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Abstract—Automatic generation of game content is an im-
portant challenge in computer game design. Such generation
requires methods that are both efficient and guaranteed to
produce playable content. While existing methods are adequate
for currently available types of games, games based on more
complex entities and structures may require new methods. In
this paper, we use computational complexity analysis to explore
algorithmic options for efficiently evaluating the playability of
and generating playable groups of enhanced agents that are
capable of exchanging items and facts with each other and
human players. Our results show that neither of these problems
can be solved both efficiently and correctly either in general
or relative to a surprisingly large number of restrictions on
enhanced agent structure and gameplay. We also give the first
restrictions under which the playability evaluation problem is
solvable both efficiently and correctly.

I. INTRODUCTION

Given the time and cost involved with the human design of
computer games, the ability to automatically generate game
content is an important problem in computer game design
[1], [2]. It is critical that such automatic methods generate
playable content because “[g]iven the way most commercial
games are designed, any risk of the player being presented
with unplayable content is unacceptable” [1, p. 183]. They
should also operate quickly, particularly if content is being
generated in real time to accommodate unanticipated player
actions or choices (a situation in which human-based methods
such as testing or manually adjusting game parameters to
ensure playability are not applicable).

Though existing automatic methods appear to be adequate
for currently available types of games, e.g., [3], this may
not be so for more complex games. A case in point is
games incorporating enhanced agents that maintain collections
of items and facts which can be both exchanged with and
used in defining behavior with respect to other agents and
human players. Such agents nicely model socially realistic
agent-player interactions that take place over long (possibly
disjoint) periods of time, cf., the short-term action-based in-
teractions modelled by finite-state agents [4]–[6]. Initial work
on generating groups of enhanced agents [7] has demonstrated
that genetic algorithms and backtracking-based agent-group
playability evaluation suffice for the off-line and real-time
generation of moderate- (∼ 50) and small- (∼ 5) size groups
of playable agents, respectively. However, in the interests of

improved scalability, it would be most useful to know if more
efficient methods are available for generating larger and more
complex groups of agents, and, if so, in what circumstances.

In this paper, we present initial results addressing both of
these questions. First, using techniques from computational
complexity theory [8], we show that evaluating the playability
of a given group of enhanced agents (in particular, determining
if a human player can interact with the group to obtain a
specified goal-set of items and facts) is NP -hard and thus
intractable in general. This holds even in the case where there
is only one given agent and no time limit on achieving the goal,
as well as whether or not the agents operate autonomously or
under the control of a game narrative manager. Second, using
techniques from parameterized complexity theory [9], we
establish that surprisingly few restrictions on enhanced agents
and human-agent interactions render playability evaluation
tractable. Though these results are derived for the model of
game agents and playability given in [7], we show that these
results apply not only to evaluating the playability of a much
broader class of models but also to the playable agent-group
generation process itself.

The remainder of this paper is organized as follows. In Sec-
tion II, we present an augmented finite-state machine model
of game agents that can exchange items and facts with other
agents and human players and formalize playability evaluation
for such agents. Section III demonstrates the intractability of
this problem. Section IV describes a methodology for identify-
ing conditions for tractability, which is then applied in Section
V to identify such conditions for agent playability evaluation.
In order to focus in the main text on the implications of our
results for computer game design, all proofs of results are
given in Appendix C. Finally, our conclusions and directions
for future work are given in Section VI.

A. Related Work

Determining whether given game levels can be completed
and are thus playable is known to be NP -hard (and not
efficiently solvable in general) for many types of games [10]–
[14]. However this work has not been extended to address the
problem of designing playable levels, let alone evaluating the
playability or designing playable groups of agents.

There is existing work on the computational complexity of
verifying if given multi-agent systems can perform a specified



task (and hence are in a sense “playable”) as well as designing
multi-agent systems to correctly perform specified tasks [15]–
[18]. The formalizations of agent control and interaction
mechanisms and the environments analyzed in this work are
very general and powerful (e.g., arbitrary Turing machines or
Boolean propositional formulae), rendering the intractability
of these problems unsurprising. Moreover, as these formal-
izations obscure almost all details of the agent mechanisms
and environment, the derived results are also unenlightening
with respect to possible restrictions that could yield tractability.
Similar reasoning applies with respect to existing complexity
analyses of verification problems relative to single robots and
swarms of robots (see [19, Section 4.2.1] and references).

II. FORMALIZING AGENT PLAYABILITY EVALUATION

In this section, we extend the popular finite-state model
of game agents [4] to accommodate item- and fact-enhanced
agents and use this extended model to state the agent-group
playability evaluation problem. To aid readability, the technical
details of this extended model and its operation in gameplay
are given in Appendix A.

At a minimum, an agent capable of exchanging items and
facts with another agent (which could be a human player)
should be able to do the following:
• Maintain an internal state as well as collections of per-

sonal items and facts;
• Perform actions (and possibly change internal state) in

response to another agent’s actions and offered items and
facts; and

• As part of a performed action, give in return some of its
own personal items and facts to that other agent.

Following [7], there can be at most one copy of an item in a
game at any time (i.e., an item can be possessed by at most
one agent or human player) but there can be any number of
copies of a fact (i.e., any number of agents or human players
can possess the same fact).

