: If ⟨|T |,h, | f |, |X |⟩-SelLead is |x |k -tractable then P = NP .
Result C.SL.4: ⟨kl ⟩-SelLead is |x |k -tractable.

Proof. Follows from the algorithm in the proof of Result B.SL.5. □

Consider the following restricted form of parameterized reducibility.

Definition A.21. (Adapted from the definition on page 1359 of [6]) A problem Π with parameter

k is linearly fpt-reducible to a problem Π′
with parameter k ′

if there exists an algorithm A with

running time f (k)mo(k) |x |c for some computable function f () and constant c such that for each

instance x of Π with search space and instance sizesm and |x |, the algorithmA produces an instance

x ′
of Π′

such thatm′ ≤ c1m
c2
and |x ′ | ≤ c3 |x |

c4
for positive constants c1, c2, c3, and c4, k

′ ≤ c5k for

positive constant c5, and x is a yes-instance of Π if and only if x ′
is a yes-instance of Π′

.

Result C.SA.7: If ⟨ka⟩-SelAlg is |x |k -tractable such that f (ka) = o(ka) then the Exponential

Time Hypothesis is false.

Proof. Consider the reduction in the proof of Lemma A.5 which creates an instance of SelAlgD
that is of size polynomial in the size of the given instance of Dominating set. Moreover, as

|T | = |V | + 1, |L| = |V | + 2, tmax = 1, and ka = k + 1 in each created instance of SelAlgD ,

by the algorithm for SelAlg in the proof of Result B.SA.8, this instance is solvable by selecting

k ′ = ka = k + 1 ≤ 2k elements from a search space of size

m′ = |T | |L|

= (|V | + 1)(|V | + 2)

= |V |2 + 3|V | + 2

≤ |V |2 + 3|V |2 + 2|V |2

= 6|V |2

(where this search space corresponds to the choices of elements in T to replace with elements

from L and those choices of elements from L). Problem ⟨k⟩-Dominating set has a search space

of sizem = |V | as it can be solved by an algorithm that generates all |V |k k-vertex subsets of the
given graph G and checks each subset to see if it is a dominating set in G. This establishes that
the reduction in the proof of Lemma A.5 is a linear fpt reduction from ⟨k⟩-Dominating set to

⟨ka⟩-SelAlgD . As ⟨k⟩-Dominating set isWl [2]-hard [6, Theorem 5.4], ⟨ka⟩-SelAlgD isWl [2]-hard.

Moreover, asWl [1] ⊆ Wl [2], by the definition ofWl [2]-hardness, every problem inWl [1] is also

linearly fpt-reducible to ⟨ka⟩-SelAlgD and ⟨ka⟩-SelAlgD isWl [1]-hard as well. However, noWl [1]-

hard problem ⟨k⟩-X is solvable in h(k)|x |o(k) time for some function h() unless the Exponential

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

0:44 Wareham et al.

Time Hypothesis is false [6, Theorem 5.8]. As this also rules out an algorithm with running time

|x |o(k), ⟨ka⟩-SelAlgD (and hence ⟨ka⟩-SelAlg by Lemma A.3) cannot be |x |k -tractable such that

f (ka) = o(ka) unless the Exponential Time Hypothesis is false, completing the proof. □

Result C.SE.4: If ⟨ke ⟩-SelEnvInf is |x |k -tractable such that f (ke) = o(ke) then the Exponential

Time Hypothesis is false.

Proof. Consider the reduction in the proof of Lemma A.15 which creates an instance of

SelEnvInfD that is of size polynomial in the size of the given instance of Cliqe. Moreover, as

|E | = 2k + 2, |ET | = |V | + 2, tmax = 1, and ke = k in each created instance of SelEnvInfD , by

the algorithm for SelEnvInf in the proof of Result B.SE.5, this instance is solvable by selecting

k ′ = ke = k elements from a search space of size

m′ = |E | |ET |

= (2k + 2)(|V | + 2)

≤ (2|V | + 2)(|V | + 2)

