
Parameterized Complexity Analysis in Robot Motion Planning

�

Marco Cesati

Dipartimento di Scienze dell'Informazione

Universit�a degli Studi di Roma \La Sapienza"

via Salaria 113, 00198 Roma, Italy

marco@dsi.uniroma1.it

H. Todd Wareham

Computer Science Department

University of Victoria

Victoria, British Columbia

Canada V8W 3P6

harold@csr.uvic.ca

1. Introduction

Given a robot in an environment composed of

some set of obstacles and initial and �nal positions

of the robot within this environment, the motion

planning problem involves �nding a sequence of mo-

tions that move the robot from the initial to the �-

nal position without intersecting any of the obstacles.

Though polynomial-time algorithms are known for

this problem for very limited kinds of robots, e.g.,

line segments, disks, rectangles (see [21] and refer-

ences), the best known algorithm for arbitrarily com-

plex robots requires O(n

k

(logn � d

O(k)

+ 2dk

O(k

2

)

))

time [3], where k is the degrees of freedom of move-

ment, n is the number of polynomials required to de-

scribe the surfaces of the robot and its environment,

and d is the maximum degree of these polynomials

[21]. The terms exponential in d and k in these run-

ning times are not daunting because values of d and

k in practice are typically small, e.g., d = 4 for a

polygonal robot in a planar polygonal environment

and k � 7 for industrial robot arms. However, it is

thought unlikely that algorithms such as that in [3]

can eliminate the n

k

term in their running time be-

cause such algorithms must compute all points in a

special k-dimensional space called FP space, and the

number of points in this space is O(n

k

) in the worst

case [21, Theorem 3.1].

A series of PSPACE- and NP -hardness results

(see papers in [22] and references) suggest that no

general algorithm for robot motion planning can be

polynomial in all of its input parameters, i.e., at least

one parameter x must be exponential relative to a

constant, e.g., 2

x

, or another parameter of the prob-

lem, e.g., y

x

. However, they have not answered the

more relevant question posed by the FP space-based

algorithms above { namely, whether there is a general

algorithm that is polynomial in all input parameters

except k, in which k may yet be exponential relative

to a constant or itself.

In this paper, using the theory of parameter-

�

Appeared in Proceedings of the 25th IEEE International

Conference on Systems, Man, and Cybernetics (Vancouver,

BC: October 23{25, 1995): Volume 1. IEEE Press; Los

Alamitos, CA. 880--885.

ized computational complexity developed by Downey

and Fellows [5], we establish that the answer to this

question is probably \no". In Section 2, we give an

overview of this theory. In Section 3, we derive our

main result. Finally, in Section 4, we briey discuss

the implications for robotics of both these results and

the parameterized complexity framework.

2. Parameterized Complexity Theory

In light of the intractability of many compu-

tational problems [12], many forms of approxima-

tion have been developed to solve such problems in

practice, e.g., randomized algorithms, simulated an-

nealing, bounded-cost approximation schemes. One

such approach seeks not to solve all instances ap-

proximately but rather to solve all small instances

exactly, where \small" instances are those having a

small value for a chosen input parameter. Compu-

tational problems exhibit two algorithmic behaviors

when an input parameter k is bounded in value:

1. Some problems are

�xed-parameter (f.p.) tractable, i.e., they have

f(k)n

�

time algorithms where f is an arbitrary

function, n is the largest value among the re-

maining input parameters, and � is a constant

independent of k.

2. Some problems seem to be solvable only by

\brute force" O(n

k

) time algorithms.

Both types of algorithms are polynomial-time for

�xed values of k. However, f.p. tractable algorithms

are preferable if typical instances of a problem have

small values of k, e.g., when k = 10 and n = 1000,

2

k

n

3

= n

4

<< n

10

= n

k

.

Though f.p. tractable algorithms have been de-

rived by a variety of techniques for a number of prob-

lems [1, 7, 10], many problems have resisted all such

attacks. The question, then, is how to determine

whether or not a problem has an f.p. tractable al-

gorithm. There does not seem to be any correlation

between the general, e.g., NP/PSPACE-hard, com-

plexity of a problem and whether or not it will be f.p.

