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1 Introduction

Computational Complexity Theory is the area of computer science which determines whether or not
computational problems have “good” algorithms, where algorithmic goodness is phrased in terms
of the amounts of resources used by an algorithm to solve its associated problem. A complaint
against classical theories of computational complexity like NP -completeness is that the the proofs
used to show that a problem is unlikely to have a good algorithm give few clues about how to
subsequently go about deriving the best possible algorithm for that problem.

The theory of Parameterized Computational Complexity [8, 9] offers a partial solution to this
difficulty. Within this theory, any part of a problem’s input instance can be separated into a a pa-
rameter, and various techniques can be invoked to determine if that problem’s intractability can be
phrased purely as a function of that parameter. Analyses of individual parameters have proven use-
ful in answering questions about problems associated with many areas, e.g., computational biology
and robotics [4, 5]. However, of potentially more interest is the analysis of sets of parameters. By
looking at each possible subset of a set of parameters, such a systematic parameterized complexity
analysis establishes which aspects can conspire to create, and hence are sources of, intractability in
a problem.

In my Ph.D. thesis, I want to look at the the logic behind and the mechanics of doing systematic
parameterized complexity analyses. My work to date suggests that such analyses are an aid not
only in selecting the best possible algorithms for problems but also in refining the definitions of
problems to more accurately describe natural processes or phenomena being modeled by those
problems. I expect that the major contribution of my thesis research will be to illustrate both of
the uses of systematic parameterized complexity analysis suggested above via analyses of two sets
of problems associated with, respectively, methods for inferring evolutionary trees in computational
biology and theories of phonological processing in linguistics.

This proposal is organized as follows. Section 2 gives an overview of classical and parame-
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terized computational complexity theory, and explains the advantages of systematic parameterized
complexity analysis. Sections 3.1 and 3.2 describe my proposed research in computational biology
and linguistics, respectively. Finally, Section 4 contains a list of documents that may be of use in
evaluating this proposal.

2 Systematic Parameterized Complexity Analysis

2.1 Computational Complexity Theory

Computational complexity theory establishes upper and lower bounds on how efficiently problems
can be solved by algorithms, where “efficiency” is judged in terms of the computational resources,
e.g., time or space, required by an algorithm to solve its associated problem. As noted by Rounds in
his 1991 review, “The presuppositions of an already established theory, such as complexity theory,
are perhaps the properties of the theory most easily ignored in making an application” [32, page
10]. With this in mind, the basics of computational complexity theory are reviewed in this section.

Perhaps the most important presuppositions alluded to by Rounds are implicit in the defi-
nitions of algorithm complexity and efficiency. The complexity of an algorithm is a function that
summarizes, for each possible input size, the resource requirements of that algorithm over all inputs
of that size. This summary can take many forms, e.g., best-case, average-case, worst-case. This
paper is concerned with worst-case measures – that is, if R(i) is the resource required by algorithm
A to solve input i and In is the set of all inputs of size n, then the worst-case complexity of A
for value n is maxi∈In R(i). This complexity is further “smoothed” by considering its behavior
as n goes to infinity. This is typically stated in O (“big-Oh”) notation, which gives the lowest
function that is an asymptotic upper bound on the worst-case complexity of the algorithm, e.g.,
3n2 + 10n − 5 = O(n2), log3 n/2 = O(log2 n). An algorithm is efficient if its complexity satisfies
some criterion of efficiency, e.g., the complexity function is a polynomial of the input size, and a
problem is tractable if it has an efficient algorithm.

Computational complexity theory establishes not only what problems can be solved efficiently
but also what problems (probably) cannot be solved efficiently. This is done by appropriately
defining a class F of tractable problems, a class C such that it is either known or strongly conjectured
that F ⊂ C, and a reducibility α between pairs of problems that preserves tractability, i.e., if XαY
and Y ∈ F then X ∈ F . As a reducibility establishes the computational difficulty of problems
relative to each other, e.g., if XαY then Y is at least as computationally difficult as X, it can be
used to isolate the hardest problems in a class C via the notions of hardness and completeness.1

These notions are significant because if a given problem X is at least as hard as the hardest problem
in C, then X does not have an efficient algorithm modulo the strength of the assumption that F ⊂ C
(see Figure 1).