= 2|V |2 + 6|V | + 4

≤ 2|V |2 + 6|V |2 + 4|V |2

= 12|V |2

(where this search space corresponds to the choices of elements in E to replace with elements from

ET and those choices of elements from ET). Problem ⟨k⟩-Cliqe has a search space of sizem = |V |

as it can be solved by an algorithm that generates all |V |k k-vertex subsets of the given graph G
and checks each subset to see if it is a clique inG . This establishes that the reduction in the proof of

Lemma A.5 is a linear fpt reduction from ⟨k⟩-Cliqe to ⟨ke ⟩-SelEnvInfD . As ⟨k⟩-Cliqe isWl [1]-

hard [6, Theorem 5.5], ⟨ke ⟩-SelEnvInfD is alsoWl [1]-hard. However, noWl [1]-hard problem ⟨k⟩-X
is solvable in h(k)|x |o(k) time for some function h() unless the Exponential Time Hypothesis is false

[6, Theorem 5.8]. As this also rules out an algorithm with running time |x |o(k), ⟨ke ⟩-SelEnvInfD
(and hence ⟨ke ⟩-SelEnvInf by Lemma A.3) cannot be |x |k -tractable such that f (ka) = o(ke) unless
the Exponential Time Hypothesis is false, completing the proof. □

Result C.SL.5: If ⟨kl ⟩-SelLead is |x |k -tractable such that f (kl) = o(kl) then the Exponential

Time Hypothesis is false.

Proof. Consider the reduction in the proof of Lemma A.17 which creates an instance of SelLeadD
that is of size polynomial in the size of the given instance of Dominating set. Moreover, as

|T | = |V | + 1, tmax = 1, and kl = k in each created instance of SelLeadD , by the algorithm for

SelLead in the proof of Result B.SL.5, this instance is solvable by selecting k ′ = kl = k elements

from a search space of size

m′ = 4|T |

= 4(|V | + 1)

= 4|V | + 4

≤ 4|V | + 4|V |

= 8|V |

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

Swarm Control for Distributed Construction 0:45

(where this search space corresponds to the choices of elements in T to move and those choices of

movements). Problem ⟨k⟩-Dominating set has a search space of sizem = |V | as it can be solved by

an algorithm that generates all |V |k k-vertex subsets of the given graph G and checks each subset

to see if it is a dominating set inG. This establishes that the reduction in the proof of Lemma A.17

is a linear fpt reduction from ⟨k⟩-Dominating set to ⟨kl ⟩-SelLeadD . As ⟨k⟩-Dominating set is

Wl [2]-hard [6, Theorem 5.4], ⟨kl ⟩p-SelLeadD is alsoWl [2]-hard. Moreover, asWl [1] ⊆Wl [2], by the

definition ofWl [2]-hardness, every problem inWl [1] is also linearly fpt-reducible to ⟨kl ⟩-SelLeadD
and ⟨kl ⟩-SelLeadD isWl [1]-hard as well. However, noWl [1]-hard problem ⟨k⟩-X is solvable in

h(k)|x |o(k) time for some function h() unless the Exponential Time Hypothesis is false [6, Theorem

5.8]. As this also rules out an algorithm with running time |x |o(k), ⟨kl ⟩-SelLeadD (and hence ⟨kl ⟩-
SelLead by Lemma A.3) cannot be |x |k -tractable such that f (ka) = o(ka) unless the Exponential
Time Hypothesis is false, completing the proof. □

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2020.

	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Summary of Results
	1.3 Organization of Paper

	2 Formalizing Swarm Control for Distributed Construction
	2.1 Robot Swarms for Distributed Construction
	2.2 Types of Swarm Control
	2.3 Computational Problems

	3 Results
	4 Discussion
	4.1 Completeness of Our Results
	4.2 Generality of Our Results
	4.3 Implications for Swarm Control Assistance Software Tools
	4.4 Implications for Human Control of Swarms

	5 Conclusions and Future Research
	Acknowledgments
	References
	A Proofs of Results
	A.1 Preliminaries
	A.2 Proofs