1

tractable. This is nicely illustrated by the following

two problems from VLSI design.

1

Each of them takes

as input a graph G = (V;E) and a positive integer k,

and in each case the bounded parameter is k.

Cutwidth: Is there a linear ordering of V , i.e., a

1:1 function f : V ! f1; 2; : : : ; jV jg, such that all i,

1 < i < jV j, jffu; vg 2 E : f(u) � i < f(v)gj � k?

Bandwidth: Is there a linear ordering of V such

that for all fu; vg 2 E, jf(u)� f(v)j � k?

Though both problems are NP -complete [12, Prob-

lems GT44 and GT40], the �rst is solvable in linear

time for �xed values of k while the best known algo-

rithms for the second require O(jV j

k

) time [11].

One approach to showing that e�cient algo-

rithms do not exist for a problem is that used in com-

putational complexity theory [12, 18]. Essentially,

one de�nes a class F of e�ciently-solvable problems,

a class C such that F � C, and a means for isolat-

ing the hardest problems in C.

2

If a given problem

X is at least as hard as the hardest problem in C,

then X does not have an e�cient algorithm modulo

the strength of the assumption that F � C. The

roles of F and C are played by classes P and NP in

traditional computational complexity theory [12].

This class-based approach to proving in-

tractability is at the heart of parameterized com-

plexity theory [5]. Within this theory, class F above

corresponds to the class FPT of parameterized prob-

lems that are f.p. tractable, and class C is one of

the members of the W -hierarchy, a set of classes

fW [1];W [2]; : : : ;W [SAT];W [P]; : : :g de�ned by suc-

cessively more powerful solution-checking circuits.

The interested reader is referred to [5, 8] for details.

These classes form the following hierarchy.

FPT � W [1] � W [2] � � � � � W [SAT] � W [P]

It is conjectured that all inclusions in this hier-

archy are proper [6]. Hence, no W[x]-complete

problem is f.p. tractable unless all problems in

W[x] are f.p. tractable. Problems from areas

as diverse as VLSI design, molecular biology,

1

Note that the outputs of these problems are not actual so-

lutions but rather the answer to a yes/no question about these

solutions. All problems examined in this paper will be phrased

as the latter decision problems rather than the former search

problems. This is done because (1) decision problems are easier

to analyze, and (2) the complexity of an appropriately-de�ned

decision problem is a lower bound on the complexity of the

associated search problem, i.e., �nding a solution can be no

easier than answering a question about that solution.

2

This mechanism is typically a reducibility between pairs

of problems. Given a pair of problemsX and Y , a reducibility

� e�ciently transforms instances of X into Y , i.e., X � Y

(read \X reduces to Y "), such that an e�cient algorithm for

Y can be used to e�ciently solve instances of X . Note that

X � Y also implies that if X is not e�ciently solvable, neither

is Y ; hence, a reducibility orders problems by computational

di�culty. A reducibility can be used to isolate the hardest

problems in a class C via the notions of hardness and com-

pleteness. A problem X is C-hard if for all problems Y 2 C,

Y �X; if X is also in C, then X is C-complete.

formal logic, and computational linguistics have

been classi�ed within the W -hierarchy [2, 9, 11].

Known results include Gate matrix layout (in

FPT), Vapnik-Chervonenkis dimension (W[1]-

complete), Weighted binary integer program-

ming (W[2]-complete), and Minimum axiom set

(W[P]-complete). Over one hundred results are listed

on-line [13] (see the Parameterized Complexity Home

Page at http://www-csc.uvic.ca/home/mhallett/

research.html).

Essentially, a W-hardness result for a k-

parameterized problem suggests that some (possibly

sublinear) form of k cannot be removed as an expo-

nent of other input parameters in the running time

of any general algorithm for that problem without

forcing some other input parameter to go exponen-

tial. Note that this consequence holds only when we

are considering all possible values of k; W-hardness

does not preclude an algorithm whose running time

is f(k)n

�

for k � c, where c is some constant.

