
Exploring Options for Efficiently Evaluating

the Playability of Computer Game Agents

Todd Wareham and Scott Watson

Memorial University of Newfoundland
St. John’s, NL Canada A1B 3X5

{harold,saw104}@mun.ca,
WWW home page: http://www.cs.mun.ca/∼harold/

Abstract. Automatic generation of game content is an important chal-
lenge in computer game design. Such generation requires efficient meth-
ods for automatically evaluating the playability of generated game con-
tent. Research to date has focused on the evaluation of levels within
games. However, the increasing importance of gameplay involving com-
plex non-player agents (for example, agents capable of exchanging items
and facts with each other and human players) suggests that methods for
automatically evaluating the playability of groups of such agents should
also be investigated. In this paper, we propose an augmented finite-state
machine model for agents with item and fact exchange capabilities and
use computational complexity analysis to explore under what restric-
tions efficient playability evaluation of groups of such agents is and is
not possible.

1 Introduction

Given the time and cost involved with the human design of computer games,
the ability to automatically generate game content (especially content whose
level of difficulty can be easily adjusted to the abilities of human players) is an
important problem in computer game design. Research on this problem currently
goes under the name of procedural content generation (PCG) [1, 2].

An important subproblem of game content generation is automatically as-
sessing the human playability of such content with respect to aspects ranging
from basic “hard” constraints (e.g., a player can actually finish a level or achieve
the goal or goals associated with a level) to more psychologically-based “soft”
constraints (e.g., gameplay on a level maintains a rhythmic variation in difficulty)
[1, 2]. As the problem of determining whether given levels can be completed is
NP -hard (and hence is not efficiently solvable for all possible inputs) for many
classical games [3–6], efficient assessments of playability done within current im-
plementations must of necessity be driven by restricted exhaustive, evolutionary,
or heuristic-based simulation searches of the gamespace which are not guaran-
teed to always correctly assess playability but are fast and judge correctly most
of the time [1].

Though simple finite-state models of game agents [7] are sufficient for mod-
eling short-term action-based interactions with human players, they are not sat-
isfactory for modeling more socially realistic agent-player interactions that take
place over longer (possibly disjoint) periods of time. As a minimum, this re-
quires a larger degree of memory on the part of agents, as well as the ability to
maintain collections of items and facts which can be both exchanged with and
used in defining behavior with respect to other agents and human players. Initial
work on automatically generating groups of such agents is already underway [8].
Though the search techniques described above can be and to an extent have
already been adapted to assess the playability these groups, it would be most
useful to know if efficient correctness-guaranteed methods are available and, if
so, in what circumstances.

Using techniques from computational complexity theory [9], we show that
evaluating the playability of a group of computer game agents (in particular,
determining if a human player can interact with a group of agents to obtain a
specified goal-set of items and facts) is NP -hard even in the case where there
is only one given agent. This holds true regardless of whether or not there is a
time limit on achieving the goal as well as whether or not the agents operate
autonomously or under the control of a game narrative manager. These results
indicate that automatically evaluating the playability of computer game agents is
computationally intractable unless restrictions apply. This raises the question of
which restrictions characterize those situations in which agent playability evalua-
tion is tractable. An answer to this question can inform computer game designers
about the conditions under which playability assessment whether by exhaustive
or heuristic search- or simulation-based methods, is and is not feasible.

In order to find conditions for tractability, we performed a parameterized
complexity analysis [10] of the problem of evaluating agent playability. Our anal-
ysis reveals that only certain restrictions on both the agents and human-agent
interactions render playability evaluation tractable. Though these results are de-
rived for the model of game agents and playability given in [8], we show that
these results also apply to a much broader broad class of models.

The remainder of this paper is organized as follows. In Section 2, we present
an augmented finite-state machine model of game agents that can exchange
items and facts with other agents and human players and formalize playability
evaluation for such agents. Section 3 demonstrates the intractability of this prob-
lem. Section 4 describes a methodology for identifying conditions for tractability,
which is then applied in Section 5 to identify such conditions for agent playabil-
ity evaluation. In order to focus on the implications of our results for computer
game design (as well as deal with the space limitations of a conference paper),
all proofs of results are given in an online supplement.1 Finally, our conclusions
and directions for future work are given in Section 6.

