
Exploring Algorithmic Options for the
Efficient Design and Reconfiguration of

Reactive Robot Swarms

Todd Wareham

Department of Computer Science
Memorial University of Newfoundland

December 5, 2015

Introduction

• Many methods proposed to design robot swarms (Crespi
et al, 2008; Brambilla et al, 2013; Doursat et al, 2013), e.g.,

• temporal-logic decomposition (Winfield et al, 2005a)
• dataflow diagram decomposition (Winfield et al, 2005b)
• interaction-graph decomposition (Wiegand et al, 2006)
• evolutionary algorithms (Sperati et al, 2011)

• No method to date is both general and efficient.

HOW DIFFICULT IS SWARM DESIGN
IN GENERAL?

WHAT RESTRICTIONS DO (AND DO NOT)
MAKE SWARM DESIGN EASY?

Organization of this Talk

1. Formalizing Swarms

2. Formalizing Swarm Design

3. Computational Complexity Analysis:
The Reader’s Digest Version

4. Complexity of Swarm Design

5. Conclusions and Future Work

Formalizing Swarms:
Swarm Entity Architecture

Wander

Avoid

Hide

Hungry?

S

S

SSensors Actuators

• Modifications:

Reconfiguration: Modify up to c layers and layer-linkages
relative to layer library M

Formalizing Swarms:
Overall Swarm Architecture

• Three policies: individual entity movement + entity
communication + movement conflict resolution.

• Restrictions (this talk):
• Synchronized entity movement.
• No inter-entity communication.
• No movement conflict allowed.

• Modifications:

Selection: Select |S| entities from entity library A

Formalizing Swarm Design

Swarm Members / Swarm Members /
Positions Given Positions Selected

No Given Swarm Selected Swarm
Swarm Member Morphogenesis Morphogenesis
Reconfiguration (GRSM) (SRSM)

Swarm Member Given Swarm Selected Swarm
Reconfiguration Morphogenesis with Morphogenesis with

Allowed Reconfiguration Reconfiguration
(GRSM-REC) (SRSM-REC)

Computational Complexity Analysis
The Reader’s Digest Version

good bad

classical pt-tractable pt-intractable
(unrestricted) (nc) (NP-hard)

parameterized fp-tractable fp-intractable
(restriction p) (f (p)× nc) (W-hard)

Complexity of Swarm Design

• Main results:
• SRSM, GRSM-REC, and SRSM-REC are pt-intractable.
• Complexity of GRSM is not known but evidence suggests it

may be pt-time intractable.

• Implications:
• Swarm design problems are intractable in general⇒

these problems cannot have efficient solution-guaranteed
deterministic or probabilistic algorithms, e.g., evolutionary
algorithms.

• Need to restrict these problems if we are to get tractability.

. . . What restrictions (if any) yield tractability? . . .

Complexity of Swarm Design (Cont’d)

Param. Definition Appl.
|L| Max (final) # layers per swarm member All
|E| # distinguishable world-square types All
f Max length of layer trigger-formula All
r Swarm member perceptual radius All
|S| # entities in swarm All
h # entity-types in swarm (heterogeneity) All
|a| Size of initial swarm positioning area All
|A| # entities in entity library SSN*
|M| # layers in layer library *-REC

c Max # swarm entity modifications *-REC

Complexity of Swarm Design (Cont’d)
• What restrictions don’t make swarm design easy?

• (Almost) Everything restricted individually (to constants!)
• Many, many combinations of restrictions as well . . .

• What restrictions do make swarm design easy?
• Several combinations of restrictions that restrict input size

are fp-tractable (whoopdeedoo . . .).
• 〈|E|, f , |a|〉 / 〈|E|, r, |a|〉-SRSM, -GRSM-REC, and

SRSM-REC are fp-tractable.

• Implications:
• Many restrictions on swarm entity or overall swarm

architecture do not make swarm design efficient.
• What does seem to matter is restrictions on the sensory /

perceptual complexity of the swarm entities⇒ ignorance is
(computational) bliss! (Wareham et al, 2011).

Conclusions and Future Work

• Swarm design is intractable in general for the simplest
types of worlds, tasks, and entity / overall architectures;
however, there are plausible restrictions that may allow
instances of interest to be solved exactly.

• Future work:
• Determine computational complexity of GRSM.
• Extend parameterized analysis to other aspects, e.g.,

complexity of environment.
• Analyze swarm design relative to more realistic types of

worlds, tasks, and architectures.
• Investigate related problems, e.g., random start-position

morphogenesis.