3. The Parameterized Complexity of

the Generalized Mover's Problem

A formal de�nition of our problem is as follows

[19]. Note that the polyhedra in this de�nition are

not necessarily convex; they are only required to be

rational, i.e., speci�able as a �nite union of convex

polyhedra, each of which is speci�ed by a �nite set of

linear inequalities with rational coe�cients.

d-Dimensional Euclidean generalized

mover's problem (dD-GMP, d 2 f2; 3g)

Instance: A set O of obstacle polyhedra, a set P of

polyhedra which are freely linked together at a set

of linkage vertices V such that P has k degrees of

freedom of movement, and initial and �nal positions

p

I

and p

F

of P in d-dimensional Euclidean space.

Question: Is there a legal movement of P from p

I

to p

F

, i.e., is there a continuous sequence of trans-

lation and rotations of the polyhedra in P such that

at each point in time, no polyhedron in P intersects

any polyhedron inO and the polyhedra in P intersect

themselves only at the linkage vertices in V ?

Let k-dD-GMP denote the parameterized version of

this problem in which k is the bounded parameter.

Reif [19] showed that 3 D-GMP is PSPACE-hard by

a reduction from a variant of the bounded-space sym-

metric Turing Machine (TM) computation problem

de�ned in [17]. As Reif's reduction is also a parame-

terized reduction (see Theorem 4 below), in order to

show that k-3D-GMP is W[SAT]-hard, it will su�ce

to show that the appropriately parameterized version

of symmetric TM computation is W[SAT]-hard.

Let M = (Q;�; �;2; q

0

; q

F

) be a standard single

one-way-in�nite tape deterministic Turing machine

(DTM), where Q is the set of states, � is the tape

alphabet, 2 is the tape blank symbol, � : Q � � !

Q � � � f�1; 0;+1g is the transition function, and

q

0

; q

F

2 Q are the initial and �nal states, respec-

tively (see a standard text such as [15] for details).

A con�guration C = (q; h; t) is a description of the

current computation status of M , where q 2 Q is

the current state, h 2 Z

+

is the current position of

the read/write head on the tape, and t is the current

tape contents of all tape squares visited up to that

point in the computation. A computation of M on

x is a sequence of con�gurations C

0

; C

1

; : : : ; C

l

such

that C

0

= (q

0

; 1; x) and for each i, 1 � i � l, there is

a transition in � that transforms C

i�1

into C

i

. Con-

sider the following problem involving such DTM.

Compact deterministic Turing machine com-

putation (CDTMC)

Instance: A DTM M = (Q;�; �;2; q

0

; q

F

), a string

x 2 �

�

, and an integer k.

Parameter: k

Question: Is there an accepting computation of M

on input x that visits at most k squares?

Let I

0

-CDTMC denote the version of this problem

which has the empty string as input.

Theorem 1 [4, Theorem 8] I

0

-CDTMC is

W[SAT]-hard.

Reif's Turing machines di�er in three respects

from the standard model used by Cesati:

3

1. Each TM has an explicit space bound s = s(jxj),

and the tape consists of s squares bounded at the

left and right by marker symbols ($).

2. Transitions are of the form (q; L;R;D) !

(q

0

; L

0

; R

0

; D

0

), where q; q

0

2 Q, L;R;L

0

; R

0

2 �,

and D;D

0

2 f1; 0;�1g such that D = �D

0

and

R = R

0

if D = 0.

3. The machine can only enter the �nal state q

F

if

all tape squares are blanks and the head is on

the leftmost blank on the tape.

The transitions are interpreted as follows. Let t

i

(t

0

i

)

be the symbol in position i on the tape before (af-

ter) the transition, and let h (h

0

) be the position of

the read/write head on the tape before (after) the

transition. Note that h

0

= h+D.

� If D = 1 or D = 0 then t

h

= L, t

h+1

= R,

t

0

h

= L

0

, and t

0

h+1

= R

0

.

� If D = �1 then t

h�1

= L, t

h

= R, t

0

h�1

= L

0

,

and t

0

h

= R

0

.