Agents with the requisite abilities described above can be
modeled using augmented finite-state machines (AFSM)
(see Figure 1). An AFSM is a straightforward extension of
the commonly-used finite-state model of game agents. Each
transition between two states in an AFSM M corresponds to
an interaction between M and another agent in which that
other agent performs action a with item- and fact-sets I and
F offered to M and M responds in turn via action a′ with
(1) a change from state q to state q′ and (2) item- and fact-
sets I ′ and F ′ being given to the other agent. Any unspecified
proposed action and offered item- and fact-sets relative to a
state q whose result is not explicitly stated as a transition is
assumed to loop back on q with no effect, e.g., M ignores the
offered amulet and mumbles under its breath. For simplicity,
we focus on deterministic AFSM in which for any given q, a,
I , and F , there is at most one transition.

Examples of three possible AFSM representing two shop-
keepers S1 and S2 and a wizard W are shown in Figure 1.
These AFSM are defined relative to the action-, item-, and
fact-sets {chat, consult, intimidate, offer}, {false amulet (Af),
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Fig. 1. Three Example Augmented Finite-State Machine (AFSM) agents

true amulet (At), gold piece (G), sword (Sw)}, and {know
shopkeeper #1 (kS1), know shopkeeper #2 (kS2), know wizard
(kW)}, respectively. Each transition in which item- and fact-
sets I and F are offered as a result of action a and I ′ and F ′

are given in response as part of action a′ is written as an arrow
between q and q′ with the label “a{I}{F}/{I ′}{F ′}”, i.e., a′

is ignored. For example, S1 has a transition between q0 and
q2 such that S1 hands over the fake amulet when intimidated
by another agent with a sword.

Playability of a group of AFSMs can be formalized in terms
of hard (inviolable) and soft (violable) constraints [7]. Exam-
ple hard and soft constraints are, respectively, that a specified
goal must be achieved and that the interactions in any goal-



achieving interaction-sequence should incorporate as many of
the actions allowable to agents as possible. Evaluations of
playability are based on the degree to which these constraints
can be satisfied by a human player interacting with the given
agents. For simplicity, we focus on minimum playability, i.e.,
whether or not a human player can interact with a given set
of agents to obtain specified goal-sets of facts and items.

The above yields the following formalization:

AFSM AGENT PLAYABILITY EVALUATION (APE)
Input: A set A = {a1, . . . , an} of AFSM with associated initial
item- and fact-sets {I0

a1
, . . . , I0

an
} and {F 0

a1
, . . . F 0

an
}, initial

player item- and fact-sets I0
P and F 0

P , goal item- and fact-sets
IG and FG, and a positive integer t.
Question: Can the player obtain IG and FG by engaging in at
most t interactions with the agents in A?

Note that this formalization applies regardless of whether the
agents in A operate autonomously or under the direction of a
game narrative manager; hence, results derived relative to this
formalization will apply in both of these cases.

III. AGENT PLAYABILITY EVALUATION IS INTRACTABLE

In this section, we address whether or not agent playability
evaluation can be done efficiently relative to the model de-
scribed in Section II. Following general practice in Computer
Science [8], we define efficient solvability as being solvable
in the worst case in time polynomially bounded in the input
size. We show that a problem is not polynomial-time solvable,
i.e., not in the class P of polynomial-time solvable problems,
by proving it to be at least as difficult as the hardest problems
in problem-class NP (see [8] and Appendix B for details).

Result A: APE is NP -hard.

Modulo the conjecture P 6= NP which is widely believed to
be true [20], the above shows that APE is not polynomial-time
solvable. Note that this result holds even in the very restricted
case in which the player only interacts with a single agent, i.e.,
|A| = 1, and an unlimited number of interactions between the
player and that agent is allowed, i.e., t =∞.

IV. A METHOD FOR IDENTIFYING TRACTABILITY
CONDITIONS

A computational problem that is intractable for unrestricted
inputs may yet be tractable for non-trivial restrictions on the
input. This insight is based on the observation that some
NP -hard problems can be solved by algorithms whose run-
ning time is polynomial in the overall input size and non-
polynomial only in some aspects of the input called param-
eters. In other words, the main part of the input contributes
to the overall complexity in a “good” way, whereas only the
parameters contribute to the overall complexity in a “bad” way.
In such cases, the problem Π is said to be fixed-parameter
tractable for that respective set of parameters. The following
definition states this idea more formally.

Definition 1: Let Π be a problem with parameters k1, k2,
. . .. Then Π is said to be fixed-parameter (fp-) tractable
for parameter-set K = {k1, k2, ...} if there exists at least
one algorithm that solves Π for any input of size n in time
f(k1, k2, ...)nc, where f(·) is an arbitrary function and c is
a constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-set
K if all superpolynomial-time complexity inherent in solving
Π can be confined to the parameters in K. In this sense the
“unbounded” nature of the parameters in K can be seen as a
reason for the intractability of the unconstrained version of Π.

There are many techniques for designing fp-tractable al-
gorithms [9], [21], and fp-intractability is established in a
manner analogous to classical polynomial-time intractability
by proving a parameterized problem is at least as difficult
as the hardest problems in one of the problem-classes in the
W -hierarchy {W [1],W [2], ...} (see [9] and Appendix B for
details). Additional results are typically implied by any given
result courtesy of the following lemmas:

Lemma 1: [22, Lemma 2.1.30] If problem Π is fp-tractable
relative to parameter-set K then Π is fp-tractable for any
parameter-set K ′ such that K ⊂ K ′.

Lemma 2: [22, Lemma 2.1.31] If problem Π is fp-
intractable relative to parameter-set K then Π is fp-intractable
for any parameter-set K ′ such that K ′ ⊂ K.