Ideally, a complexity-theoretic analysis of a problem is not just a one-sided quest for either
algorithms or hardness results. Rather, it is an ongoing dialogue in which both types of results are
used to fully characterize the problem by showing which restrictions make that problem tractable
and which don’t [15, Section 4.1].

1Recall that a problem X is C-hard if for all problems Y ∈ C, Y αX; if X is also in C, then X is C-complete.

2



Figure 1: The Utility of Hardness/Completeness Results in Computational Complexity Theory.
See main text for explanation of symbols.

2.2 Parameterized Computational Complexity Theory

The theory of NP -completeness was inspired by the need to show that certain problems cannot
have polynomial-time algorithms [15]; parameterized computational complexity theory was inspired
by the following similar need. Most computational problems have input that consists of one or more
items; for example, two items from the input to an object-recognition problem might be a grid of
observed light/dark values and a set of patterns corresponding to 2-D projections of known objects.
Call each such item in the input an parameter. When it can be proved that a problem X cannot
have a polynomial algorithm, e.g., X is NP -hard, that problem will exhibit one of two algorithmic
behaviors relative to any selected parameter k:

1. An algorithm can exist for X whose running time is super-polynomial in k but polynomial in
all other parameters, e.g., kk

2

n2m; or

2. All algorithms for X have running times that are either super-polynomial in both k and at
least one other parameter, e.g., nkm2, or polynomial in k but super-polynomial in at least
one other parameter, e.g., 2nm2k.

The former kind of algorithm is often preferable if k has small values in typical instances of a
problem, e.g., when k = 10 and n = 1000, 2kn3 = 1012 << 1030 = nk. It is not obvious from
looking at the problems themselves which ones have such algorithms. Moreover, classical theories
of computational complexity are insensitive to this algorithmic distinction – they can say only that a
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problem does not have polynomial time algorithms, and are silent on whether this super-polynomial
behavior can be isolated relative to particular parameters.2

Parameterized computational complexity theory [8, 9] frames this issue via the following defi-
nitions:

Definition 1 A parameterized problem is a set L ⊆ Σ∗ × Σ∗, where Σ is a fixed alphabet. For
a parameterized problem L and y ∈ Σ∗, the fixed-parameter problem Ly is defined as the set
{x|(x, y) ∈ L}.

The y-component of elements of L is the parameter. It is important to note that y may consist of
one or more parameters.

Definition 2 A parameterized problem L is fixed-parameter tractable if there exists a constant α
and an algorithm A to determine if (x, y) is in L in time f(|y|) · |x|α, where f : N 7→ N is an
arbitrary function.

Parameterized computational complexity theory encompasses both a set of techniques for deriving
fixed-parameter tractable algorithms and an appropriate set of classes for proving fixed-parameter
intractability. Within this theory, class F defined in Section 2.1 corresponds to the class FPT of
fixed-parameter tractable problems, and class C defined in Section 2.1 is one of the classes of the
W hierarchy, {W [1],W [2], . . . ,W [P ], . . . , SP}, many of whose members are defined by successively
more powerful solution-checking circuits (see [8, 9] for details). These classes are related as follows:

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ · · · ⊆ SP

It is conjectured that all inclusions in this hierarchy are proper. Hence, no W [t]-complete problem
is fixed-parameter tractable unless all problems in W [t] are fixed-parameter tractable. Essentially,
a W -hardness result for the version of a problem X with parameter k suggests that the super-
polynomial resource requirements of X are not just a function of k. Parameterized versions of over
one hundred problems from areas as diverse as VLSI design, computational biology, and robotics
have been classified within the W hierarchy [18, 27].

2This is not strictly true; the effects of a particular parameter on a problem’s complexity can in principle be
isolated within classical theories of computational complexity by considering the version of that problem in which
that parameter is set to an arbitrary constant c. If there is a polynomial-time algorithm for that version, then the
problem’s super-polynomial behavior can be isolated to that parameter – else, if that version can be shown NP -hard,
it cannot. Indeed, this is the strategy advocated in Garey and Johnson’s discussion on how to use algorithms and
hardness results to map a problem’s “frontier of tractability” [15, Sections 4.1 and 4.3]. However, several difficulties
severely limit the utility of this approach in practice:

• This approach may miss certain input parameters that contribute to super-polynomial behavior, e.g., a O(nkm)
time algorithm in which only k is fixed to a constant is polynomial-time though both k and n contribute to
super-polynomial behavior; and

• It is not obvious that that one can prove either NP -hardness or give a polynomial-time algorithm for every

possible parameter when that parameter has been fixed to a constant.