This formulation of transitions allows symmetric TM

computation to be de�ned easily { namely, TM M is

symmetric, i.e., M is a STM, if the transition-set �

of M is such that (q; L;R;D)! (q

0

; L

0

; R

0

; D

0

) 2 � if

and only if (q

0

; L

0

; R

0

; D

0

) ! (q; L;R;D) 2 �. De�ne

3

Note that, unlike [19], the Reif-style TM in this paper

allow transitions that do not move the tape head. However,

this does not cause signi�cant changes to any of the results

from [19] that are used here.

the deterministic variant of these TM in the standard

manner, i.e., TM M is deterministic if at most one

transition can be applied to each con�guration C =

(q; h; t) of M , where q 2 Q, h 2 f1; : : : ; sg, and t 2

$(� [f2g)

s

$.

We now use the following two reductions to

show that I

0

-CDTMC for Reif-style symmetric

TM is W[SAT]-hard. Let I

0

-CDTMC(R) and I

0

-

CSTMC(R) be the versions of I

0

-CDTMC on Reif-

style deterministic and symmetric TM, respectively.

Theorem 2 I

0

-CDTMC(R) is W[SAT]-hard.

Proof: The reduction is from an instance (M;x; k) of

CDTMC to an instance (M

0

; x) of CDTMC(R) such

that s(jxj) = k. Given a DTM M in an instance of

CDTMC, construct a Reif-style DTM M

0

as follows:

Let M

0

have the same alphabet and space-bound s

as M , set Q

0

= Q[fq

F

g[Q

00

(see (4) below), create

a new �nal state q

0

F

, and construct the transition set

�

0

from � as follows. Let � = � [f2g.

1. For each (q; a) ! (q

0

; b; 1) 2 �, add

f(q; a; x; 1)! (q

0

; b; x;�1) j x 2 �g to �

0

.

2. For each (q; a) ! (q

0

; b; 0) 2 �, add

f(q; a; x; 0)! (q

0

; b; x; 0) j x 2 � [f$gg to �

0

.

3. For each (q; a) ! (q

0

; b;�1) 2 �, add

f(q; x; a;�1)! (q

0

; x; b; 1) j x 2 �g to �

0

.

4. Add a set of transitions to �

0

which, on entry

into the original �nal state q

F

of M , use a spe-

cial group of states Q

00

to go to the rightmost

tape-marker symbol, return to the leftmost tape-

marker symbol blanking out all symbols as it

goes, and enter state q

0

F

.

Note that the only transitions that need to deal with

the leftmost and rightmost tape-marker symbols $

are those in groups (2) and (4). No other transi-

tions involving the leftmost tape-marker symbol are

required by M

0

as no accepting computations of M

moved the head o� the leftmost end of the tape; sim-

ilarly, no transitions involving the rightmost tape-

marker are required because no accepting computa-

tion of M used more than s tape squares.

We now show that the constructed TM M

0

is

equivalent to M . Suppose M

0

is not deterministic,

i.e., there is a con�guration C

0

of M

0

such that at

least two transitions of M

0

can be applied to C

0

(we

can assume that none of these transitions is from

group (4) above). Select any two of these transi-

tions and call them �

0

1

and �

0

2

. As any transition

of M

0

in groups (1) { (3) above corresponds natu-

rally to a transition in M , the transitions �

1

; �

2

2 �

corresponding to �

0

1

and �

0

2

both apply to the con�g-

uration C of M corresponding to C

0

. This, however,

implies that M is not deterministic, which is a con-

tradiction. Hence M

0

is deterministic. Let x 2 �

�

be

an arbitrary string. The correspondence noted above

between transitions in M and M

0

implies that if M

0

accepts x then M accepts x; moreover, given any se-

quence of con�gurations by which M accepts x, one

can easily derive a corresponding sequence of con-

�gurations for M

0

by the construction given above.

Hence, the languages accepted by M and M

0

are the

same. To complete the proof, note that this construc-

tion can be performed in time polynomial in jM j, and

that the resulting machine M

0

has the same space

bound as M . 2

The second reduction is essentially a simpli�ed

version of the machinery developed in [17, Section 3],

as adapted for Reif-style TM.

Theorem 3 I

0

-CSTMC(R) is W[SAT]-hard.

Proof: This reduction has two parts. First, given

a Reif-style DTM M in the instance of CDTMC(R),

construct a Reif-style DTMM

0

by adding a new �nal

state that can be entered only from the old �nal state.

Second, givenM

0

, construct a Reif-style STMM

00

by

adding the appropriate transitions to �

0

to make it

symmetric.