Observe that it follows from the definition of fp-tractability
that if an intractable problem Π is fp-tractable for parameter-
set K, then Π can be efficiently solved even for large inputs,
provided only that the values of all parameters in K are
relatively small. This strategy has been successfully applied
to a wide variety of intractable problems (see [9], [23] and
references). In the next section we investigate how the same
strategy may be used to render the problem APE tractable.

V. WHAT MAKES AGENT PLAYABILITY EVALUATION
TRACTABLE?

The AFSM agent playability evaluation problem has a
number of parameters whose restriction could render agent
playability evaluation tractable. An overview of the parameters
that we considered in our fp-tractability analysis is given in
Table I. These parameters can be divided into three groups:

1) Restrictions on the game agents;
2) Restrictions on the human player; and
3) Restrictions on the game itself.

In the remainder of this section, we will assess the fp-
tractability of APE relative to all parameters in Table I (Section
V-A), show how these results apply in more general settings
(Section V-B) as well as to playable AFSM agent generation
(Section V-C), and discuss the implications of these results for
computer game design (Section V-D).



TABLE I
FIXED-PARAMETER INTRACTABILITY RESULTS FOR THE AGENT PLAYABILITY EVALUATION PROBLEM

Parameter Result

Description Name B C D E F

AGENTS:

# agents |A| – P P P 1
max # items per agent iA 0 1 1 1 –
max # facts per agent fA 3 – – – –
max # items per interaction iI 0 1 1 2 1
max # facts per interaction fI P – 2 2 2
max # states per agent |Q| 2 – – – P
max # interactions per state |I| 1 – 2 – –

PLAYER:

max # items per player iP 0 – – – –
max # facts per player fP P – – P P

GAME:

max # interactions in game t P P – P P
max # items in goal iG 0 0 0 0 0
max # facts in goal fG 1 1 1 1 1

A. Results
Our parameterized intractability results are summarized in

Table I. Each column describes an intractability result that
holds relative to the set of all parameters whose entries in
that column are not dashes (“–”); if the result holds when
a non-dashed parameter has constant value c, this indicated
by an entry for that parameter with the value c. Result B
is notable because it, when combined with results implied
by Lemma 2, establishes the intractability of APE relative to
all subsets of the considered parameters that do not include
|A|; the intractability of many (but not all) of those remaining
subsets including |A| is then established by Results C–F.

At present, we have a lone tractability result:

Result G: APE is fp-tractable for {|A|, |I|, t}.

Results B, D, F, and G, combined with those implied by Lem-
mas 1 and 2, establish the intractability of APE relative to all
subsets of {|A|, iI , fI , |I|, t, iG, fG}. This in turn establishes
that the parameter-set in Result G is minimal in the sense that
no parameter in that set can be deleted to yield fp-tractability.

B. Generality of Agent Playability Evaluation Results
Our intractability results, though defined relative to an

admittedly simple model of game agents and human-agent
interaction, have a remarkable generality. Observe that this
model is a special case of many more realistic models, e.g.,
• deterministic AFSM are special cases of both nondeter-

ministic and probabilistic AFSM (AFSM without non-
determinism or in which all all actions have probability
of execution 1.0 if their triggering conditions are satisfied
are deterministic);

• player-activated AFSM are special cases of autonomous
AFSM (restrict non-player-triggered interaction); and

• basic AFSM ares special cases of AFSM with extra
abilities (restrict use of these extra abilities).

Intractability results for these more realistic models then
follow from the well-known observation in computational
complexity theory that intractability results for a problem Π
also hold for any problem Π′ that has Π as a special case
(suppose Π is intractable; if Π′ is tractable, then any algorithm
for Π′ can be used to solve Π efficiently, which contradicts
the intractability of Π – hence, Π′ must also be intractable).

Our fp-tractability result is more fragile, as innocuous
changes to agent or game models may in fact violate as-
sumptions critical to the operation of the algorithm underlying
this result. For now, we can say that as our fp-tractability
results depend on the combinatorics of possible player-agent
interactions and require only that any such interaction can be
checked for validity and performed in time polynomial in the
sizes of the entities involved in that interaction, our tractability
result holds for all choices of agent and game model whose
player-agent interactions are polynomial-time verifiable.

C. Applicability to Playable Agent Generation

The results given so far for APE are useful in suggesting
improvements to the playability-evaluation module in systems
like that described in Watson et al [7]. However, our ulti-
mate goal is still the efficient generation of playable agents,
regardless of whether or not an explicit playability-evaluation
module is used. In this section, we will sketch how our results
for APE apply to this larger problem.



Though a full formalization of the AFSM agent-group
generation problem is beyond the scope of this paper, we can
informally sketch what such a problem might look like. It is
trivial to construct an agent-group A that will allow a player
to obtain specified goal item- and fact-sets within t steps (let
A consist of a single AFSM whose lone transition gives the
player all required items and facts in response to an arbitrary
action on the part of the player). Hence, a specification of the
characteristics of the desired agent-group must be given; let
us call such a specification SA. As a minimum, SA should
specify two types of characteristics:

1) Overall characteristics of agent-group and individual-
agent structure; and

2) Required internal structures of individual agents.
The first type of characteristics correspond to the AGENTS
parameters in Table I while the second could consist of
specifications of required states and transitions along the lines
of the system described in Watson et al [7].

The above yields the following:

AFSM PLAYABLE AGENT GENERATION (PAG)
Input: Item- and fact-sets I and F , an AFSM-group specifi-
cation SA, initial player item- and fact-sets I0

P and F 0
P , goal

item- and fact-sets IG and FG, and a positive integer t.
Output: An AFSM-group A consistent with SA such that
the player can obtain IG and FG by engaging in at most t
interactions with the agents in A, if such an A exists, and
special symbol ⊥ otherwise.