1 http://www.cs.mun.ca/∼harold/Papers/CCAI15supp.pdf

intimidate

{Af}{}

{} {}

offer
{Af} {kW} /
{At} {}

q0

q1q2

{1G} {} /
offer

S1:
q3

{Sw} {} /

offer

{Af} {k1}

{7G} {} /

{1G} {} /

consult

q0

q1

q2

q3

{Af} {kW}

{} {}
{} {} /
intimidate

{Af} {k2} /

W:

{} {}

offer

S2:

q0

offer
{2G} {} /
{Sw} {}

chat
{} {k1} /

{} {k2}

Fig. 1. Three Example Augmented Finite-State Machine (AFSM) agents

2 Formalizing Agent Playability Evaluation

At a minimum, an agent capable of exchanging items and facts with another
agent (which could be a human player) should be able to do the following:

– Maintain an internal state as well as collections of personal items and facts;
– Perform actions (and possibly change internal state) in response to another

agent’s actions and offered items and facts; and
– As part of a performed action, give in return some of its own personal items

and facts to that other agent.

Following [8], we distinguish items and facts as follows: there can be at most
one copy of an item in a game at any time (i.e., an item can be possessed by
at most one agent or human player) but there can be any number of copies of
a fact (i.e., any number of agents or human players can possess the same fact).
The sets of facts and items possessed by an agent effectively function as a finite
but dynamic memory of past encounters.

There are many ways of modeling agents with the requisite abilities described
above. In this paper, we will augment the finite-state machine model typically
used in implementing game agents [7]. Recall that for any set S, 2S denotes the
set of all possible subsets of S (including the empty set ∅). Define an augmented

finite machine (AFSM) (see Figure 1) relative to game-overall action-, item-,
and fact-sets AG, IG, and FG as a 2-tuple 〈Q, δ〉 where Q is a set of states and

δ ⊆ Q × AG × 2I
G

× 2F
G

× AG × 2I
G

× 2F
G

× Q is a state-transition relation.
A transition (q, a, I, F, a′, I ′, F ′, q′) ∈ δ of an AFSM M can be interpreted as an
interaction between M and another agent in which that other agent performs
action a with item- and fact-sets I and F offered to M and M responds in turn
via action a′ with (1) a change from state q to state q′ and (2) item- and fact-
sets I ′ and F ′ being given to the other agent. Any unspecified proposed action
and offered item- and fact-sets relative to a state q whose result is not explicitly
stated in δ is assumed to loop back on q with no effect, e.g., M ignores the
offered amulet and mumbles under its breath. There are many possible ways of
specifying determinism and non-determinism relative to AFSM; in this paper,
we will focus on AFSM that are offered (o-) deterministic, i.e., for any given
q, a, I, and F , there is at most one (q, a, I, F, a′, I ′, F ′, q′) ∈ δ.

Examples of three possible AFSM representing two shopkeepers S1 and S2
and a wizard W are shown in Figure 1. These AFSM are defined relative to
the action-, item-, and fact-sets {chat, consult, intimidate, offer}, {false amulet
(Af), true amulet (At), gold piece (G), sword (Sw)}, and {know shopkeeper #1
(k1), know shopkeeper #2 (k2), know wizard (kW)}, respectively. Each transi-
tion (q, a, I, F, a′, I ′, F ′, q′) is written as an arrow between q and q′ with the
label “a{I}{F}/{I ′}{F ′}”, i.e., a′ is ignored. For example, S1 has a transition
between q0 and q2 such that S1 hands over the fake amulet when intimidated
by another agent with a sword.