We now establish that the constructed Reif-style

STM M

00

is equivalent to M . It is obvious that M

0

accepts the same language and has the same space

bound as M . As M

0

is deterministic and takes as

input only the empty string, there is a unique se-

quence of con�gurations computed by M

0

, which ei-

ther leads to the �nal state or rejects, i.e., either halts

when there is no applicable transition or runs end-

lessly; call this sequence S. It is obvious that M

00

can replicate S by using the original transitions of

M

0

. However, we need to be sure that M

00

cannot

use its new transitions to accept the empty string in

the case that M

0

rejects it. We can show this by con-

tradiction. Suppose that M

00

accepts but M

0

does

not; this implies that there is a sequence of con�gu-

rations S

0

for M

00

that leads from the initial to the

�nal state. There must then be a con�guration C

in S where the computations of M

0

and M

00

diverge

such that M

0

and M

00

apply di�erent transitions; as

M

0

is deterministic, M

00

must apply to C a tran-

sition that is not available to M

0

, i.e. a transition

from the set � = �

00

� �

0

, where each member of �

is just the inverse of some transition in �

0

. None of

the transitions followingC in S

0

can be in �

0

, as such

transitions can only force the computation back to-

wards C (assume that this was not so, and that at

some point C

0

reached by a transition �

1

2 �, one

could apply a transition �

2

2 �

0

to C such that �

2

did not \undo" �

1

; however, this would imply that

the inverse �

0

1

2 �

0

of �

1

and �

2

are both valid tran-

sitions from C

0

in M

0

, which contradicts the deter-

minism of M

0

); hence each transition in S

0

after C

must be from�. However, by the construction ofM

0

,

there can be no transition in � from any state in Q

to the �nal state, which contradicts the assumption

that S

0

leads M

00

to accept. Hence, though the sym-

metric computation of M

00

can reach con�gurations

that are not accessible to its deterministic counter-

part M

0

, M

00

cannot compute a result di�erent from

that computed by M

0

. Thus, M

00

accepts the same

language and has the same space bounds as M

0

and

M . To complete the proof, note the concatenation

of the transformations fromM to M

0

and M

0

to M

00

runs in time polynomial in jM j. 2

We can now state our main result.

Theorem 4 k-3D-GMP is W[SAT]-hard.

Proof: Given an instance of CSTMC(R) consisting

of a Reif-style STM M with space-bound s, the re-

duction given in [19] constructs a robot that has s+2

degrees of freedom in space logarithmic and hence (by

[15, Theorem 12.10(b)]) time polynomial in jM j. 2

We can obtain results relative to additional parame-

ters via previous reductions in the robotics literature

[14, 16, 19]. Let a maximally-linked group of poly-

hedra in P be a component, and each polyhedron in

P be a part. De�ne the following parameters of 3D-

GMP:

� The number of components of P (c);

� The maximum number of parts in any compo-

nent in P (p

c

) and the total number of parts in

P (p

t

);

� The maximum number of algebraic inequalities,

i.e., planar surfaces, lines, curves, needed to de-

�ne any part (s

p

) or component (s

c

) of P , or

the total number of such inequalities needed to

de�ne P (s

t

);

� The maximumnumber of linkage vertices on any

part (v

p

) or component (v

c

) of P , or the total

number of linkage vertices in P (v

t

); and

� The maximum number of degrees of freedom of

any part (k

p

) or component (k

c

) of P , or the

total number of degrees of freedom of P (k

t

= k).

The best known hardness results are given in Table 1.

The classical and parameterized complexity results in

this table are not incompatible; using the de�nitions

in [5, 8], it is easy to show that if a problem X is

C-hard for some classical complexity class C when

a parameter k is �xed at a constant value, then the

parameterized version k-X cannot be in (and hence

must be harder than) W[P] unless P = C. Hence, as

P = PSPACE is thought to be unlikely, the parame-

terized problems in Table 1 that are PSPACE-hard

are at least W[P]-hard and indeed probably much

harder.