The theory of parameterized complexity described in this section gets around these problems by defining explicit
mechanisms for isolating a parameter’s contribution to algorithmic complexity, e.g., a parameterized problem’s two-
component input instance and the function f in the the definition of fixed-parameter tractability, and providing a
richer series of intractable classes, i.e., the W hierarchy.
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Longest common subsequence

Instance: A set of k strings X1, ..., Xk over an alphabet Σ, and a positive integer m.
Question: Is there a string X ∈ Σ∗ of length at least m that is a subsequence of Xi

for i = 1, ..., k ?
(a)

Alphabet Size |Σ|
Parameter Unbounded Parameter Constant

– NP -hard NP -hard NP -hard

k W[t]-hard for t ≥ 1 W[t]-hard for t ≥ 1 ?

m W[2]-hard FPT FPT

k,m W[1]-complete FPT FPT
(b)

Figure 2: A Systematic Parameterized Complexity Analysis of the Longest common subse-

quence problem (reprinted from [4]). (a) The formal definition of the problem; (b) the systematic
parameterized complexity analysis of the problem relative to P = {|Σ|, k,m}.

2.3 Systematic Parameterized Complexity Analysis:
What It Is and Why It Is Useful

There may be many ways to analyze an intractable problem relative to a set of parameters. I will
focus on the following one of these ways.

Definition 3 Given a computational problem X and some subset P = {p1, . . . , pn} of the pa-
rameters associated with X, a systematic parameterized complexity analysis of X relative to P
determines the parameterized complexity of X relative to all 2n − 1 non-empty subsets of P .

Several such analyses have been done to date for various problems [4, 5, 12, 17, 43] (see Figure
2). A systematic parameterized complexity analysis is a lot of work, considering the effort that
almost always goes into deriving fixed-parameter tractable algorithms and proving W -hardness. To
see why such an analysis is worth doing, let us examine what an intractability result in a classical
theory of computational complexity like NP -completeness really means.

Recall that any computational problem has an infinite number of associated algorithms. If
a polynomial-time algorithm exists for that problem, we usually forget about all of the others.3

3A famous counterexample to this statement involves the simplex algorithm for the linear programming (LP)
problem. Though this algorithm requires exponential time in the worst case, it almost always outperforms the
polynomial-time ellipsoid algorithm on LP instances encountered in practice. My interpretation of this phenomenon
is that there are restrictions in typical LP instances that are exploited by the simplex algorithm but are not recognized
in the general formulation of LP problems. Such problems highlight the need for a type of parameterized analysis that
find all practical super-polynomial time algorithms for problems that are known only to have impractical high-order
polynomial-time algorithms. It does not seem to me that parameterized computational complexity theory as defined
to date can underly this type of analysis. A theory that could would be a good topic for future research.
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However, suppose that the problem is NP -hard and thus probably does not have a polynomial-
time algorithm. The question is, what types of super-polynomial time algorithms exist for X? It is
important to know the full spectrum of such algorithms because not all manners of super-polynomial
behavior are equally bad under all situations [15, Section 4.1].

A first approximation to determining what types of super-polynomial time algorithms exist for
such a problem is to make up a list of parameters that seem to be important for algorithms solving
that problem or whose values are restricted in practice, and then to determine how each parameter
in this list contributes to that problem‘s computational complexity via a parameterized analysis.
Assuming that the classes of the W hierarchy are distinct and thus differ (at least qualitatively) in
the amount of power that each encodes in the selected parameter, the higher a W -hardness result
for the version of a problem with parameter k, the less of that problem’s general super-polynomial
behavior can be attributed to k [10, 43]. However, a consequence of the definitions in Section 2.2 is
that a W -hardness result relative to a single parameter k of a problem X says nothing about which
supersets of parameters that include k may be responsible for super-polynomial behavior. Thus,
in order to fully “map” all sources of such behavior relative to the selected list of parameters, it is
necessary to do a systematic parameterized complexity analysis.