This informal version can be fully formalized relative to a
particular format in which specifications are written. Consider
the set of specification-formats in which one can create in time
polynomial in |A| a specification that can only be satisfied by
a given AFSM-set A; let us call this set S.

To see how the intractability results given in Sections III,
V-A, and V-B apply to PAG, note the following – namely,
any algorithm a for a version of PAG formalized relative to
any member of S can be used to answer any instance of APE
(given an instance I of APE with agent-set A, construct an
instance I ′ of PAG such that SA generates A; return “No”
for I if a run on I ′ returns ⊥ and “Yes” otherwise). Hence,
any intractability result (including all intractability results in
Sections III, V-A, and V-B) that forbids the existence of a
certain type of algorithm for APE also then forbids that type
of algorithm for any version of PAG formalized relative to any
member of S. Our lone tractability result for APE does not
appear to apply in such a general manner to PAG; however it
may hold relative to specific members of S.

D. Discussion
We have found that evaluating agent playability is NP -hard

(Result A). This NP -hardness holds for a basic agent model
and a minimal playability condition that a human player can
attain a specified goal by interacting with the given group
of agents, even when that group consists of a single agent;
moreover, as pointed out in Section V-C, this also applies to
plausible schemes for generating playable agents.

Our results immediately imply that it is unlikely that de-
terministic polynomial-time methods exist for these problems.
The scope of these results is actually broader still. It is widely
believed that P = BPP [24, Section 5.2] where BPP
is considered the most inclusive class of problems that can
efficiently solved using probabilistic methods (in particular,
methods whose probability of correctness can be efficiently
boosted to be arbitrarily close to probability one). Hence, our
results also imply that unless P = NP , there are no proba-
bilistic polynomial-time methods which correctly evaluate or
generate playable agent-groups with high probability for all
inputs. This then constitutes the first proof that no currently-
used method (including the automated search and simulated-
play-based processes described in [1], [2] or evolutionary
algorithms such as that employed in [7]) can guarantee both
efficient and correct operation for all inputs for these problems.

As described in Section IV, efficient correctness-guaranteed
methods may yet exist relative to plausible restrictions on the
input and output. To our knowledge, no such restrictions have
been proposed in the literature for either agent playability
evaluation or playable agent generation. It seems reasonable
to conjecture that some restrictions relative to the parameters
listed in Table I should render these problems tractable.
However, no single one or indeed many possible combinations
of these restrictions can yield tractability, even when the
parameters involved are restricted to very small constants
(Results B–F and Section V-C).

The one exception that we have found to date (and only
for agent playability evaluation) is that of simultaneously
restricting |A|, |I|, and t (Result G). Though this may initially
seem of limited interest in that it overly restricts the form
of games whose playability can be checked efficiently, it
actually suggests several reasonable ways in which games
can be decomposed into sub-games whose playability can
be checked efficiently. For example, a long game could be
decomposed into several shorter ones (restrict t). Alternatively,
the game could be structured such that only a very small
number of agents or player-agent interactions are necessary
and/or relevant to achieving the goal (restrict |A| and/or |I|);
this could be done while preserving a larger game environment
by embedding the goal-relevant set of agents and interactions
within a goal-irrelevant set of agents and interactions, e.g.,
only a few shopkeepers, wizards, or travellers are worth talking
to and only about specific matters.

A valid objection to this lone tractability result is that the
running time of the underlying algorithm is impractical. This
is often true of the initial algorithms derived relative to a
parameter-set. However, our result is important nonetheless
because it establishes fixed-parameter tractability relative to
a set of parameters which (by reasoning like that above)
can be of small value in practice. Once this has been done,
surprisingly effective parameterized algorithms can frequently
be developed with both greatly diminished non-polynomial
terms and polynomial terms that are quadratic and even linear
in the input size (see [9], [21] and references).



A final very important proviso is in order – namely, as
illuminating as the results given here are in demonstrating
basic forms of (in)tractability for the agent playability eval-
uation and playable agent generation problems, these results
do not necessarily imply that methods currently being applied
to evaluate or generate agents are impractical. Differing agent
models, the particular situations in which these methods are
being applied, and accepted standards by which method prac-
ticality is assessed may render the results given here irrelevant.
For example, current methods may already be implicitly
exploiting restrictions on the input and output such that both
efficient and correct operation (or operation that is correct with
probability very close to one) are guaranteed. That being said,
not knowing the precise conditions under which such prac-
ticality holds could have very damaging consequences, e.g.,
drastically slowed gameplay and/or unplayable game content,
for systems (in particular, real-time-adaptable systems) using
such methods that stray outside these conditions. Given that
(as noted earlier in Section I) playability and its efficient
evaluation and enforcement are very important properties
of game systems, the acquisition of such knowledge via a
combination of rigorous empirical and theoretical analyses
should be a priority. With respect to theoretical analyses, it is
our hope that the techniques and results in this paper comprise
a useful first step.

VI. CONCLUSIONS

We have presented a formal characterization of the problem
of game agent playability evaluation relative to an augmented
finite-state machine model of game agents. Our complexity
analyses reveal that, while this problem is computationally
intractable in general, there are conditions that render it
tractable. Knowledge of this and other such conditions can
be exploited in computer game design to create efficient
playability-guaranteed content generation methods with re-
spect to more complex and interesting gameplay involving
player interactions with more socially realistic game agents.