We define the execution of interactions of an AFSM M = 〈Q, δ〉 with another
agent X as follows. A transition (q, a, I, F, a′, I ′, F ′, q′) is enabled relative to
M = 〈Q, δ〉 and X, where M and X currently possess the items and facts in sets
IM , FM , IX , and FX , respectively, if:

1. (q, a, F, I, a′, F ′, I ′, q′) ∈ δ;
2. M is currently in state q;
3. I ⊆ IX and F ⊆ FX ; and
4. I ′ ⊆ IM ∪ I and F ′ ⊆ FM .

The execution of a transition (q, a, I, F, a′, I ′, F ′, q′) that is enabled relative M
and X has the following effects:

1. The state of M is set to q′;
2. IX is set to (IX − I) ∪ I ′;
3. FX is set to FX ∪ F ′; and
4. IM is set to (IM ∪ I ′)− I ′.

In this paper, for simplicity, we only consider the case in which the other agent
X is a human player, i.e., agent actions can only be triggered by human players.
Three possible sequences of interactions of the AFSM in Figure 1 with a human
player are shown in Figure 2. Note that in each such interaction-sequence, the
players and agents start with specified item- and fact-sets, each agent starts in
a designated state q0, and if a player temporarily stops interacting an agent M

Interaction-sequence #1

Interaction P S1 S2 W

– {2G}, {} q0 : {Af,At}, {k1} q0 : {Sw}, {k2} q0 : {}, {kW}

S1:off{1G}, {} {1G,Af}, q1 : {1G,At}, {k1} ” ”
{k1} ”

S2:cht{}, {k1} {1G,Af}, ” ” ”
{k1, k2}

W :off{1G}, {} {Af}, ” ” q1 : {1G}, {kW}
{k1, k2}

W :cns{Af}, {Af}, ” ” q3 : {1G}, {kW}
{k2} {k1, k2, kW}

S1:off{Af}, {At}, q3 : {1G,Af}, {k1} ” ”
{kW} {k1, k2, kW}

Interaction-sequence #2

Interaction P S1 S2 W

– {10G}, {} q0 : {Af,At}, {k1} q0 : {Sw}, {k2} q0 : {}, {kW}

S2:off{2G}, {} {8G,Sw}, {} ” q0 : {2G}, {k2} ”

S1:int{Sw}, {8G,Sw,Af}, q2 : {At}, {k1} ” ”
{} {}

W :off{1G}, {} {7G,Sw,Af}, ” ” q1 : {1G}, {kW}
{}

W :cns{Af}, {} ” ” ” ”

S1:off{7G}, {} {Sw,Af}, q1 : {7G,At}, {k1} ” ”
{k1}

S2:cht{}, {k1} {Sw,Af}, ” ” ”
{k1, k2}

W :cns{Af}, {Sw,Af}, ” ” q3 : {1G}, {kW}
{k2} {k1, k2, kW}

S1:off{Af}, {Sw,At}, q3 : {7G,Af}, {k1} ” ”
{kW} {k1, k2, kW}

Interaction-sequence #3

Interaction P S1 S2 W

– {2G}, {} q0 : {Af,At}, {k1} q0 : {Sw}, {k2} q0 : {}, {kW}

S2:offer{2G}, {} {Sw}, {} ” q0 : {2G}, {k2} ”

S1:intim{Sw}, {} {Sw,Af}, {} q2 : {At}, {k1} ” ”

W :intim{}, {} ” ” ” q2 : {}, {kW}

S2:intim{}, {} ” ” ” ”

Fig. 2. Three Example AFSM Agent – Human Player Interaction-sequences

left in state q with current item- and fact-sets I and F , the next interaction of
the player with M resumes with M in state q with current item- and fact-sets I
and F .

Playability of a group of AFSM relative to a human player can be formalized
in terms of hard (inviolable) and soft (violable) constraints [8]. Example hard and
soft constraints are, respectively, that a specified goal must be achieved and that
the interactions in any goal-achieving interaction-sequence should incorporate as
many of the actions allowable to agents as possible. Assessments of playability
are based on the degree to which these constraints can be satisfied by a human
player interacting with the given agents. For simplicity, let us focus on minimum
playability with respect to hard constraints, i.e., whether or not a human player
is able to interact with a given set of agents to obtain specified goal-sets of facts
and items within a given time limit. In our running example, with respect to
the goal consisting of having the true amulet and knowing the wizard, the first
and second interaction-sequences in Figure 2 achieve the goal within 5 and 8
interactions, respectively, while the third interaction-sequence does not achieve
the goal and moreover cannot be extended by any sequence of interactions to
achieve the goal.