The “intractability map” produced by a systematic parameterized complexity analysis over a
list P of n parameters of a problem X is just a list of 2n − 1 fixed-parameter tractable algorithms
and W -hardness results which shows the manners (if not all the forms) in which the intractability
of X can manifest itself as algorithms whose running times are super-polynomial in the parameters
of P . Note that such a map does not summarize all possible super-polynomial behaviors for X;
however, my own experience in doing parameterized analyses of phonological processing systems
[10, 42, 43] suggests that a systematic parameterized complexity analysis on some initial set of
parameters will lead to the discovery and subsequent analysis of new and hopefully more relevant
parameters. Thus a systematic parameterized complexity analysis should be seen not as a technique
that generates all wanted answers at one go, but rather as part of an ongoing discovery procedure
for analyzing problems, in which classical and parameterized computational complexity are used
in an alternate and complementary fashion to first show that problems are intractable and then
diagnose the sources of this intractability.

How does one use the results of systematic parameterized complexity analyses? I see at least
two uses for the intractability maps produced by these analyses (see Figure 3):

• In cases where one is given an intractable problem and can derive typical ranges of parameter
values from actual instances of the problem, e.g., DNA sequence reconstruction from sequence
fragments [17] or inferring evolutionary trees for biological species (see Section 3.1), one can
use an intractability map in conjunction with the knowledge of typical values of the parameters
to establish what classes of problem instances are tractable in practice. This aids in finding
the best possible algorithms for that problem.

• In cases where one is given an intractable problem that is used to model natural process or
phenomenon that is known to be tractable, e.g., visual [38] or natural language (see Section
3.2) processing in the brain, one can use an intractability map to establish what aspects of
that problem are responsible for intractability. This aids in refining the definition of the
problem to (hopefully) better approximate the actual mechanisms in the phenomenon being
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p3
Parameter Unbounded Parameter

– – W [1]-complete

p1 FPT FPT
A1: O(2p1) A2: O(p1

p3)

p2 W[2]-hard W[2]-complete

p1, p2 FPT FPT

A3: O(p1
p2) A4: O(p3

p2
√

p1 )

(a)
p3

p1 p2 small large

small small A1, A2, A3, A4 A3, A4

small large A1, A2 –

large small A2, A3 A3

large large A2 –

(b)

Figure 3: Systematic Parameterized Complexity Analysis and Intractability Maps. (a) The in-
tractability map resulting from the systematic parameterized complexity analysis of a hypothetical
problem X relative to P = {p1, p2, p3}. Note that relative to P , the sources of intractability in X
are {p1}, {p1, p3}, {p1, p2}, and {p1, p2, p3} with associated fixed-parameter tractable algorithms
A1, A2, A3, and A4, respectively. The running time of each algorithm in terms of its parameters is
given in O-notation. (b) The list of practical fixed-parameter tractable algorithms relative to the
parameters in P when the typical values for each parameter are either small or large. Note that no
given fixed-parameter tractable algorithm is practical when both p2 and p3 have large values; this
is equivalent to saying that under this intractability map, only those problem instances in which
the values of both p2 and p3 are large are intractable.

modeled.

It is my hope that the Ph.D. research proposed in the following section will provide useful illustra-
tions of both of these applications of systematic parameterized complexity analysis.

3 Summary of Proposed Research

This section briefly describes the two groups of computational problems which I plan to examine
in my Ph.D. thesis. Each sub-section gives a brief introduction to the computational problems,
followed by a summary of previous research done on these problems and my proposed research.
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Figure 4: Some Sample Phylogenies. Here are the three possible phylogenies relating the Human
(H), Chimpanzee (C), and Gorilla (G) species.

3.1 Parameterized Complexity Analysis in Phylogeny Inference

3.1.1 Problems

Given a set of biological species, a phylogeny is a tree whose leaves are labeled with the species
in the given set and that shows the speciation events by which the species in the given set were
derived from their most recent common ancestor (see Figure 4). Phylogenies are used in many
areas of evolutionary biology [14].