In future research, we plan to explore the computational
consequences of additional types of restrictions on agent
playability evaluation and playable agent design relative to
both the agent-model described in this paper and more com-
plex agent-models (e.g., agents that are truly autonomous
rather than player-activated) as well as minimal and broader
conceptions of playability. We will also build on previous
work establishing the NP -hardness of evaluating the playa-
bility of and generating playable game levels by applying
parameterized analysis to establish under which restrictions
these problems can and cannot be solved efficiently. Finally,
given work positing connections between human cognition and
fixed-parameter tractability [19], [25], we will investigate the
extent to which results such as those we have derived here can
help in creating games whose level of difficulty not only is
more appropriate to human players but can also be efficiently
customized to the abilities of those players [2].
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APPENDIX A
AUGMENTED FINITE-STATE MACHINES

Recall that for any set S, 2S denotes the set of all possible
subsets of S (including the empty set ∅). Define an augmented
finite-state machine (AFSM) (see Figure 1) relative to game-
overall action-, item-, and fact-sets AG, IG, and FG as a 2-
tuple 〈Q, δ〉 where Q is a set of states and δ ⊆ Q × AG ×
2I

G×2F
G×AG×2I

G×2F
G×Q is a state-transition relation.

A transition (q, a, I, F, a′, I ′, F ′, q′) ∈ δ of an AFSM M can
be interpreted as an interaction between M and another agent
in which that other agent performs action a with item- and
fact-sets I and F offered to M and M responds in turn via
action a′ with (1) a change from state q to state q′ and (2)
item- and fact-sets I ′ and F ′ being given to the other agent.
Any unspecified proposed action and offered item- and fact-
sets relative to a state q whose result is not explicitly stated in
δ is assumed to loop back on q with no effect. There are many
possible ways of specifying determinism and non-determinism
relative to AFSM; we will focus on AFSM that are offered
(o-) deterministic, i.e., for any given q, a, I , and F , there is
at most one (q, a, I, F, a′, I ′, F ′, q′) ∈ δ.

Define the execution of interactions of an AFSM M =
〈Q, δ〉 with another agent X as follows. A transition
(q, a, I, F, a′, I ′, F ′, q′) is enabled relative to M = 〈Q, δ〉
and X , where M and X currently possess the items and facts
in sets IM , FM , IX , and FX , respectively, if:

1) (q, a, F, I, a′, F ′, I ′, q′) ∈ δ;
2) M is currently in state q;
3) I ⊆ IX and F ⊆ FX ; and
4) I ′ ⊆ IM ∪ I and F ′ ⊆ FM .

The execution of a transition (q, a, I, F, a′, I ′, F ′, q′) that is
enabled relative M and X has the following effects:

1) The state of M is set to q′;
2) IX is set to (IX − I) ∪ I ′;
3) FX is set to FX ∪ F ′; and
4) IM is set to (IM ∪ I ′)− I ′.

For simplicity, we only consider the case in which the other
agent X is a human player, i.e., agent actions can only
be triggered by human players. Three possible sequences of

interactions of the AFSM in Figure 1 with a human player
are shown in Figure 2. With respect to the goal consisting of
having the true amulet and knowing the wizard, the first and
second interaction-sequences achieve this goal within 5 and 8
interactions, respectively, while the third interaction-sequence
does not achieve the goal and moreover cannot be extended
by any sequence of interactions to achieve the goal.

APPENDIX B
PROVING INTRACTABILITY

Given some criterion of tractability like polynomial-time
or fixed-parameter solvability, we can define the class T of
all computational problems that are tractable relative to that
criterion. For example, T could be the class P of decision
problems (see below) solvable in polynomial-time, or FPT ,
the class of parameterized problems that are fp-tractable. We
can show that a particular problem is not in T (and thus
that this problem is intractable) by showing that this problem
is at least as hard as the hardest problem in some class C
that properly includes (or is strongly conjectured to properly
include) T . For example, C could be NP , the class of
decision problems whose candidate solutions can be verified
in polynomial time, or a class of parameterized problems in
the W -hierarchy = {W [1],W [2], . . . ,W [P ], . . . , XP} (see
[8] and [9], respectively, for details).

We will focus here on reducibilities between pairs of
decision problems, i.e., problems whose outputs are either
“Yes” or “No”. The two types of reductions used in this paper
are as follows.

Definition 2: Given a pair Π, Π′ of decision problems,
Π polynomial-time many-one reduces to Π if there is a
polynomial-time computable function f mapping instances I
of Π to instances f(I) of Π′ such that the answer to I is “Yes”
if and only if the answer to f(I) is “Yes”.

Definition 3: Given a pair Π, Π′ of parameterized decision
problems with parameters p and p, respectively, , Π fp-reduces
to Π if there is a function f mapping instances I = (x, p) of Π
to instances I ′ = (x′, p′) of Π′ such that (i) f is computable
in g(p)|x|α time for some function g() and constant α, (ii)
p′ = h(p) for some function h(), and (iii) the answer to I is
“Yes” if and only if the answer to I ′ = f(I) is “Yes”.

A reducibility is appropriate for a tractability class T if
whenever Π reduces to Π′ and Π′ ∈ T then Π ∈ T . We say
that a problem Π is C-hard for a class C if every problem in
C reduces to Π. A C-hard problem is essentially as hard as
the hardest problem in C.

Reducibilities become particularly useful given the follow-
ing easily-provable properties:

1) If Π reduces to Π′ and Π is C-hard then Π′ is C-hard.
2) If Π is C-hard and T ⊂ C then Π 6∈ T , i.e., Π is not

tractable.
3) If Π is C-hard and T ⊆ C then Π 6∈ T unless T = C,

i.e., Π is not tractable unless T = C.