The above yields the following formalization of playability evaluation:

AFSM Agent Playability Evaluation (APE)
Input: A set A = {a1, . . . , an} of AFSM with associated initial item- and fact-
sets {I0a1

, . . . , I0an
} and {F 0

a1
, . . . F 0

an
}, initial player item- and fact-sets I0

P
and

F 0

P
, goal item- and fact-sets IG and FG, and a positive integer t.

Question: Can the player obtain IG and FG by engaging in at most t interactions
with the agents in A?

Note that this formalization applies regardless of whether the agents operate
autonomously or under the direction of a game narrative manager; hence, results
derived relative to this formalization will apply to both of these cases.

3 Agent Playability Evaluation is Intractable

In this section, we address whether or not agent playability evaluation can be
done efficiently relative to the model described in Section 2. Following general
practice in Computer Science [9], we define efficient solvability as being solvable
in the worst case in time polynomially bounded in the input size, and show that
a problem is not polynomial-time solvable by proving it to be at least as difficult
as the hardest problems in problem-class NP , i.e., NP -hard (see [9] for details).

Result 1. APE is NP -hard.

Modulo the conjecture P 6= NP which is widely believed to be true [11], the
above shows that APE is not polynomial-time solvable. Note that this result
holds even in the very restricted case in which the player only interacts with a
single agent, i.e., |A| = 1, and an unlimited number of interactions between the
player and that agent is allowed, i.e., k = ∞.

4 A Method for Identifying Tractability Conditions

A computational problem that is intractable for unrestricted inputs may yet be
tractable for non-trivial restrictions on the input. This insight is based on the
observation that some NP -hard problems can be solved by algorithms whose
running time is polynomial in the overall input size and non-polynomial only in
some aspects of the input called parameters. In other words, the main part of the
input contributes to the overall complexity in a “good” way, whereas only the
parameters contribute to the overall complexity in a “bad” way. In such cases,
the problem Π is said to be fixed-parameter tractable for that respective set
of parameters. The following definition states this idea more formally.

Definition 1. Let Π be a problem with parameters k1, k2, Then Π is said
to be fixed-parameter (fp-) tractable for parameter-set K = {k1, k2, ...} if there
exists at least one algorithm that solves Π for any input of size n in time
f(k1, k2, ...)n

c, where f(·) is an arbitrary function and c is a constant. If no
such algorithm exists then Π is said to be fixed-parameter (fp-) intractable for
parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-set K if all
superpolynomial-time complexity inherent in solving Π can be confined to the
parameters in K. In this sense the “unbounded” nature of the parameters in K
can be seen as a reason for the intractability of the unconstrained version of Π.

There are many techniques for designing fp-tractable algorithms [10, 12], and
fp-intractability is established in a manner analogous to polynomial-time in-
tractability by proving a parameterized problem is at least as difficult as the
hardest problems in one of the problem-classes in theW -hierarchy {W [1],W [2], ...}
(see [10] for details). Additional results are typically implied by any given result
courtesy of the following lemmas:

Lemma 1. [13, Lemma 2.1.30] If problem Π is fp-tractable relative to parameter-
set K then Π is fp-tractable for any parameter-set K ′ such that K ⊂ K ′.

Lemma 2. [13, Lemma 2.1.31] If problem Π is fp-intractable relative to parameter-
set K then Π is fp-intractable for any parameter-set K ′ such that K ′ ⊂ K.