4. Discussion

In this paper, we have shown that the 3-

dimensional Euclidean generalized mover's

problem is W[SAT]-hard when the number of de-

grees of freedom k is a bounded parameter. This sug-

gests that there is no general algorithm for robot mo-

tion planning whose running time can avoid having

some function of k as an exponent of some input pa-

rameters of the problem without forcing some other

input parameter to go exponential. Note, however,

Parameter 3D-GMP 2D-GMP

Components c PSPACE-hard PSPACE-hard

[16, 19] (1) [16] (1)

Parts p

c

PSPACE-hard PSPACE-hard

[14] (1) [14] (1)

p

t

W[SAT]-hard ???

Surfaces s

p

PSPACE-hard PSPACE-hard

[16] (1) [16] (1)

s

c

PSPACE-hard PSPACE-hard

[14] (4) [14] (4)

s

t

W[SAT]-hard ???

Degrees of k

p

PSPACE-hard PSPACE-hard

Freedom [14, 16, 19] (2) [14, 16] (2)

k

c

PSPACE-hard PSPACE-hard

[14] (2) [14] (2)

k

t

W[SAT]-hard ???

Table 1: The Parameterized Complexity of the Generalized Mover's Problem. A number c in parentheses after a

reference, e.g., \(4)", indicates that the complexity result holds when the parameter in question is �xed at value c.

that this function could be sublinear, e.g., O(n

log

3

k

),

which does not preclude algorithms more e�cient

than the best known today.

Our main result answers the question posed in

the introduction. Indeed, this result in conjunction

with previous reductions in the literature shows that

robot motion planning is not f.p. tractable even when

many of the parameters de�ned above are bounded

simultaneously (in some cases, to constants). This

suggests two directions for future research:

1. Examine new parameters: Though additional

parameters may be de�ned by restricting the

form of the robot further, a more fertile area

for inquiry is perhaps restrictions of the robot's

environment, e.g., number / surface-complexity

of obstacles.

2. Examine the e�ect of bounding other groups of

parameters simultaneously to constants: Prob-

lems derived by severely constraining a whole

aspect of the problem, e.g., a robot composed

of a constant number of disks or rectangles, may

yet be tractable. For example, when the robot is

a single rigid polyhedron, 3D-GMP can be solved

in polynomial time [19].

Such restrictions may seem nonsensical. However,

such restricted instances may still be useful for deriv-

ing approximation algorithms for the original prob-

lem. For example, one might approximate a 3-

dimensional movement by a series of 2-dimensional

movements in di�erent planes. Moreover note that

the problems examined in this paper are only con-

cerned with whether or not the robot can reach the

�nal position from its initial position. It must �rst be

established if any variants of this most basic case are

f.p. tractable if there is to be any hope of establish-

ing the f.p. tractability of more realistic versions of

GMP which incorporate moving obstacles, optimal-

ity constraints on motion plans, uncertainty of robot

motion, and unknown environments (see [19, 20, 21]

and references).

In any case, the results given in this paper sug-

gest that parameterized complexity theory is a more

appropriate tool than classical computational com-

plexity theory for analyzing motion planning prob-

lems in robotics. By isolating the contribution of

each parameter to a problem's overall complexity, pa-

rameterized analyses are an ideal tool not only for

showing that certain problems cannot be solved ef-

�ciently by restricting the values of particular input

parameters, but also for suggesting other parameter-

izations of these problems that may yet be tractable

in practice.

Acknowledgements

The second author would like to thank R. Murphree,

J. Reif, M. Sharir, and A. van der Stappen for vari-

ous helpful e-mail conversations, M. Fellows for com-

ments on several earlier drafts, and P. Evans, A. Idler,

and B. Shea for assistance at crucial times during the

preparation of this paper.

References

[1] Abrahamson, K.A. and Fellows, M.R. (1993)

\Finite Automata, Bounded Treewidth, and

Well-Quasiordering." Contemporary Mathemat-

ics, 147, 539{564.

[2] Bodlaender, H.L., Downey, R.G., Fellows, M.R.,

Hallett, M.T., and Wareham, H.T. (1995) \Pa-

rameterized Complexity Analysis in Computa-

tional Biology." Computer Applications in the

Biosciences, 11(1), 49{57.

[3] Canny, J.F. (1987) The Complexity of Robot Mo-

tion Planning. The MIT Press; Cambridge, MA.