Interaction-sequence #1

Interaction P S1 S2 W

– {2G}, {} q0 : {Af,At}, {kS1} q0 : {Sw}, {kS2} q0 : {}, {kW}
S1: offer {1G}, {} {1G,Af}, {kS1} q1 : {1G,At}, {kS1} ” ”
S2: chat {}, {kS1} {1G,Af}, {kS1, kS2} ” ” ”
W : offer {1G}, {} {Af}, {kS1, kS2} ” ” q1 : {1G}, {kW}
W : cnslt {Af}, {kS2} {Af}, {kS1, kS2, kW} ” ” q3 : {1G}, {kW}
S1: offer {Af}, {kW} {At}, {kS1, kS2, kW} q3 : {1G,Af}, {kS1} ” ”

Interaction-sequence #2

Interaction P S1 S2 W

– {20G}, {} q0 : {Af,At}, {kS1} q0 : {Sw}, {kS2} q0 : {}, {kW}
S2: offer {2G}, {} {18G,Sw}, {} ” q0 : {2G}, {kS2} ”
S1: intim {Sw}, {} {18G,Sw,Af}, {} q2 : {At}, {kS1} ” ”
W : offer {1G}, {} {17G,Sw,Af}, {} ” ” q1 : {1G}, {kW}
W : cnslt {Af}, {} ” ” ” ”
S1: offer {10G}, {} {7G,Sw,Af}, {kS1} q1 : {10G,At}, {kS1} ” ”
S2: chat {}, {kS1} {7G,Sw,Af}, ” ” ”

{kS1, kS2}
W : cnslt {Af}, {kS2} {7G,Sw,Af}, ” ” q3 : {1G}, {kW}

{kS1, kS2, kW}
S1: offer {Af}, {kW} {7G,Sw,At}, q3 : {10G,Af}, {kS1} ” ”

{kS1, kS2, kW}

Interaction-sequence #3

Interaction P S1 S2 W

– {2G}, {} q0 : {Af,At}, {kS1} q0 : {Sw}, {kS2} q0 : {}, {kW}
S2: offer {2G}, {} {Sw}, {} ” q0 : {2G}, {kS2} ”
S1: intim {Sw}, {} {Sw,Af}, {} q2 : {At}, {kS1} ” ”
W : intim {}, {} ” ” ” q2 : {}, {kW}
S2: intim {}, {} ” ” ” ”

Fig. 2. Three Example AFSM Agent – Human Player Interaction-sequences

The first and third properties are used below to show in-
tractability relative to T -classes P and FPT and C-classes
NP , W [1], and XP . Note that these intractability results hold
relative to the conjectures P 6= NP and FPT 6= W [1] which,
though not proved, are commonly accepted as true within the
Computer Science community (see [8], [9], [20] for details).

APPENDIX C
PROOFS OF RESULTS

All of our intractability results will be derived using reduc-
tions from the following NP -hard decision problems:

NONDETERMINISTIC TURING MACHINE COMPUTATION
Input: A single-tape, single-head nondeterministic Turing ma-
chine M = 〈Σ, Q,∆, s, F 〉 (where Σ is an alphabet, Q is a
set of internal states, ∆ ⊆ Q× Σ×Q is a set of transitions,
s ∈ Q is the start state, and f ∈ Q is the final state), a word
x ∈ Σ∗, and a positive integer k.
Question: Is there a computation of M on x starting in s that
reaches some final state f ∈ F in at most k steps?

DOMINATING SET [8, Problem GT2]
Input: An undirected graph G = (V,E) and an integer k.
Question: Does G contain a dominating set of size ≤ k, i.e.,
is there a subset V ′ ⊆ V , |V ′| ≥ k, such that for all v ∈ V ′,
either v ∈ V ′ or there is a v′ ∈ V ′ such that (v, v′) ∈ E?

CLIQUE [8, Problem GT19]
Input: An undirected graph G = (V,E) and an integer k.
Question: Does G contain a clique of size ≥ k, i.e., is there
a subset V ′ ⊆ V , |V ′| ≥ k, such that for all v, v′ ∈ V ′,
(v, v′) ∈ E?

Lemma 3: {k}-NTMC fp-reduces to {iA, fA, iI , fI ,
|Q|, |I|, iG, fG, t, iP , fP }-APE such that in the constructed
instance of APE, iA = 0, fA = 3, iI = 0, |Q| = 2, |I| = 1,
iP = 0, iG = 0, and fG = 1, and the values of fI , fP , and t
are all functions of k in the given instance of NTMC.

Proof: Given an instance 〈M = 〈Σ, Q,∆, s, F 〉, x, k〉 of
NTMC, construct an instance of APE in which the state of
the NTM at time t, 0 ≤ t ≤ k, is encoded by a time-fact t, a
time/head-position fact t/i, 1 ≤ i ≤ k, a time/state fact t/q,



q ∈ Q, and k time/tape square position/tape square contents
(TTT) facts t/i/s, 1 ≤ i ≤ k and s ∈ Σ. Each write transition
(q, x, q′) in M is encoded by k×k×Σ agents each consisting
of states q0 and q1 with a single transition that is enabled by
the time-fact t, time/head position fact t/i, time/state fact t/q,
and TTT fact t/i/s and returns the corresponding facts (t+1),
(t+1)/i, (t+1)/q′, and (t+1)/i/s for 0 ≤ t < k, 1 ≤ i ≤ k,
and s′ ∈ Σ. Analogous sets of agents are constructed for all
left-move and right-move transitions in M . The following four
sets of two-state single-transition agents are also required:

1) A set of agents that individually enable on time-fact t
and TTT fact (t− 1)/i/s and return the TTT fact t/i/s
for 1 ≤ t, i ≤ k and s ∈ Σ (i.e., bring forward in time
all tape-square contents not updated by a write-transition
at time (t− 1));

2) A set of agents that individually enable on time/state fact
t/f and return time/state fact (t + 1)/f for 1 ≤ t < k
and f ∈ F (i.e., bring forward in time any final state
reached at or before time (t− 1));

3) A set of agents that individually enable on time-fact k
and TTT fact k/i/s and return TTT fact k/i/s′′ for
some s′′ 6∈ Σ (i.e., erase the contents of the tape at time
k); and

4) A set of agents that enable on time-fact k, time/state
fact t/f , and TTT facts k/1/s′′, k/2/s′′, . . . k/k/s′′ and
return completion-fact c for f ∈ F .

Each agent starts with no items and the facts it returns and the
player starts with no items and the facts corresponding to an
initial state q0, head position 1, and x on the first |x| squares
of the tape and s′′ in the remaining k − |x| squares. Finally,
set the goal to c and t = (k+ 1)k+ 1. Note that the instance
of APE described above can be constructed in time that is fp-
tractable with respect to k and the size of the given instance of
DOMINATING SET (this is necessary as k is stored in binary in
the given instance and the value of k is exponential in log2 k).

If there is a transition-sequence of length at most k for
M computing on x from s that reaches a final state, there
is a sequence of exactly t agent-player interactions that will
achieve the goal (as all tape-squares must be updated to time
k and be available for subsequent erasure in order to obtain
goal-fact c). Conversely, if there is an interaction-sequence of
length t that achieves the goal, there must be embedded in
this sequence a subsequence of interactions of length ≤ k that
allowed time/state fact k/f to be derived from time/state fact
0/q0, time/head position fact 0/1, and the TTT facts encoding
of x on the tape, which corresponds to a sequence k transitions
that allow M computing on x from s to reach a final state.

To complete the proof, note that in the constructed instance
of APE, iA = 0, fA = 3, iI = 0, |Q| = 2, |I| = 1, iP = 0,
iG = 0, fG = 1, fI = k + 2, fP = k(k + 3) + k + 1, and
t = (k + 1)k + 1.

Lemma 4: DOMINATING SET polynomial-time many-one
reduces to APE such that in the constructed instance of APE,
iA = iI = 1, iG = 0, fG = 1, and |A| and t are both a
function of k in the given instance of DOMINATING SET.

Proof: Given an instance 〈G = (V,E), k〉 of DOMI-
NATING SET, the constructed instance of APE consists of k
identical agents plus an additional final agent. Each of the
identical agents consists of an initial state q0 and a transition
from q0 to each of the |V | states qi, 1 ≤ i ≤ |V |, in which the
offered item vi is exchanged for the set of facts corresponding
to all vertices in the neighbourhood of of vi (including vi
itself) in G. The final agent consists of two states q0 and q1
and a transition from q0 to q1 that exchanges the complete
set of vertex-facts for G for a completion-fact. Each identical
agent starts with no items and the complete set of vertex-facts
for G, the final agent starts with no items and the completion-
fact, and the player starts with the complete set of vertex-items
for G and no facts. Finally, the goal is the completion-fact and
t = k+ 1. Note that the instance of APE described above can
be constructed in time polynomial in the size of the given
instance of DOMINATING SET.

If there is a dominating set of size at most k in the given
instance of DOMINATING SET, the player can exchange the
vertices in that dominating set with at most k of the identical
agents to obtain the complete set of vertex-facts for G and
hence achieve the goal. Conversely, as the player can interact
with each of the identical agents at most once to trade a vertex-
item for its associated neighbourhood-set of vertex-facts in G,
any set of at most k + 1 interactions between the player and
the agents that achieves the goal in the constructed instance of
APE must correspond to a set of at most k vertices that form
a dominating set in G.

To complete the proof, note that in the constructed instance
of APE, iA = iI = fG = 1, iG = 0, and |A| = t = k + 1.

Lemma 5: DOMINATING SET polynomial-time many-one
reduces to APE such that in the constructed instance of APE,
iA = iI = 1, fI = |I| = 2, iG = 0, and fG = 1, and |A| is a
function of k in the given instance of DOMINATING SET.

Proof (sketch): Modify the instance of APE constructed
in Lemma 4 as follows: (1) Replace all |V | transitions in each
identical agent with a transition-tree rooted at q0 consisting of
a |V |-;length “spine” of transitions, each of which is enabled
by a move-fact, with |V | branches off this spine, where each
branch is a |V |-length chain of transitions which are initially
enabled by item vi and deliver (one at a time) the vertex-
facts corresponding to the neighbourhood vertex-facts for vi
before terminating at qi; (2) Replace the single transition in
the final agent with a |V |-length chain of transitions that are
enabled by the individual vertex-facts in G before terminating
in q1 and the final exchange of the completion-fact; (3) make
the move fact the initial fact-set for the player; and (4) set
t = (k× 2|V |) + |V | = (2k+ 1)|V |. The proof of correctness
is a modification of that given in Lemma 4. Note that in the
instance of APE described above, iA = iI = fG = 1, fI =
|I| = 2, iG = 0, and |A| = k + 1.