Observe that it follows from the definition of fp-tractability that if an in-
tractable problem Π is fp-tractable for parameter-set K, then Π can be effi-
ciently solved even for large inputs, provided only that the values of all pa-
rameters in K are relatively small. Moreover, experience has shown that the
polynomial terms in the running times of such algorithms are frequently of very
low order (often linear) in n [10, 12]. This strategy has been successfully applied
to a wide variety of intractable problems (see [10] and references). In the next
section we report on our investigation of whether or not the same strategy may
be used to render the problem APE tractable.

Table 1. Fixed-parameter Intractability Results for the Agent Playability Evaluation
Problem

Parameter Result

Description Name 2 3 4 5 6

AGENTS:

agents |A| – P P P 1

max # items / agent iA 0 1 1 1 –

max # facts / agent fA 3 – – – –

max # items / interaction iI 0 1 1 2 1

max # facts / interaction fI P – 2 2 2

max # states / agent |Q| 2 – – – P

max # interactions / state |I| 1 – 2 – –

PLAYER:

max # items / player iP 0 – – – –

max # facts / player fP P – – P P

GAME:

max # interactions in game t P P – P P

max # items in goal iG 0 0 0 0 0

max # facts in goal fG 1 1 1 1 1

5 What Makes Agent Playability Evaluation Tractable?

The AFSM agent playability evaluation problem has several parameters whose
restriction could conceivably render agent playability evaluation tractable. An
overview of the parameters that we considered in our fp-tractability analysis is
given in Table 1. These parameters can be divided into three groups:

1. Restrictions on the game agents;

2. Restrictions on the human player; and

3. Restrictions on the game itself.

In the remainder of this section, we will assess the fp-tractability of APE relative
to all parameters in Table 1 (Section 5.1), note how these results apply in more
general settings (Section 5.2), and discuss the implications of these results for
computer game design (Section 5.3).

5.1 Results

Our intractability results are summarized in Table 1. Each column describes
an intractability result that holds relative to the parameter-set consisting of all
parameters whose entries in that column are not dashes (“–”); if the result holds
when a non-dashed parameter has constant value c, this indicated by an entry for
that parameter with the value c. Result 2 is notable because it, when combined
with results implied by Lemma 2, establishes the intractability of APE with
respect to all subsets of the considered parameters that do not include |A|; the
intractability of many (but not all) of those remaining subsets including |A| is
then established by Results 3–6.

At present, we have a lone tractability result:

Result 7. APE is fp-tractable for {|A|, |I|, t}.

Note that Results 2, 4, 6, and 7, combined with those implied by Lemmas 1
and 2, completely characterize the parameterized complexity of APE relative
to each subset of parameters in the set {|A|, iI , fI , |I|, t, iG, fG}. As APE is fp-
intractable for {|I|, t} {|A|, |I|}, and {|A|, t}, by Results 2, 4, and 6, respectively,
the parameter-set in Result 7 is minimal in the sense that no parameter in that
set can be deleted to yield fp-tractability.

5.2 Generality of Results

Our intractability results, though defined relative to an admittedly restricted
conception of game agent and human-agent interaction, have a remarkable gen-
erality. Observe that the model which these results hold are in fact restricted
versions of more realistic alternatives, e.g.,

– deterministic AFSM are special cases of both nondeterministic and prob-
abilistic AFSM (restrict the amount non-determinism to nothing and you
have determinism; restrict all actions to have probability of execution 1.0 if
their triggering conditions are satisfied and you have determinism);

– player-activated AFSM are special cases of autonomous AFSM (restrict abil-
ity of AFSM to act without player interaction);

– games composed of only player / agent interaction-moves are special cases
of games that require players to seek out (possibly autonomously moving)
agents before they can interact with them (restrict agents to all stay in one
place); and

– the simplified AFSM agent model defined in Section 2 is a special case of
agent models that possess more complex capabilities.

Intractability results for these more game-realistic alternatives then follow from
the well-known observation in computational complexity theory that intractabil-
ity results for a problem Π also hold for any problem Π ′ that has Π as a special
case and can hence solve Π (suppose Π is intractable; if Π ′ is tractable, then

it can be used to solve Π efficiently, which contradicts the intractability of Π –
hence, Π ′ must also be intractable).