As the true phylogeny of a group of species is seldom known, an algorithmic method must
often be invoked to reconstruct a phylogeny (or a set of equally-preferable phylogenies) from the
available data. There are many methods for inferring phylogenies [19, 28, 36]. Methods reconstruct
phylogenies by either ranking all possible phylogenies for the given data relative to an explicitly
stated criterion and selecting the phylogeny (or phylogenies) whose value is optimal under this
criterion (the criterion-based methods, e.g., maximum parsimony and distance-matrix fitting) or
selecting the phylogeny output by a particular algorithm operating on the given data (the algorithm-
based methods, e.g., hierarchical clustering and neighbor-joining) [36, pages 408–409]. Though the
latter are often used in practice because they have efficient low-order polynomial-time algorithms,
the former are preferred because they rank all possible phylogenies and thus make the selected
phylogenies easier to compare against the phylogenies that are not selected.

Once the correspondence between mathematical and biological concepts is established, many of
the criterion-based methods for inferring phylogeny can be formalized as combinatorial optimization
problems. Indeed, one of the most popular of these methods, phylogenetic parsimony, is in its most
basic form the following problem from communication network design. Let Hd

2 denote the d-
dimensional binary hypercube graph, i.e., Hd

2 = (V,E) where V = {0, 1}d, the set of all strings of
length d on alphabet {0, 1}, and E = {{u, v}| the strings for u and v differ in exactly one position}.
Given a tree T in Hd

2 , let the length of T be the number of edges in T .

Steiner Tree in the Binary Hypercube

Instance: A positive integer d, a subset S, |S| = n, of {0, 1}d, and a positive integer B.
Question: Is there a tree in Hd

2 that includes S and whose length is less than or equal to B?

Note that the input to such problems is a n× d matrix, where matrix position (i, j) is interpreted
as giving the value of character i for species j. This form of data is called an object-by-character
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matrix. There are also methods that take as input a distance matrix, that is, an n × n matrix in
which matrix position (i, j) is interpreted as a measure of the evolutionary distance between species
i and j. If one notes that any tree T on n leaves can be converted to a unique n× n matrix MT in
which matrix position (i, j) gives the sum of the lengths of the edges on the unique path between
leaves i and j in the tree, one gets the following type of phylogeny-inference problem.

Closest Tree under Matrix-comparison Statistic S
Instance An n× n numerical matrix D and a positive integer B.
Question: Is there an edge-weighted tree T on n leaves such that S(MT , D) ≤ B?

There are many variants of these two types of problems on these two types of data. However, they
all optimize the fit of the given data matrix to a tree subject to some criterion.

The major criterion-based methods and their associated computational problems are described
in [19, 20, 28, 36, 41]. Though these methods are preferred on methodological grounds, their use
in practice is often restricted by the exponential time requirements of the best current implemen-
tations (which invariably have to evaluate a given data-set on n species against all possible Ω(2n)
phylogenies). The main questions are: (1) What mechanisms are the sources of the computational
difficulties in the various methods for inferring phylogenies?; and (2) Can such knowledge be ex-
ploited in conjunction with the characteristics of typically-encountered phylogenetic data matrices
to derive efficient algorithms for phylogeny inference?

3.1.2 Previous Research

Since the early 1960’s, a number of heuristics and exact-solution algorithms have been proposed
and implemented for phylogeny inference [36]. In the mid 1980’s, many of the computational
problems associated with the phylogenetic parsimony, character compatibility, and distance-matrix
fitting criteria were shown to be NP -complete by Day and his colleagues (see [41] and references).
Since then, variants of several distance-matrix fitting and character compatibility problems have
also been analyzed in terms of NP -hardness, algorithms for special cases, and polynomial-time
(in)approximability (see [1, 13, 21] and references).

My M.Sc. research [41] focused on the computational complexity of phylogenetic parsimony,
character compatibility, and distance matrix fitting methods for inferring phylogenies. The derived
results that are relevant here were correct versions of the flawed reductions in [7], proofs of the
PTAS non-approximability of almost all phylogeny inference problems examined to that time via
slightly modified versions of theirNP -hardness reductions, and a sketch of a polynomial-time factor-
2 approximation algorithm applicable under several of the simplest versions of the phylogenetic
parsimony criterion.