Lemma 6: CLIQUE polynomial-time many-one reduces to
APE such that in the constructed instance of APE, iA = iI =
1, iI = fI = 2, uG = 1, and fG = 0, and |A|, fP , and t are
all functions of k in the given instance of CLIQUE.



Proof: Given an instance 〈G = (V,E), k〉 of CLIQUE,
construct an instance of APE consisting of two groups of k
and k(k − 1)/2 agents, respectively. The agents in the first
group are the vertex-selection agents from Lemma 4 modified
so that agent i exchanges vertex-item v for vertex/position-
fact v/i. Each of the agents in the second group corresponds
to a distinct pair i, j, 1 ≤ i < j ≤ k which checks if the
vertices selected in positions i and j have an edge between
them in G. For the lth pair, 1 ≤ l ≤ k(k − 1)/2, this is done
using two states q0 and q1 and 2|E| transition between q0
and q1 which, for each edge (u, v) ∈ E, trade items u/i, v/j
(v/i, u/j) and fact echk(l−1) for items u/i, v/j (v/i, u/j) and
fact echkl, respectively. Each vertex-selection agent i starts
with no items and the entire vertex/position i-fact-set, each
edge-check agent l starts with no items and edge-check fact
echkl, and the player starts with the entire vertex-item-set for
G and edge-check fact echk0. Finally, the goal is ck(k−1)/2 and
t = k + k(k − 1)/2. Note that the instance of APE described
above can be constructed in time polynomial in the size of the
given instance of CLIQUE.

If there is a clique of size at k in the given instance
of CLIQUE, the player can exchange the vertices in that
clique with the vertex/position agents in any order to obtain
a “sequence” of vertex/position facts that will satisfy the
edge-check agents and hence achieve the goal. Conversely,
as the player can interact with each of the vertex-selection
agents at most once to trade a vertex-item for its associated
vertex/position fact, any set of at most k + k(k − 1)/2
interactions between the player and the agents that achieves
the goal in the constructed instance of APE must correspond
to a set of k vertices that form a clique in G.

To complete the proof, note that in the constructed instance
of APE, iA = 1, iI = fI = 2, iG = 0, fG = 1, and |A| =
k+k(k−1)/2, fP = k(k−1)/2+1, and t = k+k(k−1)/2.

Lemma 7: CLIQUE polynomial-time many-one reduces to
APE such that in the constructed instance of APE, |A| = 1,
iI = 1, fI = 2, i0 = 1, fG = 1, and |Q|, fP , and t are all
functions of k in the given instance of CLIQUE.

Proof (sketch): Note that all of the agents in the reduction
in Lemma 6 can be chained together in a single agent
consisting of a chain of 1 +k+k(k−1)/2 states, and that all
edge-check facts except the last can be eliminated as they are
no longer necessary, e.g., the state q1 for what was originally
the k(k − 1)/2st edge-check agent can only be reached if
all other edge-checks are satisfied. The goal and value of t
are unchanged. The proof of correctness of this reduction is
a modification of that given in Lemma 6. Note that in the
instance of APE described above, |A| = 1, iI = 1, fI = 2,
iG = 0, fG = 1 |Q| = 1 + k + k(k − 1)/2, fP = k, and
t = k + k(k − 1)/2.

Observe that setting t to any specified value is actually
unnecessary for the reductions in Lemmas 3 – 7 to work.

Result A APE is NP -hard when |A| = 1.

Proof: Follows from the NP -hardness of CLIQUE and
the reduction in Lemma 7.

Result B APE is fp-intractable for the parameter-set
{iA, fA, iI , fI , |A|, |A|, iP , fP , t, iG, fG}.

Proof: Follows from the W [1]-hardness of NTMC for
parameter-set {k} [26] and the reductions from NTMC to APE
given in Lemma 3.

Result C APE is fp-intractable for the parameter-set
{|A|, iA, iI , t, iG, fG}.

Proof: Follows from the W [1]-hardness of DOMINATING
SET for parameter-set {k} [9] and the reductions from DOM-
INATING SET to APE given in Lemma 4.

Result D APE is fp-intractable for the parameter-set
{|A|, iA, iI , fI , |I|, iG, fG}.

Proof: Follows from the W [1]-hardness of DOMINATING
SET for parameter-set {k} [9] and the reductions from DOM-
INATING SET to APE given in Lemma 5.

Result E APE is fp-intractable for the parameter-set
{|A|, iA, iI , fI , fP , t, iG.fG}.

Proof: Follows from the W [1]-hardness of CLIQUE for
parameter-set {k} [9] and the reductions from CLIQUE to APE
given in Lemma 6.

Result F APE is fp-intractable for the parameter-set
{|A|, iI , fI , |Q|, fP , t, iG, fG}.

Proof: Follows from the W [1]-hardness of CLIQUE for
parameter-set {k} [9] and the reductions from CLIQUE to APE
given in Lemma 7.

Result G APE is fp-tractable for the parameter-set ‖A|, |I|, t}.

Proof: Consider the gamespace search tree whose nodes
encode the current item- and fact-sets of each agent and the
player as well as the current state of each agent. Observe
that there are at most |A| × |I| possibilities for interactions
relative to each node (as each agent’s current state has at
most |I| enabled transitions outwards from that state). As
we require that the goal be reachable within t agent-player
interactions, the tree has at most (|A||I|)t nodes that must be
considered. As each node can be generated and evaluated in
time polynomial in the size of the given instance of APE, the
above is an algorithm for APE whose runtime is fp-tractable
for parameter-set {|A|, |I|, t}.