Our fp-tractability result is more fragile, as innocuous changes to agent or
game models may in fact violate assumptions critical to the operation of the
algorithm underlying this result. For now, we can say that as our fp-tractability
results depend only on the combinatorics of the possibilities inherent in player-
agent interaction and require only that a player-agent interaction can be checked
for validity and performed in time polynomial in the sizes of the entities involved
in that interaction, these results apply relative to playability evaluation for all
choices of agent and game models whose individual player-agent interactions are
polynomial-type verifiable relative to these models.

5.3 Discussion

We have found that evaluating agent playability is NP -hard (Result 1). This
NP -hardness holds for a basic agent model and a minimal playability condition
that a human player can attain a specified goal by interacting with the given
group of agents, and even when that group consists of a single agent. This
intractability result underscore the computational difficulty of evaluating agent
playability by any means possible, including currently-used automated search or
simulated-play-based processes (see [1, 2] and references).

To our knowledge, no explicit conjectures about the sources of computa-
tional difficulty in agent playability evaluation have been made in the literature.
It seems reasonable to conjecture that restrictions on the number and/or com-
plexity of the agents involved, the number of items or facts that can be held by
an agent or player or that can be involved in any human-agent interaction, the
goal of said interactions, or the maximum number of interactions that can take
place should render agent playability evaluation tractable. However, no single one
or indeed many possible combinations of these restrictions can yield tractabil-
ity, even when the parameters involved are restricted to very small constants
(Results 2–6).

The one exception that we have found to date is that of simultaneously
restricting |A|, |I|, and t (Result 7). Though this may initially seem of limited
interest in that it overly restricts the form of games whose playability can be
checked efficiently, it actually suggests several reasonable ways in which games
can be decomposed into sub-games whose playability can be checked efficiently.
For example, a long game could be decomposed into several shorter ones (restrict
t). Alternatively, the game could be structured such that only a very small
number of agents or player-agent interactions are necessary and/or relevant to
achieving the goal (restrict |A| and/or |I|); this could be done while preserving
a an apparently larger and varied game environment by embedding the goal-
relevant set of agents and interactions within a large goal-irrelevant set of agents
and interactions, e.g., only a few shopkeepers, wizards, or travellers are worth
talking to and only about specific matters.

A final note is perhaps in order. Given existing work on the computational
complexity of design and verification problems for multi-agent systems [14–17],

it is tempting to think that the additional formalizations and proofs given in this
paper are unnecessary. However, given that the formalizations of agent control
and interaction mechanisms and the environments analyzed in that work are
very general and powerful (e.g., arbitrary Turing machines or Boolean proposi-
tional formulae), the intractability of these problems is unsurprising. Moreover,
as these formalizations obscure almost all details of the agent mechanisms and
environment, the derived results are also unenlightening with respect to possible
restrictions that could yield tractability. Similar reasoning applies with respect
to existing complexity analyses of verification problems relative to single robots
and swarms of robots (see [18, Section 4.2.1] and references).

6 Conclusions

We have presented a formal characterization of the problem of game agent playa-
bility evaluation relative to a simple but promising augmentation of the classic
finite-state machine model of game agents. Our complexity analysis reveal that,
while this problem is computationally intractable in general, there are conditions
that render it tractable. Knowledge of this and other such conditions can be ex-
ploited in computer game design to create efficient content generation methods
with respect to more complex and interesting gameplay involving player inter-
actions with more socially realistic game agents.

In future research, we plan to explore the effect of additional types of re-
strictions on the computational complexity of the model of agent playability
evaluation described in this paper, as well as the effects of these and existing
restrictions on models incorporating more powerful agents (e.g., agents that are
self- rather than player-activated; agents whose transitions are triggered by ar-
bitrary Boolean formulas over offered items and facts) relative to both minimal
and broader conceptions of playability. Given work positing connections between
human cognition and fixed-parameter tractability [19, 18], we also intend to in-
vestigate the extent to which results such as those we have derived here can help
in creating games whose level of difficulty is not only more appropriate to human
players but can also be efficiently and appropriately customized to the abilities
of those players.