3.1.3 Proposed Research

In my Ph.D. thesis, I propose to do systematic parameterized complexity analyses of the phylogeny-
inference methods examined in my M.Sc. thesis (note that I already done part of such an analysis
for the character compatibility methods [40]). I also plan to extend the scope of my previous
work to include the variants of distance-matrix fitting methods proposed in [1] and the “perfect
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phylogeny” variants of the character compatibility methods (see [21] and references), as well as
maximum likelihood methods. The former two should be included for the sake of completeness,
and the latter should be included because maximum likelihood is becoming a leading method of
phylogeny inference for molecular data [36, page 407].

The initial list of parameters I intend to look at for each method includes:

• The number of species;

• The number of characters and number of states per character (where applicable); and

• The bound on the cost of the wanted phylogeny under the particular inference criterion.

Additional parameters will be drawn from characterizations of the output trees, e.g., maximum
degree of any non-leaf vertex or maximum weight associated with an edge, and the data matrices.

Parameterized complexity analyses of these problems are relevant because it is often extremely
important to derive phylogenies that are optimal under the selected criterion. The exponential
time and space requirements of exact-solution methods forces investigators interested in inferring
phylogenies for more than 20 species to use heuristic methods. These methods are fast, but there
are no known bounds on how close the phylogenies they produce are to optimal. This is important
because non-optimal phylogenies typically have different structures than optimal phylogenies, and
hence different implications for hypotheses of evolutionary change. There are many examples in
the biological literature of hypotheses that have been modified or retracted in light of different
estimates of the optimal tree, e.g., the “Out of Africa” hypothesis based on human mitochon-
drial DNA phylogenies [26, 35]. Hence, in light of the NP -hardness of many phylogeny inference
problems, fixed-parameter tractable algorithms which can feasibly produce optimal phylogenies for
certain “small” but typical inputs would be preferable to polynomial-time algorithms that produce
phylogenies of unknown quality for all inputs.

3.2 Parameterized Complexity Analysis in Computational Phonology

3.2.1 Problems

Phonology is the area of linguistics which studies regularities in the mapping between deep (men-
tal/lexical) and surface (spoken/phonetic) representations in natural language [22]. These regular-
ities are realized as rules or constraints on phonological representations. As such, the phonological
component of natural language is concerned with relations between mental and spoken representa-
tions of speech, and the computational component of phonological theories is concerned with the
mechanisms implementing these relations.

Many phonological theories have been developed over the last thirty years. Broadly speaking,
these theories differ in three aspects:

1. Rule-Based vs. Constraint-Based Mechanism: The transformation from deep to sur-
face structure can be implemented by either a set of rewriting rules which operate on a deep
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structure to create the wanted surface structure or as a set of constraints which select the
surface structure from a set of candidate surface structures that are derived from the deep
structure.

2. Sequential vs. Parallel Application: The rules or constraints may be applied one at a
time in a sequential manner in some (not necessarily total) order or all at once in parallel.
When the latter occurs, there are further choices dealing with how one handles rules or
constraints that conflict, i.e., match on the same part of the candidate representation but
cause incompatible results.

3. Context-Sensitive vs. Finite-State Implementation: The rules or constraints can
vary in permitted expressive power such that they encode context-sensitive or finite-state
transducers or automata.4

It is interesting that theories have developed historically such that they adopt either the first or the
second option over almost all of these aspects. The earliest of the modern phonological theories was
proposed in Chomsky and Halle’s The Sound Pattern of English (commonly abbreviated as SPE)
in 1968 [6], and was based on the sequential application of context-sensitive rules. Such systems
have the following basic computational problem.

Grammar Derivation

Instance: An alphabet Σ, a grammar G, a partial order O on the rules of G, and strings d, s ∈ Σ∗.
Question: Can the rules of G be applied to d in a manner consistent with O to produce s?

Subsequent theories have been based on the parallel evaluation of finite-state rules [23, 25] or
constraints [3, 11, 29, 33]. These systems have the following basic computational problem.

Finite-State Intersection

Instance: An alphabet Σ and a set A of k finite-state automata over Σ∗.
Question: Is there a string in Σ∗ that is accepted by every finite-state automaton in A?

The switch to theories based on finite-state constraints and rules that are applied in parallel was
motivated in part by the computational intractability inherent in systems of sequentially-applied
context-sensitive rules [16, 24]. However, researchers have found that even though the new finite-
state mechanisms are simpler, their interactions in parallel can be a source of unforeseen com-
putational difficulties. The main questions are: (1) What mechanisms are the sources of the
computational difficulties in the various phonological theories?; and (2) Can these mechanisms be
restricted to yield practical and psychologically realistic theories of phonological processing?