[4] Cesati, M. (1995) \On the Parameterized

Complexity of Turing Machine Computations."

Manuscript.

[5] Downey, R.G. and Fellows, M.R. (1992) \Fixed-

parameter intractability (extended abstract)."

In Proceedings of the Seventh Annual Confer-

ence on Structure in Complexity Theory. IEEE

Computer Society Press; Los Alamitos, CA. 36{

49.

[6] Downey, R.G. and Fellows, M.R. (1993) \Fixed-

parameter tractability and completeness III:

some structural aspects of the W -hierarchy." In

Ambos-Spies, K., Homer, S. and Schoning, U.

(eds). Complexity Theory. Cambridge University

Press. 166{191.

[7] Downey, R.G. and Fellows, M.R. (1995) \Pa-

rameterized Computational Feasibility." In P.

Clote and J.B. Remmel (eds.) Feasible Mathe-

matics II. Birkhauser; Boston, MA. 219{244.

[8] Downey, R.G. and Fellows, M.R. (1995) \Fixed-

parameter tractability and completeness II. On

completeness for W [1]." Theoretical Computer

Science, 141, 109{131.

[9] Downey, R.G., Fellows, M.R., Kapron, B.M.,

Hallett, M.T., and Wareham, H.T. (1994) \Pa-

rameterized Complexity of Some Problems in

Logic and Linguistics (Extended Abstract)." In

A. Nerode and Y.V. Matiyasevich (eds.) Logi-

cal Foundations of Computer Science. Lecture

Notes in Computer Science no. 813. Springer-

Verlag; Berlin. 89{101.

[10] Fellows, M.R. (1989) \The Robertson-Seymour

theorems: a survey of applications." Contempo-

rary Mathematics, 89, 1{18.

[11] Fellows, M.R. and Langston, M.A. (1992) \On

well-partial-ordering theory and its applications

to combinatorial problems in VLSI design."

SIAM Journal of Discrete Mathematics, 5, 117{

126.

[12] Garey, M.R. and Johnson, D.S. (1979) Comput-

ers and Intractability: A Guide to the Theory

of NP -Completeness. W. H. Freeman and Com-

pany; San Francisco.

[13] Hallett, M.T. and Wareham, H.T. (1994) \A

compendium of parameterized complexity re-

sults." SIGACT News, 25(3), 122{123.

[14] Hopcroft, J., Schwartz, J.T. and Sharir, M.

(1984) \On the Complexity of Motion Planning

for Multiple Independent Objects: PSPACE-

Hardness of the `Warehouseman's Problem'."

The International Journal of Robotics Research,

3(4), 76{88.

[15] Hopcroft, J. and Ullman, J.D. (1979) Introduc-

tion to Automata Theory, Languages, and Com-

putation. Addison-Wesley; Reading, MA.

[16] Joseph, D.A. and Plantinga, W.H. (1985) \On

the Complexity of Reachability and Motion

Planning Problems." In Proceedings of the First

ACM Symposium on Computational Geometry.

ACM Press; New York. 62{66.

[17] Lewis, H.R. and

Papadimitriou, C.H. (1982) \Symmetric Space-

Bounded Computation." Theoretical Computer

Science, 19, 161{187.

[18] Papadimitriou, C.H. (1994) Computational

Complexity. Addison-Wesley; Reading, MA.

[19] Reif, J.H. (1987) \Complexity of the General-

ized Mover's Problem." In Schwartz et al. (eds.)

(1987). 267{281.

[20] Reif, J.H. and Sharir, M. (1994) \Motion Plan-

ning in the Presence of Moving Obstacles." Jour-

nal of the ACM, 41(4), 764{790.

[21] Schwartz, J.T. and Sharir, M. (1990) \Algorith-

mic Motion Planning in Robotics." In J. van

Leeuwen (ed.) Handbook of Theoretical Com-

puter Science, Volume A: Algorithms and Com-

plexity. The MIT Press; Cambridge, MA. 391{

430.

[22] Schwartz, J.T., Sharir, M. and Hopcroft, J.

(eds.) (1987) Planning, Geometry, and Com-

plexity of Robot Motion. Ablex Publishing Cor-

poration; Norwood, NJ.