Acknowledgments

The authors would like to thank Rod Byrne, Andrew Vardy, and Wolfgang
Banzhaf for encouraging them to embark on this research. TW was supported
by NSERC Discovery Grant RGPIN 228104-2010 and SW was supported by
NSERC Discovery Grant RGPIN 283304-2012 to Wolfgang Banzhaf and a doc-
toral award from the Dean of the School of Graduate Studies at MUN.

References

1. J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based Pro-
cedural Content Generation: A Taxonomy and survey,” IEEE Transactions on

Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 172–186, 2011.
2. G. N. Yannakakis and J. Togelius, “Experience-driven Procedural Content Gen-

eration,” IEEE Transactions on Affective Computing, vol. 2, no. 3, pp. 147–161,
2011.

3. G. Aloupis, E. D. Demaine, A. Guo, and G. Viglietta, “Classic Nintendo Games
are (Computationally) Hard,” in Fun with Algorithyms. Springer, 2014, pp. 40–51.

4. M. Forǐsek, “Computational Complexity of Two-dimensional Platform Games,” in
Fun with Algorithms, ser. Lecture Notes in Computer Science, P. Boldi, Ed., no.
6099. Berlin: Springer, 2010, pp. 214–227.

5. J. Lynch, “Collecting Things Under Time Pressure is Hard,” Tiny Transactions

on Computer Science, vol. 1, 2012.
6. G. Viglietta, “Lemmings is PSPACE-complete,” arXiv preprint arXiv:1202.6581,

2012.
7. M. Dawe, S. Gargolinski, L. Dicken, T. Humphries, and D. Mark, “Behavior Se-

lection Algorithms: An Overview,” in Game AI Pro: Collected Wisdom of Game

AI Professionals, S. Rabin, Ed. Boca Raton, FL: CRC Press, 2014, pp. 47–60.
8. S. Watson, W. Banzhaf, and A. Vardy, “Automated Design for Playability in Com-

puter Game Agents,” in Proceedings of the 2014 IEEE Conference on Computa-

tional Intelligence in Games. IEEE Press, 2014.
9. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP -Completeness. San Francisco, CA: W.H. Freeman, 1979.
10. R. Downey and M. Fellows, Fundamentals of Parameterized Complexity. Berlin:

Springer, 2013.
11. L. Fortnow, “The Status of the P Versus NP Problem,” Communications of the

ACM, vol. 52, no. 9, pp. 78–86, 2009.
12. R. Niedermeier, Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006.
13. T. Wareham, Systematic Parameterized Complexity Analysis in Computational

Phonology. Ph.D. thesis, Department of Computer Science, University of Vic-
toria, 1999.

14. M. Wooldridge and P. E. Dunne, “The computational complexity of agent verifi-
cation,” in Intelligent Agents VIII. Springer, 2002, pp. 115–127.

15. P. E. Dunne, M. Laurence, and M. Wooldridge, “Complexity results for agent
design,” Annals of Mathematics, Computing & Teleinformatics, vol. 1, no. 1, pp.
19–36, 2003.

16. I. A. Stewart, “The complexity of achievement and maintenance problems in agent-
based systems,” Artificial Intelligence, vol. 2, no. 146, pp. 175–191, 2003.

17. M. K. Valiev and M. I. Dekhtyar, “Complexity of verification of nondeterminis-
tic probabilistic multiagent systems,” Automatic Control and Computer Sciences,
vol. 45, no. 7, pp. 390–396, 2011.

18. I. van Rooij and T. Wareham, “Parameterized Complexity in Cognitive Modeling:
Foundations, Applications, and Opportunities,” Computer Journal, vol. 51, no. 3,
pp. 385–404, 2008.

19. I. van Rooij, “The Tractable Cognition Thesis,” Cognitive Science, no. 32, pp.
939–984, 2008.