3.2.2 Previous Research

A number of systems have been developed that implement heuristics for coping with the phono-
logical components of natural language processing systems [34]; however, the mechanisms in such
systems are seldom based on phonological theories within linguistics. When systems have been

4I am not aware of any phonological theory that implements its rules or constraints with context-free rules or
automata. This is a marked and curious contrast with modern work on syntax, which has focused almost exclusively
on context-free rule systems.
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built based on extant theory, they have typically included restrictions to ensure efficient operation,
e.g., Optimality Phonology [37]. The necessity of these restrictions has been shown theoretically for
several of the older phonological theories, namely SPE Phonology [6] and the KIMMO system [23],
via proofs that basic computational problems associated with these theories are NP -hard [2, 31].

Over the last several years, I have done parameterized analyses of problems associated with
SPE Phonology and the KIMMO system [10, 42]. Though these frameworks are outdated, the
effort has been vindicated by my recent realization that analyses of KIMMO also apply to two
current theories, Optimality Phonology and Declarative Phonology (and indeed give the first clas-
sical, i.e., NP -completeness, results for problems associated with these theories) [43]. Using the
parameterized framework, I have been able to counter the intuitions of several authors about the
efficient implementation of both KIMMO and Optimality Phonology [42, 43].

3.2.3 Proposed Research

In my Ph.D. thesis, I propose to do more detailed parameterized analyses of the phonological
theories that I have examined in [10, 42, 43], and extend the scope of my previous work to include
the Theory of Constraints and Repair Strategies [24]. Where possible, I also plan to comment on
the motivation behind computationally-costly theoretical mechanisms and speculate on the nature
of revised theories that restrict or eliminate such mechanisms, sensu [30, 31].

The initial list of parameters I intend to look at for each theory includes:

• The size of the alphabet;

• The size of the input strings;

• The number of rules or constraints; and

• The maximum allowable size of any rule or constraint, e.g., number of transitions/ states.

Further parameters will be drawn from the allowed degree of conflict and parallelism in rule/constraint
application and characterizations of the expressive power of the rules/constraints. The latter will
probably involve formalizations of constraints other than finite-state automata, e.g., first-order
logic.

Parameterized complexity analyses of these problems are relevant in light of the odd and
incomplete tapestry of tractability and intractability results associated with various phonological
theories. In particular, when I compare the tractability of systems based on extremely simple finite-
state rules which are not allowed to conflict [25] with the intractability results mentioned above, it
seems to me that there are interesting interactions between both the degree of permitted conflict
and parallelism and the expressive power of the rules/constraints which need to be untangled via
a complexity-theoretic investigation. Such an investigation has obvious implications for practical
implementations of these phonological theories. It is also part of the process (described more fully
in [30, 38, 39, 43]) of iteratively refining such theories to accurately reflect the actual mechanisms
used in language processing in the human brain.
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4 List of Available/Attached Documents

The following documents may be useful in evaluating the research proposed above. Several of these
have already been given to members of my committee. Starred documents have been provided with
this proposal. All others are available by request.

• H. Todd Wareham. 1992. W[1]-completeness/hardness proofs for the Character Compatibil-
ity problem. E-mail messages to M. Fellows. (*)

• H. Todd Wareham. 1993a. On the Computational Complexity of Inferring Evolutionary
Trees. M.Sc. Thesis. Technical Report 9301, Department of Computer Science, Memorial
University of Newfoundland.

• H. ToddWareham. 1993b. W[t]-hardness proofs for problems in the theory of SPE Phonology.
Manuscript. (*)

• H. Todd Wareham. 1995. Parameterized Complexity Analysis in Computational Phonology.
Submitted to the Annual Meeting of the Association for Computational Linguistics (ACL-96);
not accepted. (*)

– Referee comments on above paper. (*)

• H. Todd Wareham. 1996. The Role of Parameterized Computational Complexity Theory in
Cognitive Modeling. AAAI-96 Workshop Working Notes: Computational Cognitive Modeling:
Source of the Power. (*)
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